Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Int J Stem Cells ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38494425

RESUMEN

The sequential change from totipotency to multipotency occurs during early mammalian embryo development. However, due to the lack of cellular models to recapitulate the distinct potency of stem cells at each stage, their molecular and cellular characteristics remain ambiguous. The establishment of isogenic naïve and primed pluripotent stem cells to represent the pluripotency in the inner cell mass of the pre-implantation blastocyst and in the epiblast from the post-implantation embryo allows the understanding of the distinctive characteristics of two different states of pluripotent stem cells. This review discusses the prominent disparities between naïve and primed pluripotency, including signaling pathways, metabolism, and epigenetic status, ultimately facilitating a comprehensive understanding of their significance during early mammalian embryonic development.

2.
Stem Cell Reports ; 17(6): 1303-1317, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35594858

RESUMEN

Trophoblast stem cells (TSCs) have recently been derived from human embryos and early-first-trimester placenta; however, aside from ethical challenges, the unknown disease potential of these cells limits their scientific utility. We have previously established a bone morphogetic protein 4 (BMP4)-based two-step protocol for differentiation of primed human pluripotent stem cells (hPSCs) into functional trophoblasts; however, those trophoblasts could not be maintained in a self-renewing TSC-like state. Here, we use the first step from this protocol, followed by a switch to newly developed TSC medium, to derive bona fide TSCs. We show that these cells resemble placenta- and naive hPSC-derived TSCs, based on their transcriptome as well as their in vitro and in vivo differentiation potential. We conclude that primed hPSCs can be used to generate functional TSCs through a simple protocol, which can be applied to a widely available set of existing hPSCs, including induced pluripotent stem cells, derived from patients with known birth outcomes.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Diferenciación Celular , Femenino , Humanos , Placenta , Embarazo , Trofoblastos
3.
Stem Cell Reports ; 17(6): 1289-1302, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35594861

RESUMEN

The observation that trophoblast (TB) can be generated from primed pluripotent stem cells (PSCs) by exposure to bone morphogenetic protein-4 (BMP4) when FGF2 and ACTIVIN signaling is minimized has recently been challenged with the suggestion that the procedure instead produces amnion. Here, by analyzing transcriptome data from multiple sources, including bulk and single-cell data, we show that the BMP4 procedure generates bona fide TB with similarities to both placental villous TB and TB generated from TB stem cells. The analyses also suggest that the transcriptomic signatures between embryonic amnion and different forms of TB have commonalities. Our data provide justification for the continued use of TB derived from PSCs as a model for investigating placental development.


Asunto(s)
Células Madre Pluripotentes , Trofoblastos , Amnios , Diferenciación Celular , Células Madre Embrionarias , Femenino , Humanos , Placenta , Embarazo
4.
Methods Mol Biol ; 2416: 39-51, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34870829

RESUMEN

Generating patient-specific stem cells representing the onset of development has become possible since the discovery of somatic cell reprogramming into induced pluripotent stem cells. However, human pluripotent stem cells are generally cultured in a primed pluripotent state: they are poised for differentiation and represent a stage of development corresponding to post-implantation epiblast. Here, we describe a protocol to reprogram human fibroblasts into naive pluripotent stem cells by overexpressing the transcription factors OCT4, SOX2, KLF4, and c-MYC using Sendai viruses. The resulting cells represent an earlier stage of development that corresponds to pre-implantation epiblast. We also discuss validation methods for human naive pluripotent stem cells.


Asunto(s)
Células Madre Pluripotentes , Diferenciación Celular , Células Cultivadas , Reprogramación Celular , Fibroblastos , Estratos Germinativos , Humanos , Células Madre Pluripotentes Inducidas , Factor 3 de Transcripción de Unión a Octámeros/genética , Factores de Transcripción SOXB1/genética
5.
Cell Stem Cell ; 28(6): 1023-1039.e13, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33831365

RESUMEN

Trophoblasts are extraembryonic cells that are essential for maintaining pregnancy. Human trophoblasts arise from the morula as trophectoderm (TE), which, after implantation, differentiates into cytotrophoblasts (CTs), syncytiotrophoblasts (STs), and extravillous trophoblasts (EVTs), composing the placenta. Here we show that naïve, but not primed, human pluripotent stem cells (PSCs) recapitulate trophoblast development. Naive PSC-derived TE and CTs (nCTs) recreated human and monkey TE-to-CT transition. nCTs self-renewed as CT stem cells and had the characteristics of proliferating villous CTs and CTs in the cell column of the first trimester. Notably, although primed PSCs differentiated into trophoblast-like cells (BMP4, A83-01, and PD173074 [BAP]-treated primed PSCs [pBAPs]), pBAPs were distinct from nCTs and human placenta-derived CT stem cells, exhibiting properties consistent with the amnion. Our findings establish an authentic paradigm for human trophoblast development, demonstrating the invaluable properties of naive human PSCs. Our system provides a platform to study the molecular mechanisms underlying trophoblast development and related diseases.


Asunto(s)
Células Madre Pluripotentes , Trofoblastos , Diferenciación Celular , Femenino , Humanos , Placenta , Embarazo
6.
Dev Growth Differ ; 63(2): 104-115, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33570781

RESUMEN

Forty years have passed since the first pluripotent stem cells (PSCs), mouse embryonic stem cells (ESCs), were established. Since then, several PSCs have been reported, including human ESCs in 1998, mouse epiblast stem cells (EpiSCs) in 2007, induced PSCs (iPSCs) in 2006 and 2007, and naïve human PSCs in 2014. Naïve PSCs are thought to correspond to pre-implantation epiblast cells, whereas conventional (or primed) human PSCs correspond to post-implantation epiblast cells. Thus, naïve and primed PSCs are classified by their developmental stages and have stage-specific characteristics, despite sharing the common feature of pluripotency. In this review, we discuss the current status of PSCs and their use to model human peri-implantation development.


Asunto(s)
Células Madre Pluripotentes/citología , Diferenciación Celular , Desarrollo Embrionario , Humanos
7.
Exp Cell Res ; 387(1): 111747, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31778671

RESUMEN

Pluripotency refers to the potential of single cells to form all cells and tissues of an organism. The observation that pluripotent stem cells can chimerize the embryos of evolutionarily distant species, albeit at very low efficiencies, could with further modifications, facilitate the production of human-animal interspecies chimeras. The generation of human-animal interspecies chimeras, if achieved, will enable practitioners to recapitulate pathologic human tissue formation in vivo and produce patient-specific organs inside livestock species. However, little is known about the nature of chimera-competent cellular states in primates. Here, I discuss recent advances in our understanding of the pluripotency continuum in humans and non-human primates (NHPs). Although undefined differences between humans and NHPs still justify the utility of studying human cells, the complementary use of NHP PS cells could also allow one to conduct pilot studies testing interspecies chimera generation strategies with reduced ethical concerns associated with human interspecies neurological chimerism. However, the availability of standardized, high-quality and validated NHP PS cell lines covering the spectrum of primate pluripotent states is lacking. Therefore, a clearer understanding of the primate pluripotency continuum will facilitate the complementary use of both human and NHP PS cells for testing interspecies organogenesis strategies, with the hope of one day enabling human organ generation inside livestock species.


Asunto(s)
Quimera/fisiología , Animales , Humanos , Organogénesis/fisiología , Células Madre Pluripotentes/fisiología , Primates
8.
Int J Mol Sci ; 20(23)2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31766734

RESUMEN

microRNAs are ~22bp nucleotide non-coding RNAs that play important roles in the post-transcriptional regulation of gene expression. Many studies have established that microRNAs are important for cell fate choices, including the naïve to primed pluripotency state transitions, and their intermediate state, the developmentally suspended diapause state in early development. However, the full extent of microRNAs associated with these stage transitions in human and mouse remain under-explored. By meta-analysis of microRNA-seq, RNA-seq, and metabolomics datasets from human and mouse, we found a set of microRNAs, and importantly, their experimentally validated target genes that show consistent changes in naïve to primed transitions (microRNA up, target genes down, or vice versa). The targets of these microRNAs regulate developmental pathways (e.g., the Hedgehog-pathway), primary cilium, and remodeling of metabolic processes (oxidative phosphorylation, fatty acid metabolism, and amino acid transport) during the transition. Importantly, we identified 115 microRNAs that significantly change in the same direction in naïve to primed transitions in both human and mouse, many of which are novel candidate regulators of pluripotency. Furthermore, we identified 38 microRNAs and 274 target genes that may be involved in diapause, where embryonic development is temporarily suspended prior to implantation to uterus. The upregulated target genes suggest that microRNAs activate stress response in the diapause stage. In conclusion, we provide a comprehensive resource of microRNAs and their target genes involved in naïve to primed transition and in the paused intermediate, the embryonic diapause stage.


Asunto(s)
Bases de Datos Genéticas , Células Madre Embrionarias Humanas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , MicroARNs , Células Madre Embrionarias de Ratones/metabolismo , Animales , Células Madre Embrionarias Humanas/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Ratones , MicroARNs/biosíntesis , MicroARNs/genética , Células Madre Embrionarias de Ratones/citología
9.
Methods Mol Biol ; 2005: 3-27, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31175642

RESUMEN

Humans develop from a unique group of pluripotent cells in early embryos that can produce all cells of the human body. While pluripotency is only transiently manifest in the embryo, scientists have identified conditions that sustain pluripotency indefinitely in the laboratory. Pluripotency is not a monolithic entity, however, but rather comprises a spectrum of different cellular states. Questions regarding the scientific value of examining the continuum of pluripotent stem (PS) cell states have gained increased significance in light of attempts to generate interspecies chimeras between humans and animals. In this chapter, I review our ever-evolving understanding of the continuum of pluripotency. Historically, the discovery of two different PS cell states in mice fostered a general conception of pluripotency comprised of two distinct attractor states: naïve and primed. Naïve pluripotency has been defined by competence to form germline chimeras and governance by unique KLF-based transcription factor (TF) circuitry, whereas primed state is distinguished by an inability to generate chimeras and alternative TF regulation. However, the discovery of many alternative PS cell states challenges the concept of pluripotency as a binary property. Moreover, it remains unclear whether the current molecular criteria used to classify human naïve-like pluripotency also identify human chimera-competent PS cells. Therefore, I examine the pluripotency continuum more closely in light of recent advances in PS cell research and human interspecies chimera research.


Asunto(s)
Embrión de Mamíferos/embriología , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Animales , Quimera/metabolismo , Embrión de Mamíferos/citología , Células Madre Embrionarias Humanas/citología , Humanos , Ratones , Células Madre Embrionarias de Ratones/citología
10.
Methods Mol Biol ; 2005: 125-151, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31175650

RESUMEN

Human pluripotent stem (PS) cells can be isolated from preimplantation embryos or by reprogramming of somatic cells or germline progenitors. Human PS cells are considered the "holy grail" of regenerative medicine because they have the potential to form all cell types of the adult body. Because of their similarity to humans, nonhuman primate (NHP) PS cells are also important models for studying human biology and disease, as well as for developing therapeutic strategies and test bed for cell replacement therapy. This chapter describes adjusted methods for cultivation of PS cells from different primate species, including African green monkey, rhesus monkey, chimpanzee, and human. Supplementation of E8 medium and inhibitors of the Tankyrase and GSK3 kinases to various primate PS cell media reduce line-dependent predisposition for spontaneous differentiation in conventional PS cell cultures. We provide methods for basic characterization of primate PS cell lines, which include immunostaining for pluripotency markers such as OCT4 and TRA-1-60, as well as in vivo teratoma formation assay. We provide methods for generating alternative PS cells including region-selective primed PS cells, two different versions of naïve-like cells, and recently reported extended pluripotent stem (EPS) cells. These derivations are achieved by acclimation of conventional PS cells to target media, episomal reprogramming of somatic cells, or resetting conventional PS cells to a naïve-like state by overexpression of KLF2 and NANOG. We also provide methods for isolation of PS cells from human blastocysts. We describe how to generate interspecies primate-mouse chimeras at the blastocyst and postimplantation embryo stages. Systematic evaluation of the chimeric competency of human and primate PS cells will aid in efforts to overcome species barriers and achieve higher grade chimerism in postimplantation conceptuses that could enable organ-specific enrichment of human xenogeneic PS cell derivatives in large animals such as pigs and sheep.


Asunto(s)
Antígenos de Diferenciación/metabolismo , Blastocisto/metabolismo , Quimera/embriología , Células Madre Embrionarias Humanas/metabolismo , Animales , Blastocisto/citología , Chlorocebus aethiops , Células Madre Embrionarias Humanas/citología , Humanos , Factor 4 Similar a Kruppel , Ratones , Ovinos , Porcinos
11.
Methods Mol Biol ; 2005: 221-231, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31175656

RESUMEN

The search for a better animal model to simulate human disease has been a "holy grail" of biomedical research for decades. Recent identification of different types of pluripotent stem cells (PS cells) and advances in chimera research might soon permit the generation of interspecies chimeras from closely related species, such as those between humans and other primates. Here, we suggest that the creation of human-primate chimeras-specifically, the transfer of human stem cells into (non-ape) primate hosts-could surpass the limitations of current monkey models of neurological and psychiatric disease, but would also raise important ethical considerations concerning the use of monkeys in invasive research. Questions regarding the scientific value and ethical concerns raised by the prospect of human-monkey chimeras are more urgent in light of recent advances in PS cell research and attempts to generate interspecies chimeras between humans and animals. While some jurisdictions prohibit the introduction of human PS cells into monkey preimplantation embryos, other jurisdictions may permit and even encourage such experiments. Therefore, it is useful to consider blastocyst complementation experiments more closely in light of advances that could make these chimeras possible and to consider the ethical and political issues that are raised.


Asunto(s)
Discusiones Bioéticas , Modelos Animales de Enfermedad , Ética en Investigación , Trasplante de Células Madre/ética , Quimera por Trasplante , Animales , Haplorrinos , Humanos
12.
Curr Protoc Stem Cell Biol ; 50(1): e87, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31184444

RESUMEN

Pluripotency refers to the capacity of single cells to form derivatives of the three germ layers-ectoderm, mesoderm, and endoderm. Pluripotency can be captured in vitro as a spectrum of pluripotent stem cell states stabilized in specialized laboratory conditions. The recent discovery that pluripotent stem cells can colonize the embryos of distantly related animal organisms could, with further refinement, enable the generation of chimeric embryos composed of cells of human and animal origin. If achievable, the production of human-animal chimeras will open up new opportunities for regenerative medicine, facilitating human disease modeling and human organ generation inside large animals. However, the generation of human-animal interspecies chimeras is anticipated to require human chimera-competent pluripotent stem cells. Thus, it remains imperative to examine the pluripotency continuum more closely in light of advances that will facilitate the production of human-animal chimeras. This piece will review the current understanding of the pluripotency continuum and interspecies chimeras. © 2019 by John Wiley & Sons, Inc.


Asunto(s)
Quimera/fisiología , Células Madre Pluripotentes/citología , Animales , Células Cultivadas , Técnicas de Cultivo/métodos , Humanos
13.
Biochem Biophys Res Commun ; 510(1): 78-84, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30660369

RESUMEN

Generating human organs inside interspecies chimeras might one day produce patient-specific organs for clinical applications, but further advances in identifying human chimera-competent pluripotent stem (PS) cells are needed. Moreover, the potential for human PS cells to contribute to the brains in human-animal chimeras raises ethical questions. The use of non-human primate (NHP) chimera-competent PS cells would allow one to test interspecies organogenesis strategies while also bypassing such ethical concerns. Here, we provide the first evidence for a putative chimera-competent pluripotent state in NHPs. Using histone deacetylase (HDAC) and selective kinase inhibition, we converted the PS cells of an Old World monkey, the African Green monkey (aGM), to an ERK-independent cellular state that can be propagated in culture conditions similar to those that sustain chimera-competency in rodent cells. The obtained stem cell lines indefinitely self-renew in MEK inhibitor-containing culture media lacking serum replacement and FGF. Compared to conventional PS cells, the novel stem cells express elevated levels of KLF4, exhibit more intense nuclear staining for TFE3, and manifest increased mitochondrial membrane depolarization. These data are preliminary but indicate that the key to deriving primate chimera-competent PS cells is to shield cells from the activation of ERK, PKC, and WNT signaling. Because of the similarity of aGMs to humans, the more ethically palatable use of NHP cells, and the more similar gestation length between aGMs and large animals such as sheep, the aGM cell lines described herein will serve as a useful tool for evaluating the efficacy and safety of interspecies organogenesis strategies. Future studies will examine chimera-competency and generalizability to human cells.


Asunto(s)
Quimera/embriología , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Células Madre Pluripotentes/citología , Animales , Bioética , Células Cultivadas , Chlorocebus aethiops , Humanos , Factor 4 Similar a Kruppel , Organogénesis
14.
Cell Rep ; 25(9): 2563-2576.e9, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30485820

RESUMEN

Monkeys are an optimal model species for developing stem cell therapies. We previously reported generating chimeric cynomolgus monkey fetuses using dome-shaped embryonic stem cells (dESCs). However, conventional primed pluripotent stem cells (pPSCs) lack chimera competency. Here, by altering the media in which injected morulae are cultured, we observed increased survival of cynomolgus monkey primed ESCs, induced PSCs, and somatic cell nuclear transfer-derived ESCs, thereby enabling chimeric contributions with 0.1%-4.5% chimerism into the embryonic and placental tissues, including germ cell progenitors in chimeric monkeys. Mechanically, dESCs and pPSCs belong to different cell types and similarly express epiblast ontogenic genes. The host embryonic microenvironment could reprogram injected PSCs to embryonic-like cells. However, the reprogramming level and chimerism were associated with the cell state of injected PSCs. Our findings provide a method to understand pluripotency and broaden the use of embryonic chimeras for basic developmental biology research and regenerative medicine.


Asunto(s)
Quimerismo , Embrión de Mamíferos/citología , Inyecciones , Células Madre Pluripotentes/citología , Animales , Animales Recién Nacidos , Supervivencia Celular , Microambiente Celular , Reprogramación Celular , Técnicas de Cultivo de Embriones , Regulación de la Expresión Génica , Macaca fascicularis , Células Madre Pluripotentes/metabolismo , Trofoblastos/citología
15.
Yale J Biol Med ; 91(3): 333-342, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30258320

RESUMEN

The shortage of human organs for transplantation is a devastating medical problem. One way to expand organ supply is to derive functional organs from patient-specific stem cells. Due to their capacity to grow indefinitely in the laboratory and differentiate into any cell type of the human body, patient-specific pluripotent stem (PS) cells harbor the potential to provide an inexhaustible supply of donor cells for transplantation. However, current efforts to generate functional organs from PS cells have so far been unsuccessful. An alternative and promising strategy is to generate human organs inside large animal species through a technique called interspecies blastocyst complementation. In this method, animals comprised of cells from human and animal species are generated by injecting donor human PS cells into animal host embryos. Critical genes for organ development are knocked out by genome editing, allowing donor human PS cells to populate the vacated niche. In principle, this experimental approach will produce a desired organ of human origin inside a host animal. In this mini-review, we focus on recent advances that may bring the promise of blastocyst complementation to clinical practice. While CRISPR/Cas9 has accelerated the creation of transgenic large animals such as pigs and sheep, we propose that further advances in the generation of chimera-competent human PS cells are needed to achieve interspecies blastocyst complementation. It will also be necessary to define the constituents of the species barrier, which inhibits efficient colonization of host animal embryos with human cells. Interspecies blastocyst complementation is a promising approach to help overcome the organ shortage facing the practice of clinical medicine today.


Asunto(s)
Células Madre Pluripotentes/citología , Animales , Diferenciación Celular/fisiología , Humanos , Trasplante de Órganos
16.
Curr Protoc Stem Cell Biol ; 46(1): e60, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30005143

RESUMEN

Epiblast stem cells (EpiSCs) are primed pluripotent stem cells (PSCs) derived from mouse postimplantation embryos. Interestingly, EpiSCs share many characteristics with human PSCs such as human embryonic stem cells (hESCs) and human induced PSCs (hiPSC). Thus, EpiSCs can serve as a model for studying primed states of pluripotency. This article describes a simple yet highly efficient protocol for EpiSC derivation and maintenance of homogenous EpiSCs using an inhibitor of WNT secretion. Using this method, EpiSCs can be readily derived from mouse strains with different genetic background including C57BL/6N. The EpiSCs derived by this protocol maintain a homogenous, undifferentiated status, yet retain high differentiation potential. Unlike EpiSCs established by the original protocol, the new EpiSC lines require the continued presence of WNT inhibitor, suggesting intrinsic differences from EpiSCs made by the original method. This new version of EpiSCs will provide clues to understand the nature of primed states of mammalian pluripotent cells and may facilitate establishment of a better protocol for directed differentiation from the primed state. © 2018 by John Wiley & Sons, Inc.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Madre Pluripotentes/citología , Proteínas Wnt/metabolismo , Animales , Separación Celular , Células Cultivadas , Criopreservación , Disección , Embrión de Mamíferos/citología , Fibroblastos/citología , Estratos Germinativos/citología , Ratones Endogámicos C57BL , Células Madre Pluripotentes/metabolismo
17.
Curr Stem Cell Res Ther ; 12(6): 442-446, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28025937

RESUMEN

BACKGROUND: Pluripotency of stem cells is an important scientific issue and is attracting great interest for the broader community, especially for regenerative medicine field. Pluripotent stem cells (PSCs) in mammalians are defined as naive- and primed-states according to their cellular, molecular, epigenetic and functional states. OBJECTIVE: Understand the correlation between DNA methylation and pluripotency of stem cells. METHOD: Based on published papers, we discussed the DNA methylation and corresponding functions for embryonic stem cells. We also summarized the correlation between DNA methylation and naive state maintenance, and outlook future emphasis of DNA methylation for primate naive PSCs. RESULTS AND CONCLUSION: DNA methylation is closely associated with cell reprogramming, functional remodeling and cell differentiation of PSCs. The pluripotency and naive characteristics of PSCs are closely associated with cell DNA methylation. However, the mechanisms, which are involved in methylation modifications of naive ground, are still one of the important scientific issues for primate naive PSCs because of lack of widely accepted culture condition.


Asunto(s)
Reprogramación Celular/genética , Metilación de ADN , Células Madre Embrionarias/citología , Células Madre Pluripotentes/citología , Animales , Diferenciación Celular/fisiología , Humanos , Factores de Transcripción/metabolismo
18.
Methods Mol Biol ; 1341: 67-85, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-25762298

RESUMEN

Recombinant lentiviral vectors are powerful tools to stably manipulate human pluripotent stem cells. They can be used to deliver ectopic genes, shRNAs, miRNAs, or any possible genetic DNA sequence into diving and nondividing cells. Here we describe a general protocol for the production of self-inactivating lentiviral vector particles and their purification to high titers by either ultracentrifugation or ultrafiltration. Next we provide a basic procedure to transduce human pluripotent stem cells and propagate clonal cell lines.


Asunto(s)
Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Lentivirus/genética , Células Madre Pluripotentes/metabolismo , Transducción Genética/métodos , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Vectores Genéticos/aislamiento & purificación , Células HEK293 , Humanos , Lentivirus/aislamiento & purificación , Células Madre Pluripotentes/citología , Ultracentrifugación/métodos , Ultrafiltración/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA