Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Talanta ; 273: 125911, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38508129

RESUMEN

Lateral flow immunoassays (LFIAs) are widely used to determine carbendazim (CBZ) residues in food products due to their advantages of low cost, ease and rapid use, on-site detection capability. However, conventional LFIAs have low detection sensitivity. Although improvements have been made to increase the sensitivity, it is not sufficient. Here, a hamper pad, polyvinyl alcohol coated on a nitrocellulose membrane, was integrated to enhance the sensitivity of LFIA for CBZ detection. The hamper pad was inserted between the conjugated and nitrocellulose pads to delay the flow rate, thereby increasing the possibility of the antibody and target analyte binding. This platform exhibited a fourfold sensitivity increase in CBZ detection compared with the conventional LFIA, and its limit of detection was 1.6 ng/mL. In addition, a single-step operation was successfully applied to detect CBZ in rice (white rice, brown rice, sticky rice, and paddy) and soybean samples, with acceptable recoveries of 93.6%-120.0%. This novel device was compared to the standard high-performance liquid chromatography method, which shows high accuracy with a Kappa coefficient of 0.91. Therefore, improved sensitivity with a rapid, simple, and inexpensive device could facilitate the detection of CBZ residues in agricultural products for on-field screening and improved user-friendliness.


Asunto(s)
Bencimidazoles , Nanopartículas del Metal , Colodión , Inmunoensayo/métodos , Carbamatos , Nanopartículas del Metal/química
2.
Sensors (Basel) ; 24(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38400283

RESUMEN

In this work, a new voltammetric procedure for acyclovir (ACY) trace-level determination has been described. For this purpose, an electrochemically activated screen-printed carbon electrode (aSPCE) coupled with well-conductive electrolyte (CH3COONH4, CH3COOH and NH4Cl) was used for the first time. A commercially available SPCE sensor was electrochemically activated by conducting cyclic voltammetry (CV) scans in 0.1 mol L-1 NaOH solution and rinsed with deionized water before a series of measurements were taken. This treatment reduced the charge transfer resistance, increased the electrode active surface area and improved the kinetics of the electron transfer. The activation step and high conductivity of supporting electrolyte significantly improved the sensitivity of the procedure. The newly developed differential-pulse adsorptive stripping voltammetry (DPAdSV) procedure is characterized by having the lowest limit of detection among all voltammetric procedures currently described in the literature (0.12 nmol L-1), a wide linear range of the calibration curve (0.5-50.0 and 50.0-1000.0 nmol L-1) as well as extremely high sensitivity (90.24 nA nmol L-1) and was successfully applied in the determination of acyclovir in commercially available pharmaceuticals.

3.
Sensors (Basel) ; 23(17)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37687796

RESUMEN

Fiber optic distributed acoustic sensing (DAS) technology is widely used in security surveillance and geophysical survey applications. The response of the DAS system to external vibrations varies with different types of fiber optic cable connections. The mechanism of mutual influence between the cable's characteristics and DAS measurement results remains unclear. This study proposed a dynamic model of the interaction between the optical cable and the soil, analyzed the impact of the dynamic parameters of the optical cable and soil on the sensitivity of the DAS system, and validated the theoretical analysis through experiments. The findings suggest that augmenting the cable's bending stiffness 5.5-fold and increasing its unit mass 4.2-fold result in a discernible reduction of the system's response to roughly 0.15 times of its initial magnitude. Cables with lower unit mass and bending stiffness are more sensitive to vibration signals. This research provides a foundation for optimizing vibration-enhanced fiber optic cables and broadening the potential usage scenarios for DAS systems.

4.
Crit Rev Anal Chem ; 53(3): 655-671, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34435920

RESUMEN

Chromatography and mass spectrometry based techniques are the most commonly employed procedures to quantitate the analytes in pharmaceutical research. However, sensitivity of analytical methods significantly varies due to the difference in physicochemical characteristics of analytes. Sensitivity of methods greatly affects the quality of analytical results. Establishment of a sufficiently sensitive method ensures the suitability of a technique for its intended purpose. Although various types of advancement in chromatographic science are witnessed, issues related to sensitivity remain a major challenge for the analyte with low detection limit. Highly sensitive analytical methods are specifically essential to quantitate the analytes in the samples from dissolution study of sustained release formulations, cross-contamination study, impurity analysis, metabolite profiling, bioanalysis of highly potent and low bioavailable drugs. In recent years, huge involvement of researchers toward sensitivity enhancement of quantitative methods is evidenced. Wide verities of approaches are being reported in the field. Derivatization technique, introduction of ion-pairing reagents, sample pretreatment, and utilization of innovative methods such as 2-dimensional liquid chromatography, nano liquid chromatography, 2-dimensional gas chromatography, supercritical fluid chromatography, use of microcolumn are some approaches that are being employed. Online sample preparation techniques can significantly improve the sensitivity of a method by reducing sample loss and degradation. This review summarizes and critically discussed the approaches to improve the sensitivity of chromatographic and mass spectrometry based analytical methods. This article can guide the researchers to select suitable approaches for achieving the desired detection limit of analytical and bioanalytical methods based on their specific requirements.


Asunto(s)
Cromatografía con Fluido Supercrítico , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos
5.
Micromachines (Basel) ; 15(1)2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38258201

RESUMEN

This review paper provides an in-depth analysis of recent advancements in integrating two-dimensional (2D) materials with cellulose to enhance biosensing technology. The incorporation of 2D materials such as graphene and transition metal dichalcogenides, along with nanocellulose, improves the sensitivity, stability, and flexibility of biosensors. Practical applications of these advanced biosensors are explored in fields like medical diagnostics and environmental monitoring. This innovative approach is driving research opportunities and expanding the possibilities for diverse applications in this rapidly evolving field.

6.
Sensors (Basel) ; 22(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36365906

RESUMEN

The paper presents a very simple way to extremely improve the sensitivity of trace V(V) determination. The application of a new supporting electrolyte composition (CH3COONH4, CH3COOH, and NH4Cl) instead of the commonly used acetate buffer (CH3COONa and CH3COOH) significantly enhanced the adsorptive stripping voltammetric signal of vanadium(V) at the lead-coated glassy carbon electrode (GCE/PbF). A higher enhancement was attained in the presence of cupferron as a complexing agent (approximately 10 times V(V) signal amplification) than in the case of chloranilic acid and bromate ions (approximately 0.5 times V(V) signal amplification). Therefore, the adsorptive stripping voltammetric system with the accumulation of V(V)-cupferron complexes at -1.1 V for 15 s in the buffer solution (CH3COONH4, CH3COOH, and NH4Cl) of pH = 5.6 ± 0.1 was selected for the development of a simple and extremely sensitive V(V) analysis procedure. Under optimized conditions, the sensitivity of the procedure was 6.30 µA/nmol L-1. The cathodic peak current of V(V) was directly proportional to its concentration in the ranges of 1.0 × 10-11 to 2.0 × 10-10 mol L-1 and 2.0 × 10-10 to 1.0 × 10-8 mol L-1. Among the electrochemical procedures, the lowest detection limit (2.8 × 10-12 mol L-1) of V(V) was obtained for the shortest accumulation time (15 s). The high accuracy of the procedure was confirmed on the basis of the analysis of certified reference material (estuarine water) and river water samples.


Asunto(s)
Carbono , Vanadio , Carbono/química , Electrodos , Agua
7.
Adv Mater ; 34(36): e2202864, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35818110

RESUMEN

Proportionally converting the applied mechanical energy into photons by individual mechanoluminescent (ML) micrometer-sized particles opens a new way to develop intelligent electronic skins as it promises high-resolution stress distribution visualization and fast response. However, a big challenge for ML sensing technology is its low sensitivity in detecting stress. In this work, a novel stress distribution sensor with the detection sensitivity enhanced by two orders of magnitude is developed by combining a proposed near-distance ML imaging scheme with an improved mechano-to-photon convertor. The enhanced sensitivity is the main contributor to the realization of a maximum photon harvesting rate of ≈80% in the near-distance ML imaging scheme. The developed near-distance ML sensor shows a high sensitivity with a detection limit down to ≈kPa level, high spatial resolution of 254 dpi, and fast response with an interval of 3.3 ms, which allows for high-resolution and real-time visualization of complex mechanical actions such as irregular solid contacts or fluid impacts, and thus enables use in intelligent electronic skin, structural health monitoring, and human-computer interaction.


Asunto(s)
Dispositivos Electrónicos Vestibles , Diagnóstico por Imagen , Humanos , Fotones
8.
Talanta ; 249: 123694, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35738207

RESUMEN

A technique of vapor generation assisted by a microplasma was used for sample introduction into inductively coupled plasma optical emission spectrometry (ICP OES). Replacing a pneumatic nebulizer with a novel microplasma device improved the sensitivities of analytical signals for Ag, Bi, Cd, Pb, Tl, and Zn (by 2-13 times), as well as a concomitant reduction in their detection limits (DLs). Moreover, an outstanding improvement (30-fold) was achieved for Hg. The factors contributing to the boosted signal intensities were higher analyte fluxes and less water vapor produced by the microplasma system. The DLs of Ag, Bi, Cd, Hg, Pb, Tl, and Zn in microplasma-ICP OES were 0.4, 4, 0.06, 0.2, 2, 5, and 0.2 µg L-1, respectively, and the measurement precision was within the range of 0.7-2.4% (it was significantly improved as compared to that achievable with pneumatic nebulization). The proposed microplasma-assisted vapor generation eliminates the use of toxic reductants, e.g., sodium tetrahydridoborate, and it is characterized by higher resistance to matrix effects from transition metal ions (as compared to chemical vapor generation (CVG) and photochemical vapor generation (PVG)). To validate the trueness of the SAGD-ICP OES method, certified reference materials of lobster hepatopancreas (TORT-2), cormorant tissue (MODAS-4) as well as spiked tap water and seawater samples were analyzed to determine levels Cd and Hg. The standard additions method was used for calibration in both cases. Recoveries of the analytes in the case of the analysis of TORT-2 and MODAS-4 samples as well as the spiked tap water and seawater was within the range of 98-113%, which indicated that the developed sample introduction system can be successfully used for very sensitive determinations of selected hazardous elements in environmental samples.


Asunto(s)
Cadmio , Mercurio , Gases , Iones , Plomo , Mercurio/química , Análisis Espectral , Talio , Zinc
9.
Angew Chem Int Ed Engl ; 61(19): e202110044, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35170183

RESUMEN

NMR/MRI are critical tools for studying molecular structure and interactions but suffer from relatively low sensitivity and spectral overlap. Here, a Nuclear Magnetic Resonance (NMR) approach, termed DREAMTIME, is introduced that provides "a molecular window" inside complex systems, capable of showing only what the user desires, with complete molecular specificity. The user chooses a list of molecules of interest, and the approach detects only those targets while all other molecules are invisible. The approach is demonstrated in whole human blood and urine, small living aquatic organisms in 1D/2D NMR, and MRI. Finally, as proof-of-concept, once overlap is removed via DREAMTIME, a novel "multi-focusing" approach can be used to increase sensitivity. In human blood and urine, sensitivity increases of 7-12 fold over standard 1 H NMR are observed. Applicable even to unknowns, DREAMTIME has widespread application, from monitoring product formation in organic chemistry to monitoring/identifying suites of molecular targets in complex media or in vivo.


Asunto(s)
Líquidos Corporales , Imagen por Resonancia Magnética , Humanos , Límite de Detección , Espectroscopía de Resonancia Magnética , Estructura Molecular
10.
Sensors (Basel) ; 21(21)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34770385

RESUMEN

We present a theoretical and experimental study in which we increased the sensitivity of a phase-sensitive optical time-domain reflectometer (phi-OTDR). This was achieved by constructing coils in the sensor cable, which increased the total amplitude of the impact on the fiber. We demonstrate this theoretically using the example of a phase-sensitive reflectometer model and practically in testing grounds with a buried nearby conventional sensor and a sensor with coils. The sensitivity increased 2.2 times. We detected 95% of events when using coils, versus 20% when using a straight cable. The suggested method does not require any modifications to the device.


Asunto(s)
Tecnología de Fibra Óptica
11.
J Magn Reson ; 315: 106753, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32464370

RESUMEN

A new experiment for recording phase sensitive ω1-broadband homodecoupled TOCSY spectra is presented. The method is an extension of the already existing perfect echo (PE) filter, proposed to sample t1 chemical shift under sustained homodecoupling. The modification is made by attaching a time reversed perfect echo filter to a regular perfect echo scheme. Thus it becomes possible to acquire for longer t1 acquisition times without compromising the quality of homodecoupling. The mirror symmetric double perfect echo is implemented into the evolution period of a TOCSY experiment. A spin lock pulse purges undesired dispersive antiphase components at the end of the central t1 evolution period. Pure absorptive lineshapes with reduced proton spin multiplicities are obtained. The approach can be used in conjunction with real or constant time chemical shift evolution. In case of compounds with reduced T2 relaxation time, the real time approach is advisable, where the echo delays are an extension of the t1 evolution period. In this way, an unnecessary loss due to T2 relaxation is avoided. Using the pulse sequence in constant time mode at high t1max values gives ω1-homodecoupled TOCSY spectra without a significant dependence of the transfer amplitude on J. All experiments were carried out using non uniform sampling to decrease the measurement time. Experimental setup, advantages and limitations are discussed.

12.
Colloids Surf B Biointerfaces ; 186: 110721, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31855687

RESUMEN

Lateral flow immunoassay (LFA) is a well-known point-of-care technology for the detection of various analytes. However, low sensitivity and lack of quantitative results are some of its critical drawbacks. Here we report a photothermal enhanced lateral flow sensor on the basis of the photothermal properties of reduced graphene oxide (rGO) for the detection of E-coli O157:H7 as a model pathogen. The calibration curve of the photothermal method exhibited a linear range from 5 × 105 to 5 × 107 CFU/ml with a correlation coefficient of R2 = 0.96 and a regression equation of y = 8.1x-43 for standard bacteria solutions in phosphate buffer. The limit of detection was ∼5 × 105 CFU/ml for standard bacteria solutions, which was a 10-fold enhancement in sensitivity compared to the qualitative results. Specificity experiments showed that the photothermal method can only detect the target bacteria among 6 types of bacteria strains. It was confirmed that the developed technique could be a highly potential method for the rapid detection field because it can provide fast quantitative results with improved sensitivity.


Asunto(s)
Escherichia coli O157/aislamiento & purificación , Inmunoensayo , Temperatura , Células Cultivadas , Escherichia coli O157/citología , Grafito/química , Tamaño de la Partícula , Procesos Fotoquímicos , Propiedades de Superficie
13.
Mikrochim Acta ; 186(11): 701, 2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31620903

RESUMEN

A colorimetric method is described for the determination of Cu(II). It is based on branched polyethylenimine (BPEI) droplet evaporation on a superhydrophilic-superhydrophobic polystyrene micropatterned surface. Exposure to Cu(II) leads to a color change from colorless to light blue and dark blue. The micropatterned surface was fabricated via combining electrospinning with oxygen plasma and served as a detection substrate. Analysis requires only a single drop of blood. The method has a linear response in the 5.0 µM to 2.5 mM Cu(II) concentration range which is within the physiological range (15.7 ∼ 23.6 µM). Compared to an assay in solution, the detection limit is decreased from 386 nM to 89 nM. Excellent selectivity over other metal ions and anions was achieved. Graphical abstract A rapid and sensitive colorimetric detection platform for Cu(II) was fabricated by using branched-polyethylenimine droplet evaporation on a superhydrophilic-superhydrophobic micropatterned surface. Only a single drop of blood was needed for the analysis. The sensitivity was improved about 4.3 times.

14.
J Magn Reson ; 308: 106590, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31513964

RESUMEN

Aiming at facilitating the analysis of molecular structure, the gradient-encoded selective refocusing methods (G-SERF) and a great number of its variants for measuring proton-proton coupling constants have been proposed. However, the sensitivity is an issue in the 2D gradient-encoded experiments, because the signal intensity is determined by the slice thickness of the sample that depends on encoding gradient and the bandwidth of selective pulses which is limited by the smallest chemical shift difference of any two coupled protons. Here, we present a method dubbed PE-SERF (perfect echo selective refocusing) which can determine all JHH values involving a selected proton with improved sensitivity compared to original G-SERF experiment. The modules of perfect echo involving selective pulses and gradient-encoded selective refocusing are combined in the method, so that the unwanted J couplings arising from coupled spin pairs in the same sample slice would be nullified. In this way, instead of single proton, a pair of coupled protons is allowed to share a sample slice, and thus the slice thickness can be increased and the spectral sensitivity can be improved. The performance of the method is demonstrated by experiments on quinine and strychnine.

15.
Mikrochim Acta ; 186(6): 344, 2019 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-31076917

RESUMEN

A method is described for counting circulating tumor cells (CTCs). It is making use of inductively coupled plasma mass spectrometry (ICP-MS) along with a dual amplification strategy by combining rolling circle amplification (RCA) and gold nanoparticle (Au NP) labeling. HepG2 cells, as a representative CTC line, were captured by anti-epithelial cellular adhesion molecule (EpCAM) immobilized on a microplate, then specifically labeled with biotinylated anti-asialoglycoprotein receptor (ASGPR). Taking streptavidin (SA) as the bridge, the biotinylated RCA primer was conjugated to HepG2 cells. When the RCA reaction was triggered, long ssDNA with tandem repeats generated on the cell surface. Then, Au NP functionalized detection DNA (signal probes) was added to hybridize with the ssDNA. After removing the redundant signal probes, Au NPs conjugated on target HepG2 cells were subjected to ICP-MS detection. By adopting such a dual amplification strategy, a 756-fold improvement in sensitivity is accomplished compared to the method involving only Au NP labeling without RCA. The limit of detection is as low as 3 HepG2 cells (15 cell mL-1) which is the lowest LOD in ICP-MS based methods for cell counting. Besides, the method provides good selectivity, a wide linear range of 10-1000 HepG2 cells (50-5000 cells mL-1), and relative standard deviations of 6.3% (n = 7; 50 HepG2 cells (250 cells mL-1)). The method was successfully applied to HepG2 cell counting in spiked human blood samples and gave good recoveries. Graphical abstract Schematic presentation of an ICP-MS based immunoassay for the sensitive circulating tumor cells counting by combining rolling circle amplification (RCA) with gold nanoparticle (Au NP) labeling. ICP-MS: inductively coupled plasma mass spectrometry; ASGPR: asialoglycoprotein receptor; EpCAM: epithelial cellular adhesion molecule.


Asunto(s)
Recuento de Células/métodos , Nanopartículas del Metal/química , Células Neoplásicas Circulantes/química , Anticuerpos Inmovilizados/inmunología , Anticuerpos Monoclonales de Origen Murino/inmunología , Fagos de Bacillus/enzimología , ADN/química , ADN/genética , Sondas de ADN/química , Sondas de ADN/genética , ADN Polimerasa Dirigida por ADN/química , Molécula de Adhesión Celular Epitelial/inmunología , Oro/análisis , Oro/química , Células Hep G2 , Humanos , Inmunoensayo/métodos , Espectrometría de Masas/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Hibridación de Ácido Nucleico , Proteínas Virales/química
16.
Sensors (Basel) ; 19(5)2019 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-30871090

RESUMEN

Recently, several red-green-blue near-infrared (RGB-NIR) multispectral filter arrays (MFAs), which include near infrared (NIR) pixels, have been proposed. For extremely low light scenes, the RGB-NIR MFA sensor has been extended to receive NIR light, by adding NIR pixels to supplement for the insufficient visible band light energy. However, the resolution reconstruction of the RGB-NIR MFA, using demosaicing and color restoration methods, is based on the correlation between the NIR pixels and the pixels of other colors; this does not improve the RGB channel sensitivity with respect to the NIR channel sensitivity. In this paper, we propose a color restored image post-processing method to improve the sensitivity and resolution of an RGB-NIR MFA. Although several linear regression based color channel reconstruction methods have taken advantage of the high sensitivity NIR channel, it is difficult to accurately estimate the linear coefficients because of the high level of noise in the color channels under extremely low light conditions. The proposed method solves this problem in three steps: guided filtering, based on the linear similarity between the NIR and color channels, edge preserving smoothing to improve the accuracy of linear coefficient estimation, and residual compensation for lost spatial resolution information. The results show that the proposed method is effective, while maintaining the NIR pixel resolution characteristics, and improving the sensitivity in terms of the signal-to-noise ratio by approximately 13 dB.

17.
Sensors (Basel) ; 18(5)2018 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-29883418

RESUMEN

Recently, several red-green-blue-white (RGBW) color filter arrays (CFAs), which include highly sensitive W pixels, have been proposed. However, RGBW CFA patterns suffer from spatial resolution degradation owing to the sensor composition having more color components than the Bayer CFA pattern. RGBW CFA demosaicing methods reconstruct resolution using the correlation between white (W) pixels and pixels of other colors, which does not improve the red-green-blue (RGB) channel sensitivity to the W channel level. In this paper, we thus propose a demosaiced image post-processing method to improve the RGBW CFA sensitivity and resolution. The proposed method decomposes texture components containing image noise and resolution information. The RGB channel sensitivity and resolution are improved through updating the W channel texture component with those of RGB channels. For this process, a cross multilateral filter (CMF) is proposed. It decomposes the smoothness component from the texture component using color difference information and distinguishes color components through that information. Moreover, it decomposes texture components, luminance noise, color noise, and color aliasing artifacts from the demosaiced images. Finally, by updating the texture of the RGB channels with the W channel texture components, the proposed algorithm improves the sensitivity and resolution. Results show that the proposed method is effective, while maintaining W pixel resolution characteristics and improving sensitivity from the signal-to-noise ratio value by approximately 4.5 dB.

18.
Biosens Bioelectron ; 99: 325-331, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-28787678

RESUMEN

A new sensing device was developed to achieve ultrahigh sensitivity, by coupling polymer micropillars with a quartz crystal microbalance (QCM) substrate to form a two-degree- of-freedom resonance system (QCM-P). The sensitivity of these QCM-P devices was evaluated by measuring mass changes for both deposited gold film and adsorption of bovine serum albumin (BSA), respectively, on poly(methyl methacrylate) (PMMA) micropillar surfaces, as well as assessing ligand-analyte binding interactions between anti-human immunoglobulin G (anti-hIgG) and human immunoglobulin G (hIgG). The anti-hIgG and hIgG binding results show QCM-P achieved an eightfold improvement in sensitivity relative to conventional QCM sensors. In addition, the binding affinity obtained from the QCM-P device for anti-hIgG and hIgG proteins was found in good agreement with that measured by surface plasmon resonance (SPR) for the same binding reaction.


Asunto(s)
Técnicas Biosensibles , Inmunoglobulina G/aislamiento & purificación , Tecnicas de Microbalanza del Cristal de Cuarzo , Animales , Bovinos , Oro/química , Humanos , Proteínas Inmovilizadas/química , Proteínas Inmovilizadas/inmunología , Inmunoglobulina G/química , Inmunoglobulina G/inmunología , Polimetil Metacrilato/química , Unión Proteica , Mapas de Interacción de Proteínas/inmunología , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/inmunología , Resonancia por Plasmón de Superficie
19.
J Microsc ; 269(3): 221-229, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28815586

RESUMEN

Differential interference contrast-photothermal microscopy (DIC-PTM), as a promising tool for trace analysis of nonfluorescent compounds, suffered low sensitivity in nanospace especially for aqueous samples, due to the poor thermophysical property of water and the unoptimised configuration. To improve its performance, a five-layer DIC-PTM model is built and influences of different parameters on the photothermal signal are investigated. The initial phase shift φ0 between two branches of the probe beam is found to be a key factor determining the detection sensitivity and response linearity: at a large φ0 (≤π/2) both a high sensitivity and a good linearity can be achieved, while a high signal-to-noise ratio occurs at a small φ0 . The steady-state photothermal phase shift φdc has little impact on the linearity, which, however, is greatly influenced by the range of periodic photothermal phase shift φac . By introducing two coatings into a nanospace to confine the photothermal effect within and around the sample, the sensitivity can be enhanced from a few times to over 100 times. On an optimised DIC-PTM configuration and chip structure, detection limit down to 10-3 cm-1 (or 40 molecules in a detection volume of 0.2 fL) was achieved in a 300-nm-thick nanospace. This work paves a way for optimising the DIC-PTM and chip structure for sensitive detection of analytes in nanospaces.

20.
Electrophoresis ; 39(1): 67-81, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28960403

RESUMEN

The flexibility and versatility of the chiral CE are unrivaled and the same instrumentation can be used to separate a diverse range of analytes, both large and small molecules, whether charged or uncharged. However, one of the disadvantages is generally thought to be the poor sensitivity of ultraviolet (UV) detection, which is the most popular among CE detectors. This review focuses on methodologies and applications regarding improvements of sensitivity in chiral CE published in the last 2 years (June 2015 until May 2017). This contribution continues to update this series of biannual reviews, first published in Electrophoresis in 2006. The main body of the review brings a survey of publications organized according to different approaches to detect a low amount of analytes, either by sample treatment procedures or by in-capillary sample preconcentration techniques, both using UV detection, or even by employing detection systems more sensitive than UV absorption, such as LIF or MS. This review provides comprehensive tables listing the new approaches in sensitive chiral CE with categorizing by the fundamental mechanism to enhance the sensitivity, which provide relevant information on the strategies employed. The concluding remarks in the final part of the review evaluate present state of art and the trends for sensitivity enhancement in chiral CE.


Asunto(s)
Compuestos Orgánicos/química , Compuestos Orgánicos/aislamiento & purificación , Fraccionamiento Químico/métodos , Electroforesis Capilar/métodos , Espectrometría de Masas/métodos , Sensibilidad y Especificidad , Espectrometría de Fluorescencia/métodos , Espectrofotometría Ultravioleta/métodos , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA