Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.083
Filtrar
Más filtros

Intervalo de año de publicación
1.
PLoS Biol ; 22(8): e3002746, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39110680

RESUMEN

Understanding the dynamic evolution of Salmonella is vital for effective bacterial infection management. This study explores the role of the flexible genome, organised in regions of genomic plasticity (RGP), in shaping the pathogenicity of Salmonella lineages. Through comprehensive genomic analysis of 12,244 Salmonella spp. genomes covering 2 species, 6 subspecies, and 46 serovars, we uncover distinct integration patterns of pathogenicity-related gene clusters into RGP, challenging traditional views of gene distribution. These RGP exhibit distinct preferences for specific genomic spots, and the presence or absence of such spots across Salmonella lineages profoundly shapes strain pathogenicity. RGP preferences are guided by conserved flanking genes surrounding integration spots, implicating their involvement in regulatory networks and functional synergies with integrated gene clusters. Additionally, we emphasise the multifaceted contributions of plasmids and prophages to the pathogenicity of diverse Salmonella lineages. Overall, this study provides a comprehensive blueprint of the pathogenicity potential of Salmonella. This unique insight identifies genomic spots in nonpathogenic lineages that hold the potential for harbouring pathogenicity genes, providing a foundation for predicting future adaptations and developing targeted strategies against emerging human pathogenic strains.


Asunto(s)
Genoma Bacteriano , Salmonella , Salmonella/genética , Salmonella/patogenicidad , Genoma Bacteriano/genética , Virulencia/genética , Humanos , Genómica/métodos , Familia de Multigenes , Filogenia , Plásmidos/genética , Infecciones por Salmonella/microbiología , Profagos/genética , Evolución Molecular
2.
Ann Clin Microbiol Antimicrob ; 23(1): 70, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113073

RESUMEN

BACKGROUND: The increased resistance rate of Salmonella to third-generation cephalosporins represented by ceftriaxone (CRO) may result in the failure of the empirical use of third-generation cephalosporins for the treatment of Salmonella infection in children. The present study was conducted to evaluate a novel method for the rapid detection of CRO-resistant Salmonella (CRS). METHODS: We introduced the concept of the ratio of optical density (ROD) with and without CRO and combined it with matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) to establish a new protocol for the rapid detection of CRS. RESULTS: The optimal incubation time and CRO concentration determined by the model strain test were 2 h and 8 µg/ml, respectively. We then conducted confirmatory tests on 120 clinical strains. According to the receiver operating characteristic curve analysis, the ROD cutoff value for distinguishing CRS and non-CRS strains was 0.818 [area under the curve: 1.000; 95% confidence interval: 0.970-1.000; sensitivity: 100.00%; specificity: 100%; P < 10- 3]. CONCLUSIONS: In conclusion, the protocol for the combined ROD and MALDI-TOF MS represents a rapid, accurate, and economical method for the detection of CRS.


Asunto(s)
Antibacterianos , Ceftriaxona , Pruebas de Sensibilidad Microbiana , Infecciones por Salmonella , Salmonella , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Ceftriaxona/farmacología , Humanos , Antibacterianos/farmacología , Salmonella/efectos de los fármacos , Infecciones por Salmonella/microbiología , Pruebas de Sensibilidad Microbiana/métodos , Farmacorresistencia Bacteriana , Sensibilidad y Especificidad , Curva ROC
3.
Prev Vet Med ; 230: 106299, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39106610

RESUMEN

Salmonella-related foodborne illness is a significant public health concern, with the primary source of human infection being animal-based food products, particularly chicken meat. Lebanon is currently experiencing a dual crisis: the COVID-19 pandemic and an unprecedented economic crisis, which has resulted in substantial challenges to the public health system and food safety. This study aims to assess the prevalence and antibiotic resistance profile of Salmonella in raw poultry meat sold in North Lebanon during this dual crisis. A cross-sectional study was carried out between May 2021 and April 2022 across six different districts in North Lebanon. A total of 288 whole, unprocessed chickens were examined. The isolation and identification of Salmonella isolates were done based on cultural and biochemical properties. All isolates were subjected to antimicrobial susceptibility testing and phenotypic assays for Extended-Spectrum Beta-lactamase (ESBL) detection. The prevalence of Salmonella in raw poultry meat purchased in North Lebanon reached 18.05 % (52/288). The dry season and chilled chicken were significantly associated with an increased risk of Salmonella contamination (P < 0.05). Additionally, 34.61 % of the isolates were potential ESBL producers, and 57.69 % exhibited multidrug resistance (MDR). This study highlights the existence of MDR in chicken meat in North Lebanon, posing a potential health risk if undercooked chicken meat is consumed. This emphasizes the importance of the implementation of preventive strategies and hygienic procedures throughout the food chain to reduce the risk of Salmonella spp. contamination in chicken meats and its potential transmission to humans.


Asunto(s)
COVID-19 , Pollos , Salmonella , Animales , Líbano/epidemiología , Salmonella/efectos de los fármacos , Salmonella/aislamiento & purificación , Estudios Transversales , Prevalencia , COVID-19/epidemiología , COVID-19/prevención & control , Carne/microbiología , Recesión Económica , Farmacorresistencia Bacteriana , Antibacterianos/farmacología , SARS-CoV-2 , Microbiología de Alimentos , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/microbiología , Salmonelosis Animal/epidemiología , Salmonelosis Animal/microbiología
4.
Sci Rep ; 14(1): 19169, 2024 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160213

RESUMEN

The resistance of foodborne pathogens to antimicrobial agents is a potential danger to human health. Hence, establishing the status of good agricultural practices (GAPs) and the antimicrobial susceptibility of major foodborne pathogens has a significant programmatic implication in planning interventions. The objective of this study was to assess the gap in attaining GAP and estimate the prevalence and antimicrobial susceptibility profile of Salmonella in vegetable farms fertilized with animal manure in Addis Ababa, Ethiopia. A total of 81 vegetable farms from four sub-cities in Addis Ababa were visited, and 1119 samples were collected: soil (n = 271), manure (n = 375), vegetables (n = 398), and dairy cattle feces (n = 75). Additional data were collected using a structured questionnaire. Isolation of Salmonella was done using standard microbiology techniques and antimicrobial susceptibility testing was conducted using disk diffusion assays. Carriage for antimicrobial resistance genes was tested using polymerase chain reaction (PCR). Among the 81 vegetable farms visited, 24.7% used animal manure without any treatment, 27.2% used properly stored animal manure and 80.2% were easily accessible to animals. The prevalence of Salmonella was 2.3% at the sample level, 17.3% at the vegetable farm level, and 2.5% in vegetables. The highest rate of resistance was recorded for streptomycin, 80.7% (21 of 26), followed by kanamycin, 65.4% (17 of 26), and gentamicin, 61.5% (16 of 26). Multidrug resistance was detected in 61.5% of the Salmonella isolates. Vegetable farms have a gap in attaining GAPs, which could contribute to increased contamination and the transfer of antimicrobial resistance to the vegetables. The application of GAPs, including proper preparation of compost and the appropriate use of antimicrobials in veterinary practices, are recommended to reduce the emergence and spread of antimicrobial resistance.


Asunto(s)
Antibacterianos , Granjas , Estiércol , Salmonella , Verduras , Etiopía/epidemiología , Animales , Salmonella/aislamiento & purificación , Salmonella/efectos de los fármacos , Salmonella/genética , Verduras/microbiología , Estiércol/microbiología , Prevalencia , Bovinos , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Fertilizantes , Microbiología del Suelo , Farmacorresistencia Bacteriana , Humanos , Heces/microbiología , Agricultura
5.
Lab Chip ; 24(17): 4039-4049, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39108250

RESUMEN

Point-of-care testing of pathogens is becoming more and more important for the prevention and control of food poisoning. Herein, a power-free colorimetric biosensor was presented for rapid detection of Salmonella using a microfluidic SlipChip for fluidic control and Au@PtPd nanocatalysts for signal amplification. All the procedures, including solution mixing, immune reaction, magnetic separation, residual washing, mimicking catalysis and colorimetric detection, were integrated on this SlipChip. First, the mixture of the bacterial sample, immune magnetic nanobeads (IMBs) and immune Au@PtPd nanocatalysts (INCs), washing buffer and H2O2-TMB chromogenic substrate were preloaded into the sample, washing and catalysis chambers, respectively. After the top layer of this SlipChip was slid to connect the sample chamber with the separation chamber, the mixture was moved back and forth through the asymmetrical split-and-recombine micromixer by using a disposable syringe to form the IMB-Salmonella-INC sandwich conjugates. Then, the conjugates were captured in the separation chamber using a magnetic field, and the top layer was slid to connect the washing chamber with the separation chamber for washing away excessive INCs. Finally, the top layer was slid to connect the catalysis chamber with the separation chamber, and the colorless substrate was catalyzed by the INCs with peroxidase-mimic activity to generate color change, followed by using a smartphone app to collect and analyze the image to determine the bacterial concentration. This all-in-one microfluidic biosensor enabled simple detection of Salmonella as low as 101.2 CFU mL-1 within 30 min and was featured with low cost, straightforward operation, and compact design.


Asunto(s)
Técnicas Biosensibles , Oro , Dispositivos Laboratorio en un Chip , Salmonella , Técnicas Biosensibles/instrumentación , Salmonella/aislamiento & purificación , Oro/química , Colorimetría/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Platino (Metal)/química , Paladio/química , Límite de Detección , Diseño de Equipo , Peróxido de Hidrógeno/química
6.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125914

RESUMEN

Multiple drug resistance (MDR) has gained pronounced attention among Enterobacterales. The transfer of multiple antimicrobial resistance genes, frequently carried on conjugative incompatibility F (IncF) plasmids and facilitating interspecies resistance transmission, has been linked to Salmonella spp. and E. coli in broilers. In Egypt, the growing resistance is exacerbated by the limited clinical efficacy of many antimicrobials. In this study, IncF groups were screened and characterized in drug-resistant Salmonella spp. and E. coli isolated from broilers. The antimicrobial resistance profile, PCR-based replicon typing of bacterial isolates pre- and post-plasmid curing, and IncF replicon allele sequence typing were investigated. Five isolates of E. coli (5/31; 16.13%) and Salmonella spp. (5/36; 13.89%) were pan-susceptible to the examined antimicrobial agents, and 85.07% of tested isolates were MDR and extensively drug-resistant (XDR). Twelve MDR and XDR E. coli and Salmonella spp. isolates were examined for the existence of IncF replicons (FII, FIA, and FIB). They shared resistance to ampicillin, ampicillin/sulbactam, amoxicillin/clavulanate, doxycycline, cefotaxime, and colistin. All isolates carried from one to two IncF replicons. The FII-FIA-FIB+ and FII-FIA+FIB- were the predominant replicon patterns. FIB was the most frequently detected replicon after plasmid curing. Three XDR E. coli isolates that were resistant to 12-14 antimicrobials carried a newly FIB replicon allele with four nucleotide substitutions: C99→A, G112→T, C113→T, and G114→A. These findings suggest that broilers are a significant reservoir of IncF replicons with highly divergent IncF-FIB plasmid incompatibility groups circulating among XDR Enterobacterales. Supporting these data with additional comprehensive epidemiological studies involving replicons other than the IncF can provide insights for implementing efficient policies to prevent the spreading of new replicons to humans.


Asunto(s)
Alelos , Pollos , Farmacorresistencia Bacteriana Múltiple , Infecciones por Escherichia coli , Escherichia coli , Plásmidos , Enfermedades de las Aves de Corral , Replicón , Animales , Pollos/microbiología , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Replicón/genética , Farmacorresistencia Bacteriana Múltiple/genética , Plásmidos/genética , Enfermedades de las Aves de Corral/microbiología , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/veterinaria , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Salmonella/genética , Salmonella/efectos de los fármacos
7.
Anal Chim Acta ; 1320: 343006, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39142783

RESUMEN

BACKGROUND: Salmonella, a foodborne pathogen poses significant threats to food safety and human health. Immunochromatographic (ICTS) sensors have gained popularity in the field of food safety due to their convenience, speed, and cost-effectiveness. However, most existing ICTS sensors rely on antibody sandwich structures which are limited by their dependence on high-quality paired antibodies and restricted sensitivity. For the first time, we combined multi-line ICTS strips with fluorescent bacterial probes to develop a label-free multi-line immunochromatographic sensor capable of detecting broad-spectrum Salmonella. Salmonella was labeled with the aggregation-induced luminescence material TCBPE, resulting in its transformation into a green fluorescent probe. RESULTS: Using this sensor, we successfully detected Salmonella typhimurium within the concentration range of 104-108 CFU/mL with a visual detection limit of 6.0 × 104 CFU/mL. Compared to single-line sensors, our multi-line sensor exhibited significantly improved fluorescence intensity resulting in enhanced detection sensitivity by 50 %. Furthermore, our developed multi-line ICTS sensor demonstrated successful detection of 18 different strains of Salmonella without any cross-reaction observed with 5 common foodborne pathogens tested. The applicability and reliability were validated using milk samples, cabbage juice samples as well and drinking water samples suggesting its potential for rapid and accurate detection of Salmonella in real-world scenarios across both the food industry and clinical settings. SIGNIFICANCE: In this experiment, we developed a TCBPE-based multiline immunochromatographic sensor. Specifically, Salmonella was labeled with the aggregation-induced luminescence material TCBPE, resulting in its transformation into a green fluorescent probe. Through the multi-line analysis system, the detection sensitivity and accuracy of the sensor are improved. In brief, the sensor does not require complex antibody labeling and paired antibodies, and only one antibody is needed to complete the detection process.


Asunto(s)
Cromatografía de Afinidad , Cromatografía de Afinidad/métodos , Cromatografía de Afinidad/instrumentación , Leche/microbiología , Leche/química , Microbiología de Alimentos , Animales , Colorantes Fluorescentes/química , Salmonella/aislamiento & purificación , Salmonella/inmunología , Contaminación de Alimentos/análisis , Límite de Detección , Salmonella typhimurium/aislamiento & purificación , Salmonella typhimurium/inmunología , Brassica/química , Brassica/microbiología
8.
Nat Commun ; 15(1): 6504, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39090110

RESUMEN

The bacterial genus Salmonella includes diverse isolates with multiple variations in the structure of the main polysaccharide component (O antigen) of membrane lipopolysaccharides. In addition, some isolates produce a transient (T) antigen, such as the T1 polysaccharide identified in the 1960s in an isolate of Salmonella enterica Paratyphi B. The structure and biosynthesis of the T1 antigen have remained enigmatic. Here, we use biophysical, biochemical and genetic methods to show that the T1 antigen is a complex linear glycan containing tandem homopolymeric domains of galactofuranose and ribofuranose, linked to lipid A-core, like a typical O antigen. T1 is a phase-variable antigen, regulated by recombinational inversion of the promoter upstream of the T1 genetic locus through a mechanism not observed for other bacterial O antigens. The T1 locus is conserved across many Salmonella isolates, but is mutated or absent in most typhoidal serovars and in serovar Enteritidis.


Asunto(s)
Antígenos O , Antígenos O/genética , Antígenos O/metabolismo , Antígenos O/biosíntesis , Salmonella/genética , Salmonella/metabolismo , Regulación Bacteriana de la Expresión Génica , Serogrupo , Regiones Promotoras Genéticas , Polisacáridos Bacterianos/biosíntesis , Polisacáridos Bacterianos/metabolismo
9.
Univ. salud ; 26(2)mayo-agosto 2024. tab
Artículo en Español | LILACS | ID: biblio-1555938

RESUMEN

Introducción: El apego a las normas oficiales sanitarias sirve para prevenir riesgos a la salud humana. Objetivo: Evaluar la calidad higiénico-sanitaria y las buenas prácticas de manufactura de alimentos (BPMA) de un comedor estudiantil en México. Materiales y métodos: Estudio cuasiexperimental y analítico. Durante el año 2020, se realizaron pruebas bacteriológicas a muestras de alimentos, agua, superficies y manos de manipuladores de alimentos, además de también evaluar las BPMA. Conforme a las normas oficiales sanitarias vigentes en México, se recolectaron 57 muestras, se aislaron y se lograron identificar patógenos. Las BPMA se valoraron en 20 manipuladores, antes y después de una intervención educativa de 10 semanas de duración y se utilizó la prueba t con α=0,05. Resultados: Más del 50 % de las muestras resultaron con microorganismos de riesgo para la salud, como Escherichia coli, Staphylococcus aureus, Pseudomonas, Acinetobacter baumanni complex y Coliformes totales. Las evaluaciones, antes y después de la intervención educativa de BPMA, evidenciaron diferencias estadísticamente significativas en el número de aciertos (p≤0,05). Conclusiones: La calidad higiénico-sanitaria del comedor analizado representó riesgo para la salud de los estudiantes, lo cual tuvo relación con la primera evaluación de las BPMA entre los manipuladores, las cuales mejoraron después de la intervención.


Introduction: Adherence to official health standards is essential to prevent human health risks. Objective: To assess the hygienic-sanitary quality and good food manufacturing practices (GMP) in a student cafeteria in Mexico. Materials and methods: Quasi-experimental and analytical study. During 2020, bacteriological tests were carried out on samples taken from food, water, surfaces, and hands of food handlers. In addition, GMP were evaluated. Based on the current Mexican official health regulations, 57 samples were collected to isolate and identify pathogens. GMP were assessed in 20 food handlers before and after a 10-week training intervention and a test was used with α=0.05. Results: More than 50% of samples were found to have microorganisms associated with health risks, including Escherichia coli, Staphylococcus aureus, Pseudomonas, Acinetobacter baumanni complex and total Coliforms. The analyses before and after the GMP training intervention showed statistically significant differences in terms of the presence of these pathogens (p≤0.05). Conclusions: The hygienic-sanitary quality of the analyzed cafeteria turned out to be a risk for the health of students, which was related to the first assessment of GMP in food handlers. Consequently, the results improved after the intervention.


Introdução: A adesão às normas sanitárias oficiais serve para prevenir riscos à saúde humana. Objetivo: Avaliar a qualidade higiênico-sanitária e as boas práticas de fabricação de alimentos (BPMA) de um refeitorio estudantil no México. Materiais e métodos: Estudo quase-experimental e analítico. Durante 2020, foram realizados testes bacteriológicos em amostras de alimentos, água, superfícies e mãos de manipuladores de alimentos, além de avaliação de BPMA. De acordo com as normas sanitárias oficiais em vigor no México, foram coletadas e isoladas 57 amostras e identificados patógenos. Os BPMA foram avaliados em 20 manipuladores, antes e após uma intervenção educativa de 10 semanas e foi utilizado o teste t com α=0,05. Resultados: Verificou-se que mais de 50% das amostras continham microrganismos de risco à saúde, como Escherichia coli, Staphylococcus aureus, Pseudomonas, complexo Acinetobacter baumanni e Coliformes totais. As avaliações, antes e após a intervenção educativa BPMA, apresentaram diferenças estatisticamente significativas no número de acertos (p≤0,05). Conclusões: A qualidade higiênico-sanitária do refeitório analisado representou um risco para a saúde dos alunos, o que esteve relacionado à primeira avaliação do BPMA entre os manipuladores, que melhorou após a intervenção.


Asunto(s)
Humanos , Masculino , Femenino , Educación en Salud , Enterobacteriaceae , Vigilancia Sanitaria de Productos , Salmonella , Escherichia , Alimentos
10.
J Nanobiotechnology ; 22(1): 443, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068474

RESUMEN

Engineered Salmonella has emerged as a promising microbial immunotherapy against tumors; however, its clinical effectiveness has encountered limitations. In our investigation, we unveil a non-dose-dependent type of behavior regarding Salmonella's therapeutic impact and reveal the regulatory role of neutrophils in diminishing the efficacy of this. While Salmonella colonization within tumors recruits a substantial neutrophil population, these neutrophils predominantly polarize into the pro-tumor N2 phenotype, elevating PD-L1 expression and fostering an immunosuppressive milieu within the tumor microenvironment. In order to bypass this challenge, we introduce MnO2 nanoparticles engineered to activate the STING pathway. Harnessing the STING pathway to stimulate IFN-ß secretion prompts a shift in neutrophil polarization from the N2 to the N1 phenotype. This strategic repolarization remodels the tumor immune microenvironment, making the infiltration and activation of CD8+ T cells possible. Through these orchestrated mechanisms, the combined employment of Salmonella and MnO2 attains the synergistic enhancement of anti-tumor efficacy, achieving the complete inhibition of tumor growth within 20 days and an impressive 80% survival rate within 40 days, with no discernible signs of significant adverse effects. Our study not only unveils the crucial in vivo constraints obstructing microbial immune therapy but also sets out an innovative strategy to augment its efficacy. These findings pave the way for advancements in cell-based immunotherapy centered on leveraging the potential of neutrophils.


Asunto(s)
Inmunoterapia , Compuestos de Manganeso , Proteínas de la Membrana , Ratones Endogámicos C57BL , Nanopartículas , Neutrófilos , Óxidos , Salmonella , Microambiente Tumoral , Compuestos de Manganeso/química , Animales , Neutrófilos/inmunología , Neutrófilos/metabolismo , Inmunoterapia/métodos , Ratones , Proteínas de la Membrana/metabolismo , Salmonella/inmunología , Nanopartículas/química , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Femenino , Neoplasias/terapia , Neoplasias/inmunología , Transducción de Señal , Humanos
11.
Open Vet J ; 14(6): 1313-1329, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39055762

RESUMEN

Salmonellosis, caused by Salmonella species, is one of the most common foodborne illnesses worldwide with an estimated 93.8 million cases and about 155,00 fatalities. In both industrialized and developing nations, Salmonellosis has been reported to be one of the most prevalent foodborne zoonoses and is linked with arrays of illness syndromes such as acute and chronic enteritis, and septicaemia. The two major and most common Salmonella species implicated in both warm-blooded and cold-blooded animals are Salmonella bongori and Salmonella enterica. To date, more than 2400 S. enterica serovars which affect both humans and animals have been identified. Salmonella is further classified into serotypes based on three primary antigenic determinants: somatic (O), flagella (H), and capsular (K). The capacity of nearly all Salmonella species to infect, multiply, and survive in human host cells with the aid of their pathogenic and virulence arsenals makes them deadly and important public health pathogens. Primarily, food-producing animals such as poultry, swine, cattle, and their products have been identified as important sources of salmonellosis. Additionally, raw fruits and vegetables are among other food types that have been linked to the spread of Salmonella spp. Based on the clinical manifestation of human salmonellosis, Salmonella strains can be categorized as either non-typhoidal Salmonella (NTS) and typhoidal Salmonella. The detection of aseptically collected Salmonella in necropsies, environmental samples, feedstuffs, rectal swabs, and food products serves as the basis for diagnosis. In developing nations, typhoid fever due to Salmonella Typhi typically results in the death of 5%-30% of those affected. The World Health Organization (WHO) calculated that there are between 16 and 17 million typhoid cases worldwide each year, with scaring 600,000 deaths as a result. The contagiousness of a Salmonella outbreak depends on the bacterial strain, serovar, growth environment, and host susceptibility. Risk factors for Salmonella infection include a variety of foods; for example, contaminated chicken, beef, and pork. Globally, there is a growing incidence and emergence of life-threatening clinical cases, especially due to multidrug-resistant (MDR) Salmonella spp, including strains exhibiting resistance to important antimicrobials such as beta-lactams, fluoroquinolones, and third-generation cephalosporins. In extreme cases, especially in situations involving very difficult-to-treat strains, death usually results. The severity of the infections resulting from Salmonella pathogens is dependent on the serovar type, host susceptibility, the type of bacterial strains, and growth environment. This review therefore aims to detail the nomenclature, etiology, history, pathogenesis, reservoir, clinical manifestations, diagnosis, epidemiology, transmission, risk factors, antimicrobial resistance, public health importance, economic impact, treatment, and control of salmonellosis.


Asunto(s)
Infecciones por Salmonella , Animales , Humanos , Factores de Riesgo , Infecciones por Salmonella/epidemiología , Infecciones por Salmonella/microbiología , Salmonelosis Animal/microbiología , Salmonelosis Animal/epidemiología , Salmonella/clasificación , Salmonella/fisiología , Salmonella/aislamiento & purificación , Zoonosis
12.
Mikrobiyol Bul ; 58(3): 225-238, 2024 Jul.
Artículo en Turco | MEDLINE | ID: mdl-39046206

RESUMEN

In recent years, as the paradigm of communication between cells has been clarified, the ability of bacteria to change their gene expression patterns in response to various extracellular signals has attracted great interest. In particular, intracellular and intercellular communication between bacterial populations, called quorum sensing (QS), is essential for coordinating physiological and genetic activities. QS studies are critical, particularly in elucidating the regulatory mechanisms of infectious processes in food-borne pathogens. Elucidating the QS mechanisms in Salmonella is effective in silencing the virulence factors in the fight against this bacterium. The aims of this study were; to create luxS gene mutants that play a vital role in the QS activity of Salmonella and to determine the effect of this mutation on the expression of virulence genes in the bacteria and to determine the impact of synthetic N-hexanoyl-homoserine lactone (C6HSL) on biofilm formation and AI-2 signaling pathway of Salmonella wild strain and luxS gene mutants. luxS gene mutants were constructed by recombining the gene region with the chloramphenicol gene cassette based on homologous region recombination. In the luxS mutants obtained in this way, the expression of eight different virulence genes (hilA, invA, inv, glgC, fimF, fliF, lpfA, gyrA), which have essential roles in Salmonella pathogenicity, was determined by quantitative real-time reverse transcriptase polymerase chain reaction (rRT-qPCR) method and compared with natural strains. As a result of these studies, it was determined that the expression of each gene examined was significantly reduced in luxS mutant strains. The relative AI-2 activities of Salmonella strains were analyzed depending on time. It was determined that the highest activity occurred at the fourth hour and the AI-2 activities of luxS mutants were reduced compared to the wild strain. Finally, it was determined that C6HSL increased the biofilm activity of Salmonella Typhimurium DMC4, SL1344 wild strains, and mutants, mainly at the 72nd hour. In conclusion, our results proved that C6HSL stimulated QS communication in all strains and increased biofilm of Salmonella formation and autoinducer activity. This situation determines that Salmonella responds to external signals by using QS systems. In addition, this research contributed to provide additional information on interspecies communication mechanisms to develop strategies to prevent biofilm formation of this pathogen.


Asunto(s)
Proteínas Bacterianas , Biopelículas , Liasas de Carbono-Azufre , Regulación Bacteriana de la Expresión Génica , Homoserina , Percepción de Quorum , Biopelículas/crecimiento & desarrollo , Liasas de Carbono-Azufre/genética , Virulencia , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Homoserina/análogos & derivados , Mutación , Factores de Virulencia/genética , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Animales , Salmonella/patogenicidad , Salmonella/genética
13.
Medicine (Baltimore) ; 103(29): e39017, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39029021

RESUMEN

RATIONALE: Bacterascites are a rare complication of cesarean sections (C/S). Here, we report the case of a patient with bacterascites after an emergent C/S. PATIENT CONCERN: A 41-year-old female reported diffuse abdominal tightness and pain for a week after C/S, who received C/S at 38 4/7 weeks due to superimposed preeclampsia and prolonged labor. DIAGNOSES: Bacterascites caused by Salmonella species after C/S was diagnosed. INTERVENTIONS: Initial treatment included cefmetazole and metronidazole. On day 2, paracentesis was performed, followed by albumin and hydroxyethyl starch administration. By day 3, the patient developed pulmonary edema, necessitating Lasix administration. On day 6, ascites culture revealed Salmonella species resistant to third-generation cephalosporins, leading to meropenem therapy adjustment. This resulted in improved symptoms. Meropenem was continued for 14 days to complete the treatment regimen. OUTCOMES: Follow-up ultrasonography revealed a decrease in ascites. As the patient clinical condition improved, she was discharged on day 20 and scheduled for outpatient department follow-up. No recurrence of ascites was observed during the subsequent follow-up period of 3 months. No ascites were noted 8 days after discharge. LESSONS: Postoperative bacterascites with Salmonella were diagnosed. Antibiotic treatment and therapeutic paracentesis were effective for this condition.


Asunto(s)
Antibacterianos , Cesárea , Infecciones por Salmonella , Salmonella , Humanos , Femenino , Adulto , Cesárea/efectos adversos , Antibacterianos/uso terapéutico , Antibacterianos/administración & dosificación , Salmonella/aislamiento & purificación , Infecciones por Salmonella/diagnóstico , Infecciones por Salmonella/tratamiento farmacológico , Embarazo , Meropenem/uso terapéutico , Meropenem/administración & dosificación , Ascitis/etiología , Ascitis/microbiología , Bacteriemia/microbiología , Bacteriemia/tratamiento farmacológico , Complicaciones Posoperatorias/microbiología , Paracentesis/métodos
14.
Lett Appl Microbiol ; 77(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38986501

RESUMEN

Salmonella is a common cause of human foodborne illness, which is frequently associated with consumption of contaminated or undercooked poultry meat. Serotype Infantis is among the most common serotypes isolated from poultry meat products globally. Isolates of serotype Infantis carrying the pESI plasmid, the most dominant strain of Infantis, have been shown to exhibit oxidizer tolerance. Therefore, 16 strains of Salmonella with and without pESI carriage were investigated for susceptibility to biocide chemical processing aids approved for use in US poultry meat processing: peracetic acid (PAA), cetylpyridinium chloride (CPC), calcium hypochlorite, and sodium hypochlorite. Strains were exposed for 15 s to simulate spray application and 90 min to simulate application in an immersion chiller. All strains tested were susceptible to all concentrations of PAA, CPC, and sodium hypochlorite when applied for 90 min. When CPC, calcium hypochlorite, and sodium hypochlorite were applied for 15 s to simulate spray time, strains responded similarly to each other. However, strains responded variably to exposure to PAA. The variation was not statistically significant and appears unrelated to pESI carriage. Results highlight the necessity of testing biocide susceptibility in the presence of organic material and in relevant in situ applications.


Asunto(s)
Desinfectantes , Ácido Peracético , Plásmidos , Aves de Corral , Salmonella , Hipoclorito de Sodio , Desinfectantes/farmacología , Animales , Salmonella/efectos de los fármacos , Salmonella/genética , Ácido Peracético/farmacología , Hipoclorito de Sodio/farmacología , Plásmidos/genética , Aves de Corral/microbiología , Cetilpiridinio/farmacología , Compuestos de Calcio/farmacología , Microbiología de Alimentos , Humanos , Pruebas de Sensibilidad Microbiana , Manipulación de Alimentos
15.
BMC Immunol ; 25(1): 46, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39034396

RESUMEN

OBJECTIVES: The pathogenic microorganisms that cause intestinal diseases can significantly jeopardize people's health. Currently, there are no authorized treatments or vaccinations available to combat the germs responsible for intestinal disease. METHODS: Using immunoinformatics, we developed a potent multi-epitope Combination (combo) vaccine versus Salmonella and enterohemorrhagic E. coli. The B and T cell epitopes were identified by performing a conservancy assessment, population coverage analysis, physicochemical attributes assessment, and secondary and tertiary structure assessment of the chosen antigenic polypeptide. The selection process for vaccine development included using several bioinformatics tools and approaches to finally choose two linear B-cell epitopes, five CTL epitopes, and two HTL epitopes. RESULTS: The vaccine had strong immunogenicity, cytokine production, immunological properties, non-toxicity, non-allergenicity, stability, and potential efficacy against infections. Disulfide bonding, codon modification, and computational cloning were also used to enhance the stability and efficacy of expression in the host E. coli. The vaccine's structure has a strong affinity for the TLR4 ligand and is very durable, as shown by molecular docking and molecular modeling. The results of the immunological simulation demonstrated that both B and T cells had a heightened response to the vaccination component. CONCLUSIONS: The comprehensive in silico analysis reveals that the proposed vaccine will likely elicit a robust immune response against pathogenic bacteria that cause intestinal diseases. Therefore, it is a promising option for further experimental testing.


Asunto(s)
Epítopos de Linfocito B , Epítopos de Linfocito T , Vacunología , Humanos , Epítopos de Linfocito T/inmunología , Vacunología/métodos , Epítopos de Linfocito B/inmunología , Vacunas Combinadas/inmunología , Genómica/métodos , Escherichia coli Enterohemorrágica/inmunología , Salmonella/inmunología , Animales , Biología Computacional/métodos , Simulación del Acoplamiento Molecular , Vacunas contra Escherichia coli/inmunología , Infecciones por Escherichia coli/prevención & control , Infecciones por Escherichia coli/inmunología , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/prevención & control , Antígenos Bacterianos/inmunología , Desarrollo de Vacunas/métodos , Vacunas Bacterianas/inmunología
16.
Elife ; 132024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046772

RESUMEN

Antimicrobial resistance (AMR) poses a significant threat to human health. Although vaccines have been developed to combat AMR, it has proven challenging to associate specific vaccine antigens with AMR. Bacterial plasmids play a crucial role in the transmission of AMR. Our recent research has identified a group of bacterial plasmids (specifically, IncHI plasmids) that encode large molecular mass proteins containing bacterial immunoglobulin-like domains. These proteins are found on the external surface of the bacterial cells, such as in the flagella or conjugative pili. In this study, we show that these proteins are antigenic and can protect mice from infection caused by an AMR Salmonella strain harboring one of these plasmids. Furthermore, we successfully generated nanobodies targeting these proteins, that were shown to interfere with the conjugative transfer of IncHI plasmids. Considering that these proteins are also encoded in other groups of plasmids, such as IncA/C and IncP2, targeting them could be a valuable strategy in combating AMR infections caused by bacteria harboring different groups of AMR plasmids. Since the selected antigens are directly linked to AMR itself, the protective effect extends beyond specific microorganisms to include all those carrying the corresponding resistance plasmids.


Asunto(s)
Farmacorresistencia Bacteriana , Plásmidos , Animales , Plásmidos/genética , Ratones , Farmacorresistencia Bacteriana/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Antibacterianos/farmacología , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/farmacología , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/genética , Femenino , Salmonella/genética , Salmonella/inmunología , Salmonella/efectos de los fármacos , Inmunoglobulinas/genética , Inmunoglobulinas/inmunología , Ratones Endogámicos BALB C
17.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39025805

RESUMEN

AIM: To investigate the possible contamination of raw flour and raw flour-based products, such as pancake/batter mixes, with Salmonella, generic Escherichia coli, and Shiga-toxin-producing E. coli (STEC). Samples included flours available for sale in the UK over a period of four months (January to April 2020). The Bread and Flour regulations, 1998 state the permitted ingredients in flour and bread but it does not specify the regular monitoring of the microbiological quality of flour and flour-based products. METHODS AND RESULTS: Samples of raw flour were collected by local authority sampling officers in accordance with current guidance on microbiological food sampling then transported to the laboratory for examination. Microbiological testing was performed to detect Salmonella spp., generic E. coli, and STEC characterized for the presence of STEC virulence genes: stx1, stx2, and subtypes, eae, ipah, aggR, lt, sth, and stp, using molecular methods Polymerase Chain Reaction (PCR). Of the 882 flours sampled, the incidence of Salmonella was 0.1% (a single positive sample that contained multiple ingredients such as flour, dried egg, and dried milk, milled in the UK), and 68 samples (7.7%) contained generic E. coli at a level of >20 CFU/g. Molecular characterization of flour samples revealed the presence of the Shiga-toxin (stx) gene in 10 samples (5 imported and 5 from the UK) (1.1%), from which STEC was isolated from 7 samples (0.8%). Salmonella and STEC isolates were sequenced to provide further characterization of genotypes and to compare to sequences of human clinical isolates held in the UKHSA archive. Using our interpretive criteria based on genetic similarity, none of the STEC flour isolates correlated with previously observed human cases, while the singular Salmonella serotype Newport isolate from the mixed ingredient product was similar to a human case in 2019, from the UK, of S. Newport. Although there have been no reported human cases of STEC matching the isolates from these flour samples, some of the same serotypes and stx subtypes detected are known to have caused illness in other contexts. CONCLUSION: Results indicate that while the incidence was low, there is a potential for the presence of Salmonella and STEC in flour, and a genetic link was demonstrated between a Salmonella isolate from a flour-based product and a human case of salmonellosis.


Asunto(s)
Harina , Microbiología de Alimentos , Salmonella , Escherichia coli Shiga-Toxigénica , Harina/microbiología , Harina/análisis , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Escherichia coli Shiga-Toxigénica/genética , Salmonella/genética , Salmonella/aislamiento & purificación , Reino Unido , Contaminación de Alimentos/análisis , Humanos
18.
Lett Appl Microbiol ; 77(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39043449

RESUMEN

Intestinal infections caused by non-typhoidal Salmonella spp., along with antimicrobial resistance spread are a major food safety concern worldwide. Here, we evaluate the potential of competitive exclusion products developed by anaerobic or aerobic conditions to control systemic infection, cecal colonization, fecal excretion, and improve the intestinal health in broilers challenged by Salmonella Heidelberg (SH). A total of 105 day-old chickens were randomly distributed into three experimental groups: A (untreated control), B (treated with anaerobic culture), and C (treated with aerobic culture). During 21 days, morphometric parameters of the small intestine were analyzed using microscopy, fecal excretions by cloacal swabs, systemic infection, and cecal colonization by colony-forming unit counts (CFU/g). The results indicated the lowest number of positive swabs (45.33%) recovered from Group C, followed by Group B (71.8%) and Group A (85.33%). The bacterial enumeration revealed the lowest amounts in Group C at the necropsy realized in 5-, 7-, and 14-days post-infection (DPI) (P = 0.0010, P = 0.0048, and P = 0.0094, respectively). Statistical differences between intestinal morphometrics were observed in the Group C at 21 DPI. Our results suggest that the product developed under aerobic conditions can improve intestinal health, protecting birds against SH.


Asunto(s)
Ciego , Pollos , Enfermedades de las Aves de Corral , Salmonelosis Animal , Animales , Pollos/microbiología , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/prevención & control , Salmonelosis Animal/microbiología , Ciego/microbiología , Heces/microbiología , Salmonella enterica/crecimiento & desarrollo , Salmonella enterica/efectos de los fármacos , Salmonella/crecimiento & desarrollo , Antibacterianos/farmacología
19.
Anal Chem ; 96(31): 12684-12691, 2024 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-39037392

RESUMEN

Timely screening for harmful pathogens is a great challenge in emergencies where traditional culture methods suffer from long assay time and alternative methods are limited by poor accuracy and low robustness. Herein, we present a dCas9-mediated colorimetric and surface-enhanced Raman scattering (SERS) dual-signal platform (dCas9-CSD) to address this challenge. Strategically, the platform used dCas9 to accurately recognize the repetitive sequences in amplicons produced by loop-mediated isothermal amplification (LAMP), forming nucleic acid frameworks that assemble numerous bifunctional gold-platinum (Au@Pt) nanozymes into chains on the surface of streptavidin-magnetic beads (SA-MB). The collected Au@Pt converted colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxidized TMB (oxTMB) via its Pt shell and then enhanced the Raman signal of oxTMB by its Au core. Therefore, the presence of Salmonella could be dexterously converted into cross-validated colorimetric and SERS signals, providing more reliable conclusions. Notably, dCas9-mediated secondary recognition of amplicons reduced background signal caused by nontarget amplification, and two-round signal amplification consisting of LAMP reaction and Au@Pt catalysis greatly improved the sensitivity. With this design, Salmonella as low as 1 CFU/mL could be detected within 50 min by colorimetric and SERS modes. The robustness of dCas9-CSD was further confirmed by various real samples such as lake water, cabbage, milk, orange juice, beer, and eggs. This work provides a promising point-of-need tool for pathogen detection.


Asunto(s)
Colorimetría , Oro , Técnicas de Amplificación de Ácido Nucleico , Platino (Metal) , Espectrometría Raman , Oro/química , Platino (Metal)/química , Salmonella/aislamiento & purificación , Salmonella/genética , Nanopartículas del Metal/química , Límite de Detección , Bencidinas/química , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas , Técnicas de Diagnóstico Molecular
20.
Arch Microbiol ; 206(7): 335, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953983

RESUMEN

Salmonella is considered as one of the most common zoonotic /foodborne pathogens in the world. The application of bacteriophages as novel antibacterial agents in food substrates has become an emerging strategy. Bacteriophages have the potential to control Salmonella contamination.We have isolated and characterized a broad-spectrum Salmonella phage, SP154, which can lyse 9 serotypes, including S. Enteritidis, S. Typhimurium, S. Pullorum, S. Arizonae, S. Dublin, S. Cholerasuis, S. Chester, S. 1, 4, [5], 12: i: -, and S. Derby, accounting for 81.9% of 144 isolates. SP154 showed a short latent period (40 min) and a high burst size (with the first rapid burst size at 107 PFUs/cell and the second rapid burst size at approximately 40 PFUs/cell). Furthermore, SP154 activity has higher survival rates across various environmental conditions, including pH 4.0-12.0 and temperatures ranging from 4 to 50 °C for 60 min, making it suitable for diverse food processing and storage applications. Significant reductions in live Salmonella were observed in different foods matrices such as milk and chicken meat, with a decrease of up to 1.9 log10 CFU/mL in milk contamination and a 1 log10 CFU/mL reduction in chicken meat. Whole genome sequencing analysis revealed that SP154 belongs to the genus Ithacavirus, subfamily Humphriesvirinae, within the family Schitoviridae. Phylogenetic analysis based on the terminase large subunit supported this classification, although an alternate tree using the tail spike protein gene suggested affiliation with the genus Kuttervirus, underscoring the limitations of relying on a single gene for phylogenetic inference. Importantly, no virulence or antibiotic resistance genes were detected in SP154. Our research highlights the potential of using SP154 for biocontrol of Salmonella in the food industry.


Asunto(s)
Microbiología de Alimentos , Genoma Viral , Fagos de Salmonella , Salmonella , Secuenciación Completa del Genoma , Fagos de Salmonella/genética , Fagos de Salmonella/aislamiento & purificación , Fagos de Salmonella/clasificación , Fagos de Salmonella/fisiología , Animales , Salmonella/virología , Salmonella/genética , Salmonella/clasificación , Salmonella/aislamiento & purificación , Pollos , Leche/microbiología , Leche/virología , Carne/microbiología , Carne/virología , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA