Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.406
Filtrar
Más filtros

Intervalo de año de publicación
1.
Sci Rep ; 14(1): 16590, 2024 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-39025896

RESUMEN

Aflatoxins (AFs) are hazardous carcinogens and mutagens produced by some molds, particularly Aspergillus spp. Therefore, the purpose of this study was to isolate and identify endophytic bacteria, extract and characterize their bioactive metabolites, and evaluate their antifungal, antiaflatoxigenic, and cytotoxic efficacy against brine shrimp (Artemia salina) and hepatocellular carcinoma (HepG2). Among the 36 bacterial strains isolated, ten bacterial isolates showed high antifungal activity, and thus were identified using biochemical parameters and MALDI-TOF MS. Bioactive metabolites were extracted from two bacterial isolates, and studied for their antifungal activity. The bioactive metabolites (No. 4, and 5) extracted from Bacillus cereus DSM 31T DSM, exhibited strong antifungal capabilities, and generated volatile organic compounds (VOCs) and polyphenols. The major VOCs were butanoic acid, 2-methyl, and 9,12-Octadecadienoic acid (Z,Z) in extracts No. 4, and 5 respectively. Cinnamic acid and 3,4-dihydroxybenzoic acid were the most abundant phenolic acids in extracts No. 4, and 5 respectively. These bioactive metabolites had antifungal efficiency against A. flavus and caused morphological alterations in fungal conidiophores and conidiospores. Data also indicated that both extracts No. 4, and 5 reduced AFB1 production by 99.98%. On assessing the toxicity of bioactive metabolites on A. salina the IC50 recorded 275 and 300 µg/mL, for extracts No. 4, and 5 respectively. Meanwhile, the effect of these extracts on HepG2 revealed that the IC50 of extract No. 5 recorded 79.4 µg/mL, whereas No. 4 showed no cytotoxic activity. It could be concluded that bioactive metabolites derived from Bacillus species showed antifungal and anti-aflatoxigenic activities, indicating their potential use in food safety.


Asunto(s)
Antifúngicos , Artemia , Antifúngicos/farmacología , Antifúngicos/química , Animales , Humanos , Artemia/efectos de los fármacos , Células Hep G2 , Bacillus/metabolismo , Aflatoxinas/metabolismo , Aflatoxinas/toxicidad , Metabolismo Secundario , Compuestos Orgánicos Volátiles/farmacología , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/química , Bacillus cereus/efectos de los fármacos , Bacillus cereus/metabolismo , Pruebas de Sensibilidad Microbiana
2.
Toxicon ; 244: 107770, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38768829

RESUMEN

Aflatoxins are toxic compounds produced by certain molds, primarily Aspergillus species, which can contaminate crops such as grains and nuts. These toxins pose a significant health risk to animals and humans. Aflatoxin B1 (AFB1) is the most potent of these compounds and has been well-characterized to lead to diminished growth and feed efficiency by disrupting nutrient absorption and metabolism in poultry. AFB1 can trigger apoptosis and inflammation, leading to a decline in immune function and changes in blood biochemistry in poultry. Recently, there has been growing interest in using microalgae as a natural antioxidant to mitigate the effects of aflatoxins in poultry diets. Microalgae have strong antioxidant, antimicrobial, anti-apoptotic, and anti-inflammatory properties, and adding them to aflatoxin-contaminated poultry diets has been shown to improve growth and overall health. This review investigates the potential of microalgae, such as Spirulina platensis, Chlorella vulgaris, and Enteromorpha prolifera, to mitigate AFB1 contamination in poultry feeds. These microalgae contain substantial amounts of bioactive compounds, including polysaccharides, peptides, vitamins, and pigments, which possess antioxidant, antimicrobial, and detoxifying properties. Microalgae can bind to aflatoxins and prevent their absorption in the gastrointestinal tract of poultry. They can also enhance the immune system of poultry, making them more resilient to the toxic effects of AFB1. Based on the data collected, microalgae have shown promising results in combating AFB1 contamination in poultry feeds. They can bind to aflatoxins, boost the immune system, and improve feed quality. This review emphasizes the harmful effects of AFB1 on poultry and the promising role of microalgae in reducing these effects.


Asunto(s)
Aflatoxina B1 , Alimentación Animal , Microalgas , Aves de Corral , Animales , Aflatoxina B1/toxicidad , Contaminación de Alimentos/prevención & control , Antioxidantes/farmacología , Spirulina , Aflatoxinas/toxicidad
3.
J Sci Food Agric ; 104(12): 7441-7453, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38738519

RESUMEN

BACKGROUND: This study aims to explore both the toxic effects of aflatoxins (AFs) and the protective effects of degrading enzymes (DE) on broilers exposed to AFs. RESULTS: The findings reveal that a diet contaminated with 69.15 µg kg-1 of aflatoxin B1 had significant adverse effects on broilers. Specifically, it led to a reduction in average daily gain, dressed yield percentage, half-eviscerated yield with giblet yield percentage, eviscerated yield percentage, as well as serum superoxide dismutase (SOD), glutathione peroxidase activity and liver SOD activity (P < 0.05). Conversely, the diet increased the feed conversion ratio, liver index, serum glutamic oxaloacetic transaminase levels and malondialdehyde levels in both serum and liver (P < 0.05). Additionally, AFs disrupted the intestinal microflora significantly (P < 0.05), altering the relative abundance of Enterococcus, Lactobacillus and Escherichia in broiler jejunum. The addition of DE to AF-contaminated feed mitigated these negative effects and reduced the residues of aflatoxin B1, aflatoxin B2 and aflatoxin M1 in the liver and duodenum (P < 0.05). We also observed that broilers fed the diet pelleted at 80 °C exhibited improved dressing percentage and water holding capacity compared to those on the 75 °C diet. CONCLUSION: In summary, DE serves as an effective feed additive for mitigating AF contamination in poultry production. © 2024 Society of Chemical Industry.


Asunto(s)
Aflatoxinas , Alimentación Animal , Bacterias , Pollos , Contaminación de Alimentos , Microbioma Gastrointestinal , Hígado , Animales , Pollos/metabolismo , Pollos/crecimiento & desarrollo , Microbioma Gastrointestinal/efectos de los fármacos , Aflatoxinas/metabolismo , Aflatoxinas/toxicidad , Alimentación Animal/análisis , Hígado/metabolismo , Contaminación de Alimentos/análisis , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Bacterias/enzimología , Dieta/veterinaria , Masculino , Superóxido Dismutasa/metabolismo , Glutatión Peroxidasa/metabolismo , Aflatoxina B1/metabolismo , Aflatoxina B1/toxicidad , Malondialdehído/metabolismo
4.
Vet Res Commun ; 48(4): 2281-2294, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38739261

RESUMEN

Mycotoxins, produced by fungi, can contaminate fish food and harm their health. Probiotics enhance immune balance and primarily function in the animal intestine. This study aimed to assess aflatoxin's impact on Piaractus mesopotamicus and explore probiotic-based additive (PBA) benefits in mitigating these effects, focusing on antioxidant activity, biochemical indices, and hepatic histopathology. Two experiments were conducted using P. mesopotamicus fry. The first experimental assay tested various levels of aflatoxin B1 (0.0, 25.0, 50.0, 100.0, 200.0, and 400.0 µg kg-1) over a 10-day period. The second experimental assay examined the efficacy of the probiotic (supplemented at 0.20%) in diets with different levels of aflatoxin B1 (0.0, 25.0, and 400.0 µg kg-1) for 15 days. At the end of each assay, the fish underwent a 24-hour fasting period, and the survival rate was recorded. Six liver specimens from each treatment group were randomly selected for metabolic indicator assays, including superoxide dismutase, catalase, alanine aminotransferase, aspartate aminotransferase, and albumin. Additionally, histopathological analysis was performed on six specimens. The initial study discovered that inclusion rates above 25.0 µg kg-1 resulted in decreased activity of AST (aspartate aminotransferase), ALT (alanine aminotransferase), ALB (albumin), CAT (catalase), and SOD (superoxide dismutase), accompanied by liver histopathological lesions. In the second study, the inclusion of PBA in diets contaminated with AFB1 improved the activity of AST and ALT up to 25.0 µg kg-1 of AFB1, with no histopathological lesions observed. The study demonstrated the hepatoprotective effects of PBA in diets contaminated with AFB1. The enzyme activity and hepatic histopathology were maintained, indicating a reduction in damage caused by high concentrations of AFB1 (400.0 µg kg-1 of AFB1). The adverse effects of AFB1 on biochemical and histopathological parameters were observed from 25.0 µg kg-1 onwards. Notably, PBA supplementation enhanced enzymatic activity at a concentration of 25 µg kg-1 of AFB1 and mitigated the effects at 400.0 µg kg-1 of AFB1. The use of PBAs in pacu diets is highly recommended as they effectively neutralize the toxic effects of AFB1 when added to diets containing 25.0 µg kg-1 AFB1. Dietary inclusion of aflatoxin B1 at a concentration of 25.0 µg kg-1 adversely affects the liver of Piaractus mesopotamicus (Pacu). However, the addition of a probiotic-based additive (PBA) to the diets containing this concentration of aflatoxin neutralized its toxic effects. Therefore, the study recommends the use of PBAs in Pacu diets to mitigate the adverse effects of aflatoxin contamination.


Asunto(s)
Aflatoxina B1 , Alimentación Animal , Enfermedades de los Peces , Hígado , Probióticos , Animales , Probióticos/farmacología , Probióticos/administración & dosificación , Hígado/efectos de los fármacos , Hígado/patología , Alimentación Animal/análisis , Enfermedades de los Peces/inducido químicamente , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/patología , Aflatoxina B1/toxicidad , Dieta/veterinaria , Suplementos Dietéticos/análisis , Aflatoxinas/toxicidad
5.
World J Microbiol Biotechnol ; 40(6): 164, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630373

RESUMEN

The aim of this study was to investigate the mechanisms by which yeasts (Saccharomyces cerevisiae) control the toxic effects of aflatoxins, which are not yet fully understood. Radiolabeled aflatoxin B1 (AFB13H) was administered by gavage to Wistar rats fed with aflatoxin (AflDiet) and aflatoxin supplemented with active dehydrated yeast Y904 (AflDiet + Yeast). The distribution of AFB13H and its metabolites were analyzed at 24, 48 and 72 h by tracking back of the radioactivity. No significant differences were observed between the AflDiet and AflDiet + Yeast groups in terms of the distribution of labeled aflatoxin. At 72 h, for the AflDiet group the radiolabeled aflatoxin was distributed as following: feces (79.5%), carcass (10.5%), urine (1.7%), and intestine (7.4%); in the AflDiet + Yeast the following distribution was observed: feces (76%), carcass (15%), urine (2.9%), and intestine (4.9%). These values were below 1% in other organs. These findings indicate that even after 72 h considerable amounts of aflatoxins remains in the intestines, which may play a significant role in the distribution and metabolism of aflatoxins and its metabolites over time. The presence of yeast may not significantly affect this process. Furthermore, histopathological examination of hepatic tissues showed that the presence of active yeast reduced the severity of liver damage caused by aflatoxins, indicating that yeasts control aflatoxin damage through biochemical mechanisms. These findings contribute to a better understanding of the mechanisms underlying the protective effects of yeasts against aflatoxin toxicity.


Asunto(s)
Aflatoxinas , Saccharomyces cerevisiae , Ratas , Animales , Ratas Wistar , Aflatoxinas/toxicidad , Suplementos Dietéticos , Heces
6.
Arch Toxicol ; 98(4): 1081-1093, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38436695

RESUMEN

Large interspecies differences between rats and mice concerning the hepatotoxicity and carcinogenicity of aflatoxin B1 (AFB1) are known, with mice being more resistant. However, a comprehensive interspecies comparison including subcellular liver tissue compartments has not yet been performed. In this study, we performed spatio-temporal intravital analysis of AFB1 kinetics in the livers of anesthetized mice and rats. This was supported by time-dependent analysis of the parent compound as well as metabolites and adducts in blood, urine, and bile of both species by HPLC-MS/MS. The integrated data from intravital imaging and HPLC-MS/MS analysis revealed major interspecies differences between rats and mice: (1) AFB1-associated fluorescence persisted much longer in the nuclei of rat than mouse hepatocytes; (2) in the sinusoidal blood, AFB1-associated fluorescence was rapidly cleared in mice, while a time-dependent increase was observed in rats in the first three hours after injection followed by a plateau that lasted until the end of the observation period of six hours; (3) this coincided with a far stronger increase of AFB1-lysine adducts in the blood of rats compared to mice; (4) the AFB1-guanine adduct was detected at much higher concentrations in bile and urine of rats than mice. In both species, the AFB1-glutathione conjugate was efficiently excreted via bile, where it reached concentrations at least three orders of magnitude higher compared to blood. In conclusion, major differences between mice and rats were observed, concerning the nuclear persistence, formation of AFB1-lysine adducts, and the AFB1-guanine adducts.


Asunto(s)
Aflatoxinas , Ratas , Ratones , Animales , Aflatoxinas/metabolismo , Aflatoxinas/toxicidad , Lisina/metabolismo , Cromatografía Líquida con Espectrometría de Masas , Espectrometría de Masas en Tándem , Hígado/metabolismo , Aflatoxina B1/toxicidad , Guanina/metabolismo , Microscopía Intravital
7.
Toxicology ; 504: 153773, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38484789

RESUMEN

Aflatoxins (AFs) are inevitable environmental contaminants that are detrimental to human and animal health. AFs interfere with metabolic processes, metabolizing into different hydroxylated derivatives in the liver, as well as mechanistically induce ROS accumulation, S-phase arrest, DNA damage, and cell apoptosis. Chronic consumption of aflatoxin-contaminated foods can adversely affect the male reproductive system, cause testicular damage, prevent testosterone synthesis, decline sperm quality, and cause infertility. Oxidative stress is the fundamental pathogenesis of aflatoxin-induced reproductive toxicity. The overproduction of reactive oxygen substances can cause testicular failure and disturb the process of spermatogenesis. Mitochondria are susceptible to being impaired by oxidative stress, and its damage is associated with infertility. AFs also disturb the process of spermatogenesis by disrupting the regulation of genes related to the progression of the cell cycle such as cyclins and inducing genes related to apoptosis, thereby weakening fertility and negatively affecting the testicular endocrine potential by suppressing androgen synthesis. Additionally, AFs downregulate ERα expression, potentially negatively impacting spermatogenesis by enhancing the apoptotic mechanism. In this review, we provide new insights into the genotoxic and cytotoxic effects of AFB1 on the male reproductive system with a focus on the cell cycle and apoptosis destruction of testicular tissue.


Asunto(s)
Apoptosis , Ciclo Celular , Testículo , Masculino , Humanos , Apoptosis/efectos de los fármacos , Testículo/efectos de los fármacos , Testículo/metabolismo , Testículo/patología , Animales , Ciclo Celular/efectos de los fármacos , Aflatoxinas/toxicidad , Espermatogénesis/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
8.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38474096

RESUMEN

Aflatoxins are harmful natural contaminants found in foods and are known to be hepatotoxic. However, recent studies have linked chronic consumption of aflatoxins to nephrotoxicity in both animals and humans. Here, we conducted a systematic review of active compounds, crude extracts, herbal formulations, and probiotics against aflatoxin-induced renal dysfunction, highlighting their mechanisms of action in both in vitro and in vivo studies. The natural products and dietary supplements discussed in this study alleviated aflatoxin-induced renal oxidative stress, inflammation, tissue damage, and markers of renal function, mostly in animal models. Therefore, the information provided in this review may improve the management of kidney disease associated with aflatoxin exposure and potentially aid in animal feed supplementation. However, future research is warranted to translate the outcomes of this study into clinical use in kidney patients.


Asunto(s)
Aflatoxinas , Productos Biológicos , Suplementos Dietéticos , Enfermedades Renales , Aflatoxinas/toxicidad , Aflatoxinas/efectos adversos , Humanos , Animales , Productos Biológicos/uso terapéutico , Productos Biológicos/farmacología , Enfermedades Renales/inducido químicamente , Enfermedades Renales/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos
9.
J Hazard Mater ; 469: 133916, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38479137

RESUMEN

Aflatoxins from the fungus Aspergillus flavus (A. flavus) that contaminate stored peanuts is a major hazard to human health worldwide. Reducing A. flavus in soil can decrease the risk of aflatoxins in stored peanuts. In this experiment, we determined whether peanuts grown on soil fumigated with dazomet (DZ), metham sodium (MS), allyl isothiocyanate (AITC), chloropicrin (PIC) or dimethyl disulfide (DMDS) would reduce of the quantity of A. flavus and its toxin's presence. The results of bioassays and field tests showed that PIC was the most effective fumigant for preventing and controlling A. flavus, followed by MS. PIC and MS applied to the soil for 14 d resulted in LD50 values against A. flavus of 3.558 and 4.893 mg kg-1, respectively, leading to almost 100% and 98.82% effectiveness of A. flavus, respectively. Peanuts harvested from fumigated soil and then stored for 60 d resulted in undetectable levels of aflatoxin B1 (AFB1) compared to unfumigated soil that contained 0.64 ug kg-1 of AFB1, which suggested that soil fumigation can reduce the probability of aflatoxin contamination during peanut storage and showed the potential to increase the safety of peanuts consumed by humans. Further research is planned to determine the practical value of our research in commercial practice.


Asunto(s)
Aflatoxina B1 , Aflatoxinas , Humanos , Aflatoxina B1/toxicidad , Aflatoxina B1/análisis , Arachis , Suelo , Desinfección , Aspergillus flavus , Aflatoxinas/toxicidad , Aflatoxinas/análisis
10.
Int J Food Sci Nutr ; 75(3): 241-254, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38404064

RESUMEN

Childhood stunting is a global phenomenon affecting more than 149 million children under the age of 5 worldwide. Exposure to aflatoxins (AFs) in utero, during breastfeeding, and consumption of contaminated food affect the gut microbiome, resulting in intestinal dysfunction and potentially contributing to stunting. This review explores the potential relationship between AF exposure, environmental enteropathy and childhood stunting. AFs bind to DNA, disrupt protein synthesis and elicit environmental enteropathy (EE). An EE alters the structure of intestinal epithelial cells, impairs nutrient uptake and leads to malabsorption. This article proposes possible intervention strategies for researchers and policymakers to reduce AF exposure, EE and childhood stunting, such as exposure reduction, the implementation of good agricultural practices, dietary diversification and improving environmental water sanitation and hygiene.


Asunto(s)
Aflatoxinas , Microbioma Gastrointestinal , Trastornos del Crecimiento , Humanos , Aflatoxinas/toxicidad , Trastornos del Crecimiento/etiología , Microbioma Gastrointestinal/efectos de los fármacos , Contaminación de Alimentos , Femenino , Enfermedades Intestinales , Dieta , Preescolar , Lactante , Exposición a Riesgos Ambientales/efectos adversos , Embarazo , Exposición Dietética/efectos adversos
11.
Toxins (Basel) ; 16(1)2024 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-38251245

RESUMEN

The seeds of lotus (Nelumbo nucifera Gaertn.) have been used as significant medicinal and nutritional ingredients worldwide. The abundant proteins and polysaccharides in lotus seeds make them susceptible to contamination by aflatoxin (AF), a fungal toxic metabolite. This study was conducted to investigate the susceptibility of lotus seeds at different stages of ripening to AF contamination, as well as the mechanism of the contamination. Seven groups of lotus receptacles with seeds at different ripening stages (A-G, from immature to mature) were used for the experiment. Spores of Aspergillus flavus, an AF producer, were inoculated on the water-gap area of the seeds in each receptacle. Then, each receptacle was covered with a sterilized bag, and its stalk part was soaked in water containing a life-prolonging agent, after which it was kept at room temperature for 14 days. The AF content of each whole inoculated seed from the A-G groups and that of each seed part (pericarp, cotyledon, and embryo) from the D and E groups were determined using high-performance liquid chromatography. Microtome sections were prepared from the samples and observed under a light microscope and scanning electron microscope. The seeds from the A and D groups had higher AF contents than the seeds from the B, C, E, F, and G groups, indicating that the condition of the water-gap area and the development of the embryo and cotyledon parts of the seeds are associated with AF contamination.


Asunto(s)
Aflatoxinas , Aspergilosis , Nelumbo , Aflatoxinas/toxicidad , Aspergillus flavus , Semillas , Agua
12.
Vet Res Commun ; 48(1): 225-244, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37644237

RESUMEN

Aflatoxin contamination in feed is a common problem in broiler chickens. The present systematic review and meta-analysis examined the impact of aflatoxin-contaminated feed and the efficacy of various feed additives on the production performance of broiler chickens fed aflatoxin-contaminated feed (AF-feed). A total of 35 studies comprising 53 AF-feed experiments were selected following PRISMA guidelines. Feed additives included in the analyses were toxins binder (TB), mannan-oligosaccharides (MOS), organic acid (OA), probiotics (PRO), protein supplementation (PROT), phytobiotics (PHY), and additive mixture (MIX). Random effects model and a frequentist network meta-analysis (NMA) were performed to rank the efficacy of feed additives, reported as standardized means difference (SMD) at 95% confidence intervals (95% CI). Overall, broiler chickens fed AF-feed had significantly lower final body weight (BW) (SMD = 198; 95% CI = 198 to 238) and higher feed conversion ratio (SMD = 0.17; 95% CI = 0.13 to 0.21) than control. Treatments with TB, MOS, and PHY improved the BW of birds fed AF-feed (P < 0.05) to be comparable with non-contaminated feed or control. Predictions on final BW from the broiler-fed aflatoxin-contaminated diet were 15% lower than the control diet. Including feed additives in the aflatoxins diet could ameliorate the depressive effect. Remarkably, our network meta-analysis highlighted that TB was the highest-performing additive (P-score = 0.797) to remedy aflatoxicosis. Altogether, several additives, especially TB, are promising to ameliorate aflatoxicosis in broiler chickens, although the efficacy was low regarding the severity of the aflatoxicosis.


Asunto(s)
Aflatoxinas , Probióticos , Animales , Aflatoxinas/toxicidad , Pollos , Dieta/veterinaria , Aumento de Peso , Alimentación Animal/análisis
13.
Int J Cancer ; 154(5): 801-806, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37840351

RESUMEN

We evaluated whether aflatoxin B1 (AFB1 ) exposure was associated with later risk of developing gallbladder cancer (GBC). We measured AFB1 -lysine albumin adducts in baseline samples from the Shanghai Cohort Study of 18 244 men aged 45 to 64 years (recruited 1986-1989). We included 84 GBC cases with sufficient serum and 168 controls matched on age at sample collection, date of blood draw and residence. We calculated adjusted odds ratios (ORs) and 95% confidence intervals (95% CIs) for detectable vs non-detectable AFB1 -lysine albumin adducts and gallbladder cancer. AFB1 -lysine albumin adducts were detected in 50.0% of GBC cases, and risk of GBC was twice as high in those with detectable vs undetectable levels (OR = 2.0, 95% CI = 1.0-3.9). ORs ranged from 1.8 (95% CI = 0.75-4.3) for 0.5 to <1.75 pg/mg vs undetectable adduct levels to 2.2 (95% CI = 0.91-5.6) for >3.36 pg/mg vs undetectable, suggesting a dose-response (Ptrend = .05). When restricted to cases diagnosed before the median time to diagnosis after blood draw (18.4 years), results were similar (OR = 2.2, 95% CI = 0.80-5.8) to those for the entire follow-up duration. The OR was 9.4 (95% CI = 1.7-51.1) for individuals with detectable AFB1 -lysine albumin adducts and self-reported gallstones compared to individuals with neither. Participants with detectable AFB1 -lysine albumin adducts at baseline had increased risk of developing GBC, replicating the previously observed association between AFB1 exposure and providing the first evidence of temporality.


Asunto(s)
Aflatoxinas , Neoplasias de la Vesícula Biliar , Masculino , Humanos , Aflatoxinas/toxicidad , Aflatoxinas/análisis , Neoplasias de la Vesícula Biliar/inducido químicamente , Neoplasias de la Vesícula Biliar/epidemiología , Estudios de Casos y Controles , Lisina , Estudios de Cohortes , China/epidemiología , Aflatoxina B1/efectos adversos , Aflatoxina B1/análisis , Albúminas
14.
Food Chem Toxicol ; 184: 114321, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38072213

RESUMEN

Recently, mycotoxin risks in fermented tea have received high attention, but mycotoxin transfer rates from tealeaf to infusion during brewing were rarely considered. In addition, the assessment data (i.e., mycotoxin occurrences and tea consumption) in previous assessments were usually limited. Here, a comprehensive and cumulative risk assessment of aflatoxins and ochratoxin A was performed using a tea assessment model, by which mycotoxin transfer rates were included and the assessment data were collected worldwide. By 10 times of brewing, the aflatoxin transfer rate was only 2.94% and OTA was 63.65%. Besides the extreme case, hazard quotients (HQs) from all consumers were lower than the threshold of 1.0, indicating no noncarcinogenic risk; the P95 cumulative margin of exposure (1/MoET) values were 2.52E-04 (30-39 years of age) and 2.42E-04 (≥50 years of age) for two high exposure groups under the upper bound scenario, which a little higher than the carcinogenic risk threshold of 1.00E-04. Notably, the P95 cumulative 1/MoET values (3.24E-03 -7.95E-03) by food assessment model were ten times higher than those of by tea assessment model. The comparative results showed that mycotoxin dietary risks on tea consumption by food assessment model were much overestimated. The result of this study indicated that the contaminants transfer rates should be considered for risk assessment on tea consumption in future work.


Asunto(s)
Aflatoxinas , Micotoxinas , Ocratoxinas , Aflatoxinas/toxicidad , Exposición Dietética , Contaminación de Alimentos/análisis , Micotoxinas/toxicidad , Micotoxinas/análisis , Medición de Riesgo ,
15.
BMC Pediatr ; 23(1): 614, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-38053136

RESUMEN

BACKGROUND: Aflatoxins are regarded as the most potent genotoxic and carcinogenic type of mycotoxins. This meta-analysis was performed to investigate a the relation of aflatoxin B1 (AFB1) to growth measurements of infants/children, including wasting, underweight, stunting, as well as weight-for-age (WAZ), height-for-age (HAZ), and weight-for-height (WHZ) z-scores. METHODS: Electronic databases of PubMed, Web of Science, and Scopus were searched to identify related publications. Effect sizes for associations were pooled using the random effects analysis. Subgroup analysis by study design, method used to assess AFB1, and adjustment for covariateswas performed to detect possible sources of heterogeneity. RESULTS: Pooled analysis of available data showed that AFB1 exposure was negatively associated growth z-scores, including WHZ (ß = -0.02, 95%CI = -0.07 to 0.03), with WAZ (ß = -0.18, 95%CI = -0.33 to -0.02), and HAZ (ß = -0.17, 95%CI = -0.30 to -0.03) in infants/children. There was a remarkable heterogeneity among studies on WAZ and HAZ (P ≤ 0.001). In prospective cohort studies, AFB1 exposure was found to be significantly associated with the elevated risk of underweight (OR = 1.20, 95%CI = 1.03 to 1.40) and stunting (OR = 1.21, 95%CI = 1.11 to 1.33). CONCLUSIONS: This meta-analysis highlighted the importance of AFB1 exposure as a potential risk factor for growth impairment in infants/children.


Asunto(s)
Aflatoxina B1 , Aflatoxinas , Lactante , Humanos , Niño , Aflatoxina B1/toxicidad , Delgadez , Estudios Prospectivos , Aflatoxinas/toxicidad , Trastornos del Crecimiento/inducido químicamente , Trastornos del Crecimiento/epidemiología
16.
Food Chem Toxicol ; 182: 114116, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37923193

RESUMEN

Spices are contaminated with aflatoxins (AFs) and Sudan dyes which are classified as class Group 1 and Group 3 human carcinogens by the International Agency for Research on Cancer (IARC) respectively and their prolonged exposure may raise a human health concern. A total of 474 samples of red chili and turmeric were collected from Lahore city and were subjected to quantitative and qualitative AFs and Sudan dyes analysis by thin layer chromatography (TLC) respectively. The number of red chili and turmeric samples with ≥10 µg/kg of total AFs (European Union standard limit) were 70% and 33% respectively and considered unfit for human consumption. The presence of Sudan dyes in red chili and turmeric samples was 67% and 27% respectively. The mean estimated daily intake (EDI) among females and males was 0.0019 µg/kg bw/day, 0.0012 µg/kg bw/day for red chili, and 0.0008 µg/kg bw/day, 0.0006 µg/kg bw/day for turmeric respectively. The mean value of margin of exposure (MOE) among females and males for ingestion of AFs-contaminated red chili and turmeric was 210.25, 332.13, 501.02, and 699.31 respectively. Therefore, the current study demands a continuous monitoring plan and the implementation of novel techniques to enhance the product's quality and protect public health.


Asunto(s)
Aflatoxinas , Colorantes , Humanos , Colorantes/toxicidad , Aflatoxinas/toxicidad , Aflatoxinas/análisis , Curcuma , Pakistán , Contaminación de Alimentos/análisis , Cromatografía Líquida de Alta Presión/métodos
17.
Toxins (Basel) ; 15(11)2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37999492

RESUMEN

Mycotoxins present a significant health concern within the animal-feed industry, with profound implications for the pig-farming sector. The objective of this study was to evaluate the efficacy of two commercial adsorbents, an organically modified clinoptilolite (OMC) and a multicomponent mycotoxin detoxifying agent (MMDA), to ameliorate the combined adverse effects of dietary aflatoxins (AFs: sum of AFB1, AFB2, AFG1, and AFG2), fumonisins (FBs), and zearalenone (ZEN) at levels of nearly 0.5, 1.0, and 1.0 mg/kg, on a cohort of cross-bred female pigs (N = 24). Pigs were randomly allocated into six experimental groups (control, mycotoxins (MTX) alone, MTX + OMC 1.5 kg/ton, MTX + OMC 3.0 kg/ton, MTX + MMDA 1.5 kg/ton, and MTX + MMDA 3.0 kg/ton), each consisting of four individuals, and subjected to a dietary regimen spanning 42 days. The administration of combined AFs, FBs, and ZEN reduced the body-weight gain and increased the relative weight of the liver, while there was no negative influence observed on the serum biochemistry of animals. The supplementation of OMC and MMDA ameliorated the toxic effects, as observed in organ histology, and provided a notable reduction in residual AFs, FBs, and ZEN levels in the liver and kidneys. Moreover, the OMC supplementation was able to reduce the initiation of liver carcinogenesis without any hepatotoxic side effects. These findings demonstrate that the use of OMC and MMDA effectively mitigated the adverse effects of dietary AFs, FBs, and ZEN in piglets. Further studies should explore the long-term protective effects of the studied adsorbent supplementation to optimize mycotoxin management strategies in pig-farming operations.


Asunto(s)
Alimentación Animal , Micotoxinas , Animales , Femenino , Aflatoxinas/toxicidad , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Fumonisinas/toxicidad , Micotoxinas/análisis , Micotoxinas/toxicidad , Porcinos , Zearalenona/análisis , Alimentación Animal/efectos adversos , Alimentación Animal/microbiología , Microbiología de Alimentos
18.
Toxins (Basel) ; 15(11)2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37999509

RESUMEN

Aflatoxins are liver carcinogens and are common contaminants in unpackaged peanut (UPP) oil. However, the health risks associated with consuming aflatoxins in UPP oil remain unclear. In this study, aflatoxin contamination in 143 UPP oil samples from Guangdong Province were assessed via liquid chromatography-tandem mass spectrometry (LC-MS). We also recruited 168 human subjects, who consumed this oil, to measure their liver functions and lipid metabolism status. Aflatoxin B1 (AFB1) was detected in 79.72% of the UPP oil samples, with levels ranging from 0.02 to 174.13 µg/kg. The average daily human intake of AFB1 from UPP oil was 3.14 ng/kg·bw/day; therefore, the incidence of liver cancer, caused by intake of 1 ng/kg·bw/day AFB1, was estimated to be 5.32 cases out of every 100,000 persons per year. Meanwhile, Hepatitis B virus (HBV) infection and AFB1 exposure exerted a synergistic effect to cause liver dysfunction. In addition, the triglycerides (TG) abnormal rate was statistically significant when using AFB1 to estimate daily intake (EDI) quartile spacing grouping (p = 0.011). In conclusion, high aflatoxin exposure may exacerbate the harmful effects of HBV infection on liver function. Contamination of UPP oil with aflatoxins in Guangdong urgently requires more attention, and public health management of the consumer population is urgently required.


Asunto(s)
Aflatoxinas , Humanos , Aflatoxinas/toxicidad , Aflatoxinas/análisis , Aceite de Cacahuete/análisis , Contaminación de Alimentos/análisis , Aflatoxina B1/toxicidad , Aflatoxina B1/análisis , China/epidemiología
19.
Arch Toxicol ; 97(12): 3179-3196, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37794256

RESUMEN

Aflatoxin B1 (AFB1) is a highly hepatotoxic and carcinogenic mycotoxin produced by Aspergillus species. The compound is mainly metabolized in the liver and its metabolism varies between species. The present study quantified relevant AFB1- metabolites formed by mouse, rat, and human primary hepatocytes after treatment with 1 µM and 10 µM AFB1. The use of liquid chromatographic separation coupled with tandem mass spectrometric detection enabled the selective and sensitive determination of phase I and phase II metabolites of AFB1 over incubation times of up to 24 h. The binding of AFB1 to macromolecules was also considered. The fastest metabolism of AFB1 was observed in mouse hepatocytes which formed aflatoxin P1 as a major metabolite and also its glucuronidated form, while AFP1 occurred only in traces in the other species. Aflatoxin M1 was formed in all species and was, together with aflatoxin Q1 and aflatoxicol, the main metabolite in human cells. Effective epoxidation led to high amounts of DNA adducts already 30 min post-treatment, especially in rat hepatocytes. Lower levels of DNA adducts and fast DNA repair were found in mouse hepatocytes. Also, protein adducts arising from reactive intermediates were formed rapidly in all three species. Detoxification via glutathione conjugation and subsequent formation of the N-acetylcysteine derivative appeared to be similar in mice and in rats and strongly differed from human hepatocytes which did not form these metabolites at all. The use of qualitative reference material of a multitude of metabolites and the comparison of hepatocyte metabolism in three species using advanced methods enabled considerations on toxification and detoxification mechanisms of AFB1. In addition to glutathione conjugation, phase I metabolism is strongly involved in the detoxification of AFB1.


Asunto(s)
Aflatoxina B1 , Aflatoxinas , Humanos , Ratas , Ratones , Animales , Aflatoxina B1/toxicidad , Cromatografía Líquida de Alta Presión , Aductos de ADN/metabolismo , Espectrometría de Masas en Tándem , ADN , Aflatoxinas/farmacología , Aflatoxinas/toxicidad , Hígado , Hepatocitos/metabolismo , Glutatión/metabolismo
20.
Toxicology ; 499: 153652, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37858775

RESUMEN

Aflatoxin B1 (AFB1) is a fungal metabolite found in animal feeds and human foods. It is one of the most toxic and carcinogenic of aflatoxins and is classified as a Group 1 carcinogen. Dietary exposure to AFB1 and infection with chronic Hepatitis B Virus (HBV) make up two of the major risk factors for hepatocellular carcinoma (HCC). These two major risk factors raise the probability of synergism between the two agents. This review proposes some collaborative molecular mechanisms underlying the interaction between AFB1 and HBV in accelerating or magnifying the effects of HCC. The HBx viral protein is one of the main viral proteins of HBV and has many carcinogenic qualities that are involved with HCC. AFB1, when metabolized by CYP450, becomes AFB1-exo-8,9-epoxide (AFBO), an extremely toxic compound that can form adducts in DNA sequences and induce mutations. With possible synergisms that exist between HBV and AFB1 in mind, it is best to treat both agents simultaneously to reduce the risk by HCC.


Asunto(s)
Aflatoxinas , Carcinoma Hepatocelular , Hepatitis B Crónica , Neoplasias Hepáticas , Animales , Humanos , Carcinoma Hepatocelular/genética , Virus de la Hepatitis B/metabolismo , Neoplasias Hepáticas/genética , Hepatitis B Crónica/complicaciones , Aflatoxinas/toxicidad , Aflatoxina B1/toxicidad , Carcinógenos/toxicidad , Carcinogénesis/inducido químicamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA