Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 415, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760683

RESUMO

Globe artichoke (Cynara cardunculus var. scolymus; 2n = 2x = 34) is a food crop consumed for its immature flower heads. Traditionally, globe artichoke varietal types are vegetatively propagated. However, seed propagation makes it possible to treat the crop as annual, increasing field uniformity and reducing farmers costs, as well as pathogens diffusion. Despite globe artichoke's significant agricultural value and the critical role of heterosis in the development of superior varieties, the production of hybrids remains challenging without a reliable system for large-scale industrial seed production. Male sterility (MS) presents a promising avenue for overcoming these challenges by simplifying the hybridization process and enabling cost-effective seed production. However, within the Cynara genus, genic male sterility has been linked to three recessive loci in globe artichoke, with no definitive genetic mechanism elucidated to date. A 250 offsprings F2 population, derived from a cross between a MS globe artichoke and a male fertile (MF) cultivated cardoon (C. cardunculus var. altilis) and fitting a monogenic segregation model (3:1), was analyzed through BSA-seq, aiming at the identification of genomic regions/genes affecting male sterility. Four QTL regions were identified on chromosomes 4, 12, and 14. By analyzing the sequence around the highest pick on chromosome 14, a cytochrome P450 (CYP703A2) was identified, carrying a deleterious substitution (R/Q) fixed in the male sterile parent. A single dCAPS marker was developed around this SNP, allowing the discrimination between MS and MF genotypes within the population, suitable for applications in plant breeding programs. A 3D model of the protein was generated by homology modeling, revealing that the mutated amino acid is part of a highly conserved motif crucial for protein folding.


Assuntos
Cynara scolymus , Infertilidade das Plantas , Pólen , Infertilidade das Plantas/genética , Cynara scolymus/genética , Pólen/genética , Genoma de Planta , Genes de Plantas
2.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34400501

RESUMO

Genebanks collect and preserve vast collections of plants and detailed passport information, with the aim of preserving genetic diversity for conservation and breeding. Genetic characterization of such collections has the potential to elucidate the genetic histories of important crops, use marker-trait associations to identify loci controlling traits of interest, search for loci undergoing selection, and contribute to genebank management by identifying taxonomic misassignments and duplicates. We conducted a genomic scan with genotyping by sequencing (GBS) derived single nucleotide polymorphisms (SNPs) of 10,038 pepper (Capsicum spp.) accessions from worldwide genebanks and investigated the recent history of this iconic staple. Genomic data detected up to 1,618 duplicate accessions within and between genebanks and showed that taxonomic ambiguity and misclassification often involve interspecific hybrids that are difficult to classify morphologically. We deeply interrogated the genetic diversity of the commonly consumed Capsicum annuum to investigate its history, finding that the kinds of peppers collected in broad regions across the globe overlap considerably. The method ReMIXTURE-using genetic data to quantify the similarity between the complement of peppers from a focal region and those from other regions-was developed to supplement traditional population genetic analyses. The results reflect a vision of pepper as a highly desirable and tradable cultural commodity, spreading rapidly throughout the globe along major maritime and terrestrial trade routes. Marker associations and possible selective sweeps affecting traits such as pungency were observed, and these traits were shown to be distributed nonuniformly across the globe, suggesting that human preferences exerted a primary influence over domesticated pepper genetic structure.


Assuntos
Capsicum/genética , Cromossomos de Plantas/genética , Genética Populacional , Genoma de Planta , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Capsicum/crescimento & desenvolvimento , Genômica
3.
Int J Mol Sci ; 23(6)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35328546

RESUMO

Anemone coronaria L. (2n = 2x = 16) is a perennial, allogamous, highly heterozygous plant marketed as a cut flower or in gardens. Due to its large genome size, limited efforts have been made in order to develop species-specific molecular markers. We obtained the first draft genome of the species by Illumina sequencing an androgenetic haploid plant of the commercial line "MISTRAL® Magenta". The genome assembly was obtained by applying the MEGAHIT pipeline and consisted of 2 × 106 scaffolds. The SciRoKo SSR (Simple Sequence Repeats)-search module identified 401.822 perfect and 188.987 imperfect microsatellites motifs. Following, we developed a user-friendly "Anemone coronaria Microsatellite DataBase" (AnCorDB), which incorporates the Primer3 script, making it possible to design couples of primers for downstream application of the identified SSR markers. Eight genotypes belonging to eight cultivars were used to validate 62 SSRs and a subset of markers was applied for fingerprinting each cultivar, as well as to assess their intra-cultivar variability. The newly developed microsatellite markers will find application in Breeding Rights disputes, developing genetic maps, marker assisted breeding (MAS) strategies, as well as phylogenetic studies.


Assuntos
Anemone , Genoma de Planta , Repetições de Microssatélites/genética , Filogenia , Melhoramento Vegetal , Polimorfismo Genético
4.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36498869

RESUMO

Phytophthora infestans, the causal agent of late blight (LB) in tomato (Solanum lycopersicum L.), is a devastating disease and a serious concern for plant productivity. The presence of susceptibility (S) genes in plants facilitates pathogen proliferation; thus, disabling these genes may help provide a broad-spectrum and durable type of tolerance/resistance. Previous studies on Arabidopsis and tomato have highlighted that knock-out mutants of the PMR4 susceptibility gene are tolerant to powdery mildew. Moreover, PMR4 knock-down in potato has been shown to confer tolerance to LB. To verify the same effect in tomato in the present study, a CRISPR-Cas9 vector containing four single guide RNAs (sgRNAs: sgRNA1, sgRNA6, sgRNA7, and sgRNA8), targeting as many SlPMR4 regions, was introduced via Agrobacterium-tumefaciens-mediated transformation into two widely grown Italian tomato cultivars: 'San Marzano' (SM) and 'Oxheart' (OX). Thirty-five plants (twenty-six SM and nine OX) were selected and screened to identify the CRISPR/Cas9-induced mutations. The different sgRNAs caused mutation frequencies ranging from 22.1 to 100% and alternatively precise insertions (sgRNA6) or deletions (sgRNA7, sgRNA1, and sgRNA8). Notably, sgRNA7 induced in seven SM genotypes a -7 bp deletion in the homozygous status, whereas sgRNA8 led to the production of fifteen SM genotypes with a biallelic mutation (-7 bp and -2 bp). Selected edited lines were inoculated with P. infestans, and four of them, fully knocked out at the PMR4 locus, showed reduced disease symptoms (reduction in susceptibility from 55 to 80%) compared to control plants. The four SM lines were sequenced using Illumina whole-genome sequencing for deeper characterization without exhibiting any evidence of mutations in the candidate off-target regions. Our results showed, for the first time, a reduced susceptibility to Phytophtora infestans in pmr4 tomato mutants confirming the role of KO PMR4 in providing broad-spectrum protection against pathogens.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Phytophthora infestans , Solanum lycopersicum , Solanum tuberosum , Solanum lycopersicum/genética , Sistemas CRISPR-Cas/genética , Doenças das Plantas/genética , Phytophthora infestans/genética , Solanum tuberosum/genética , Arabidopsis/genética , Glucosiltransferases/genética , Proteínas de Arabidopsis/genética
5.
Pediatr Allergy Immunol ; 32(8): 1743-1755, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34146442

RESUMO

BACKGROUND: Hazelnut allergy, which is characterized by symptoms that range from mild to severe, is one of the most common allergies in children throughout Europe, and an accurate diagnosis of this allergy is therefore essential. However, lipophilic allergens, such as oleosins, are generally underrepresented in diagnostic tests. We therefore sought to characterize the IgE reactivity of raw and roasted hazelnut oleosins, using the sera of hazelnut-allergic pediatric patients. METHODS: Raw and roasted hazelnut oil body-associated proteins were analyzed by means of 1D and 2D electrophoresis and MS. Oleosin IgE reactivity was assessed by immunoblotting with the sera of 27 children who have confirmed hazelnut allergies and from 10 tolerant subjects. A molecular characterization of the oleosins was performed by interrogating the C. avellana cv. Jefferson and cv. TGL genomes, and through expression and purification of the recombinant new allergen. RESULTS: A proteomic and genomic investigation allowed two new oleosins to be identified, in addition to Cor a 12 and Cor a 13, in hazelnut oil bodies. One of the new oleosins was registered as a new allergen, according to the WHO/IUIS Allergen Nomenclature Subcommittee criteria, and termed Cor a 15. Cor a 15 was the most frequently immunorecognized oleosin in our cohort. Oleosins resulted to be the only immunorecognized allergens in a subgroup of allergic patients who showed low ImmunoCAP assay IgE values and positive OFC and PbP. Hazelnut roasting resulted in an increase in oleosin immunoreactivity. CONCLUSION: A novel hazelnut oleosin, named Cor a 15, has been discovered. Cor a 15 could play a role in eliciting an allergic reaction in a subgroup of pediatric patients that exclusively immunorecognize oleosins. The high prevalence of hazelnut oleosin sensitization here reported further confirms the need to include oleosins in routine diagnostic procedures.


Assuntos
Corylus , Hipersensibilidade a Noz , Alérgenos , Criança , Humanos , Imunoglobulina E , Itália , Hipersensibilidade a Noz/diagnóstico , Proteínas de Plantas , Proteômica
6.
Mol Genet Genomics ; 295(1): 107-120, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31506717

RESUMO

The oriental gall wasp Dryocosmus kuriphilus represents a limiting pest for the European Chestnut (Castanea sativa, Fagaceae) as it creates severe yield losses. The European Chestnut is a deciduous tree, having major social, economic and environmental importance in Southern Europe, covering an area of 2.53 million hectares, including 75,000 ha devoted to fruit production. Cultivars show different susceptibility and very few are resistant to gall wasp. To deeply investigate the plant response and understand which factors can lead the plant to develop or not the gall, the study of transcriptome is basic (fundamental). To date, little transcriptomic information are available for C. sativa species. Hence, we present a de novo assembly of the chestnut transcriptome of the resistant Euro-Japanese hybrid 'Bouche de Bétizac' (BB) and the susceptible cultivar 'Madonna' (M), collecting RNA from buds at different stages of budburst. The two transcriptomes were assembled into 34,081 (BB) and 30,605 (M) unigenes, respectively. The former was used as a reference sequence for further characterization analyses, highlighting the presence of 1444 putative resistance gene analogs (RGAs) and about 1135 unigenes, as putative MiRNA targets. A global quantitative transcriptome profiling comparing the resistant and the susceptible cultivars, in the presence or not of the gall wasp, revealed some GO enrichments as "response to stimulus" (GO:0050896), and "developmental processes" (e.g., post-embryonic development, GO:0009791). Many up-regulated genes appeared to be transcription factors (e.g., RAV1, AP2/ERF, WRKY33) or protein regulators (e.g., RAPTOR1B) and storage proteins (e.g., LEA D29) involved in "post-embryonic development". Our analysis was able to provide a large amount of information, including 7k simple sequence repeat (SSR) and 335k single-nucleotide polymorphism (SNP)/INDEL markers, and generated the first reference unigene catalog for the European Chestnut. The transcriptome data for C. sativa will contribute to understand the genetic basis of the resistance to gall wasp and will provide useful information for next molecular genetic studies of this species and its relatives.


Assuntos
Fagaceae/genética , Transcriptoma/genética , Vespas/patogenicidade , Animais , Europa (Continente) , Fagaceae/parasitologia , Perfilação da Expressão Gênica/métodos , Repetições de Microssatélites/genética , Anotação de Sequência Molecular/métodos , Doenças das Plantas/parasitologia , Polimorfismo de Nucleotídeo Único/genética , Fatores de Transcrição/genética , Árvores/genética , Árvores/parasitologia , Regulação para Cima/genética
7.
Phytopathology ; 110(3): 656-665, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31721656

RESUMO

Bakanae, caused by the hemibiotrophic fungus Fusarium fujikuroi, is one of the most important diseases of rice and is attributed to up to 75% of losses, depending on the strain and environmental conditions. Some strains cause elongation and thin leaves, whereas others induce stunting and chlorotic seedlings. Differences in symptoms are attributed to genetic differences in the strains. F. fujikuroi strains Augusto2, CSV1, and I1.3 were sequenced with Illumina MiSeq, and pathogenicity trials were conducted on rice cultivar Galileo, which is susceptible to bakanae. By performing gene prediction, single nucleotide polymorphism (SNP) calling, and structural variant analysis with a reference genome, we show how an extremely limited number of polymorphisms in genes not commonly associated with bakanae disease can cause strong differences in phenotype. CSV1 and Augusto2 were particularly close, with only 21,887 SNPs between them, but they differed in virulence, reaction to temperature, induced symptoms, colony morphology and color, growth speed, fumonisin, and gibberellin production. Genes potentially involved in the shift in phenotype were identified. Furthermore, we show how temperature variation may result in different symptoms even in rice plants inoculated with the same F. fujikuroi strain. Moreover, all of the F. fujikuroi strains became more virulent at higher temperatures. Significant differences were likewise observed in gibberellic acid production and in the expression of both fungal and plant gibberellin biosynthetic genes.


Assuntos
Fusarium , Oryza , Fenótipo , Doenças das Plantas , Temperatura
8.
Front Plant Sci ; 15: 1278760, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38375087

RESUMO

This review highlights -omics research in Solanaceae family, with a particular focus on resilient traits. Extensive research has enriched our understanding of Solanaceae genomics and genetics, with historical varietal development mainly focusing on disease resistance and cultivar improvement but shifting the emphasis towards unveiling resilience mechanisms in genebank-preserved germplasm is nowadays crucial. Collecting such information, might help researchers and breeders developing new experimental design, providing an overview of the state of the art of the most advanced approaches for the identification of the genetic elements laying behind resilience. Building this starting point, we aim at providing a useful tool for tackling the global agricultural resilience goals in these crops.

9.
Plants (Basel) ; 12(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37375913

RESUMO

Tomato (Solanum lycopersicum L.) is one of the most widely grown vegetables in the world and is impacted by many diseases which cause yield reduction or even crop failure. Breeding for disease resistance is thus a key objective in tomato improvement. Since disease arises from a compatible interaction between a plant and a pathogen, a mutation which alters a plant susceptibility (S) gene facilitating compatibility may induce broad-spectrum and durable plant resistance. Here, we report on a genome-wide analysis of a set of 360 tomato genotypes, with the goal of identifying defective S-gene alleles as a potential source for the breeding of resistance. A set of 125 gene homologs of 10 S-genes (PMR 4, PMR5, PMR6, MLO, BIK1, DMR1, DMR6, DND1, CPR5, and SR1) were analyzed. Their genomic sequences were examined and SNPs/indels were annotated using the SNPeff pipeline. A total of 54,000 SNPs/indels were identified, among which 1300 were estimated to have a moderate impact (non-synonymous variants), while 120 were estimated to have a high impact (e.g., missense/nonsense/frameshift variants). The latter were then analyzed for their effect on gene functionality. A total of 103 genotypes showed one high-impact mutation in at least one of the scouted genes, while in 10 genotypes, more than 4 high-impact mutations in as many genes were detected. A set of 10 SNPs were validated through Sanger sequencing. Three genotypes carrying high-impact homozygous SNPs in S-genes were infected with Oidium neolycopersici, and two highlighted a significantly reduced susceptibility to the fungus. The existing mutations fall within the scope of a history of safe use and can be useful to guide risk assessment in evaluating the effect of new genomic techniques.

10.
Front Plant Sci ; 14: 1187205, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37360724

RESUMO

Persian buttercup (Ranunculus asiaticus L.) and poppy anemone (Anemone coronaria L.) are ornamental, outcrossing, perennial species belonging to the Ranunculaceae family, characterized by large and highly repetitive genomes. We applied K-seq protocol in both species to generate high-throughput sequencing data and produce a large number of genetic polymorphisms. The technique entails the application of Klenow polymerase-based PCR using short primers designed by analyzing k-mer sets in the genome sequence. To date the genome sequence of both species has not been released, thus we designed primer sets based on the reference the genome sequence of the related species Aquilegia oxysepala var. kansuensis (Brühl). A whole of 11,542 SNPs were selected for assessing genetic diversity of eighteen commercial varieties of R. asiaticus, while 1,752 SNPs for assessing genetic diversity in six cultivars of A. coronaria. UPGMA dendrograms were constructed and in R. asiaticus integrated in with PCA analysis. This study reports the first molecular fingerprinting within Persian buttercup, while the results obtained in poppy anemone were compared with a previously published SSR-based fingerprinting, proving K-seq to be an efficient protocol for the genotyping of complex genetic backgrounds.

11.
Sci Rep ; 13(1): 12288, 2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516733

RESUMO

Globe artichoke capitula are susceptible to browning due to oxidation of phenols caused by the activity of polyphenol oxidases (PPOs), this reduces their suitability for fresh or processed uses. A genome-wide analysis of the globe artichoke PPO gene family was performed. Bioinformatics analyses identified eleven PPOs and their genomic and amino acidic features were annotated. Cis-acting element analysis identified a gene regulatory and functional profile associated to plant growth and development as well as stress response. For some PPOs, phylogenetic analyses revealed a structural and functional conservation with different Asteraceae PPOs, while the allelic variants of the eleven PPOs investigated across four globe artichoke varietal types identified several SNP/Indel variants, some of which having impact on gene translation. By RTqPCR were assessed the expression patterns of PPOs in plant tissues and in vitro calli characterized by different morphologies. Heterogeneous PPO expression profiles were observed and three of them (PPO6, 7 and 11) showed a significant increase of transcripts in capitula tissues after cutting. Analogously, the same three PPOs were significantly up-regulated in calli showing a brown phenotype due to oxidation of phenols. Our results lay the foundations for a future application of gene editing aimed at disabling the three PPOs putatively involved in capitula browning.


Assuntos
Calosidades , Cynara scolymus , Scolymus , Cynara scolymus/genética , Filogenia , Catecol Oxidase/genética , Fenóis , Polifenóis
12.
Front Plant Sci ; 14: 1293186, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148866

RESUMO

The multifaceted nature of climate change is increasing the urgency to select resilient grapevine varieties, or generate new, fitter cultivars, to withstand a multitude of new challenging conditions. The attainment of this goal is hindered by the limiting pace of traditional breeding approaches, which require decades to result in new selections. On the other hand, marker-assisted breeding has proved useful when it comes to traits governed by one or few genes with great effects on the phenotype, but its efficacy is still restricted for complex traits controlled by many loci. On these premises, innovative strategies are emerging which could help guide selection, taking advantage of the genetic diversity within the Vitis genus in its entirety. Multiple germplasm collections are also available as a source of genetic material for the introgression of alleles of interest via adapted and pioneering transformation protocols, which present themselves as promising tools for future applications on a notably recalcitrant species such as grapevine. Genome editing intersects both these strategies, not only by being an alternative to obtain focused changes in a relatively rapid way, but also by supporting a fine-tuning of new genotypes developed with other methods. A review on the state of the art concerning the available genetic resources and the possibilities of use of innovative techniques in aid of selection is presented here to support the production of climate-smart grapevine genotypes.

13.
Proteomics ; 12(3): 448-60, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22162389

RESUMO

Plants respond to ultraviolet stress inducing a self-defence through the regulation of specific gene family members. The UV acclimation is the result of biochemical and physiological processes, such as enhancement of the antioxidant enzymatic system and accumulation of UV-absorbing phenolic compounds (e.g. flavonoids). Globe artichoke is an attractive species for studying the protein network involved in UV stress response, being characterized by remarkable levels of inducible antioxidants. Proteomic tools can assist the evaluation of the expression patterns of UV-responsive proteins and we applied the difference in-gel electrophoresis (DIGE) technology for monitoring the globe artichoke proteome variation at four time points following an acute UV-C exposure. A total of 145 UV-C-modulated proteins were observed and 119 were identified by LC-MS/MS using a ∼144,000 customized Compositae protein database, which included about 19,000 globe artichoke unigenes. Proteins were Gene Ontology (GO) categorized, visualized on their pathways and their behaviour was discussed. A predicted protein interaction network was produced and highly connected hub-like proteins were highlighted. Most of the proteins differentially modulated were chloroplast located, involved in photosynthesis, sugar metabolisms, protein folding and abiotic stress. The identification of UV-C-responsive proteins may contribute to shed light on the molecular mechanisms underlying plant responses to UV stress.


Assuntos
Cynara scolymus/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/análise , Proteínas de Plantas/classificação , Cynara scolymus/genética , Cynara scolymus/efeitos da radiação , Eletroforese em Gel Bidimensional/métodos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Anotação de Sequência Molecular , Folhas de Planta/genética , Folhas de Planta/efeitos da radiação , Espectrometria de Massas em Tandem/métodos , Raios Ultravioleta
14.
BMC Genomics ; 13: 3, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-22214349

RESUMO

BACKGROUND: The globe artichoke (Cynara cardunculus L. var. scolymus) genome is relatively poorly explored, especially compared to those of the other major Asteraceae crops sunflower and lettuce. No SNP markers are in the public domain. We have combined the recently developed restriction-site associated DNA (RAD) approach with the Illumina DNA sequencing platform to effect the rapid and mass discovery of SNP markers for C. cardunculus. RESULTS: RAD tags were sequenced from the genomic DNA of three C. cardunculus mapping population parents, generating 9.7 million reads, corresponding to ~1 Gbp of sequence. An assembly based on paired ends produced ~6.0 Mbp of genomic sequence, separated into ~19,000 contigs (mean length 312 bp), of which ~21% were fragments of putative coding sequence. The shared sequences allowed for the discovery of ~34,000 SNPs and nearly 800 indels, equivalent to a SNP frequency of 5.6 per 1,000 nt, and an indel frequency of 0.2 per 1,000 nt. A sample of heterozygous SNP loci was mapped by CAPS assays and this exercise provided validation of our mining criteria. The repetitive fraction of the genome had a high representation of retrotransposon sequence, followed by simple repeats, AT-low complexity regions and mobile DNA elements. The genomic k-mers distribution and CpG rate of C. cardunculus, compared with data derived from three whole genome-sequenced dicots species, provided a further evidence of the random representation of the C. cardunculus genome generated by RAD sampling. CONCLUSION: The RAD tag sequencing approach is a cost-effective and rapid method to develop SNP markers in a highly heterozygous species. Our approach permitted to generate a large and robust SNP datasets by the adoption of optimized filtering criteria.


Assuntos
Cynara/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Mapeamento de Sequências Contíguas , Enzimas de Restrição do DNA/metabolismo , Frequência do Gene , Ligação Genética , Marcadores Genéticos/genética , Heterozigoto
15.
Plant Biotechnol J ; 10(8): 956-69, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22849342

RESUMO

Cynara cardunculus (2n = 2× = 34) is a member of the Asteraceae family that contributes significantly to the agricultural economy of the Mediterranean basin. The species includes two cultivated varieties, globe artichoke and cardoon, which are grown mainly for food. Cynara cardunculus is an orphan crop species whose genome/transcriptome has been relatively unexplored, especially in comparison to other Asteraceae crops. Hence, there is a significant need to improve its genomic resources through the identification of novel genes and sequence-based markers, to design new breeding schemes aimed at increasing quality and crop productivity. We report the outcome of cDNA sequencing and assembly for eleven accessions of C. cardunculus. Sequencing of three mapping parental genotypes using Roche 454-Titanium technology generated 1.7 × 106 reads, which were assembled into 38,726 reference transcripts covering 32 Mbp. Putative enzyme-encoding genes were annotated using the KEGG-database. Transcription factors and candidate resistance genes were surveyed as well. Paired-end sequencing was done for cDNA libraries of eight other representative C. cardunculus accessions on an Illumina Genome Analyzer IIx, generating 46 × 106 reads. Alignment of the IGA and 454 reads to reference transcripts led to the identification of 195,400 SNPs with a Bayesian probability exceeding 95%; a validation rate of 90% was obtained by Sanger-sequencing of a subset of contigs. These results demonstrate that the integration of data from different NGS platforms enables large-scale transcriptome characterization, along with massive SNP discovery. This information will contribute to the dissection of key agricultural traits in C. cardunculus and facilitate the implementation of marker-assisted selection programs.


Assuntos
Produtos Agrícolas/genética , Cynara scolymus/genética , Polimorfismo de Nucleotídeo Único/genética , Transcriptoma/genética , Genoma de Planta , Genótipo , Polimorfismo Genético , Análise de Sequência de DNA
16.
Front Plant Sci ; 13: 1009206, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212343

RESUMO

Persian Buttercup (Ranunculus asiaticus L.; 2x=2n=16; estimated genome size: 7.6Gb) is an ornamental and perennial crop native of Asia Minor and Mediterranean basin, marketed both as cut flower or potted plant. Currently new varieties are developed by selecting plants carrying desirable traits in segregating progenies obtained by controlled mating, which are propagated through rhizomes or micro-propagated in vitro. In order to escalate selection efficiency and respond to market requests, more knowledge of buttercup genetics would facilitate the identification of markers associated with loci and genes controlling key ornamental traits, opening the way for molecular assisted breeding programs. Reduced-representation sequencing (RRS) represents a powerful tool for plant genotyping, especially in case of large genomes such as the one of buttercup, and have been applied for the development of high-density genetic maps in several species. We report on the development of the first molecular-genetic maps in R. asiaticus based on of a two-way pseudo-testcross strategy. A double digest restriction-site associated DNA (ddRAD) approach was applied for genotyping two F1 mapping populations, whose female parents were a genotype of a so called 'ponpon' and of a 'double flower' varieties, while the common male parental ('Cipro') was a genotype producing a simple flower. The ddRAD generated a total of ~2Gb demultiplexed reads, resulting in an average of 8,3M reads per line. The sstacks pipeline was applied for the construction of a mock reference genome based on sequencing data, and SNP markers segregating in only one of the parents were retained for map construction by treating the F1 population as a backcross. The four parental maps (two of the female parents and two of the common male parent) were aligned with 106 common markers and 8 linkage groups were identified, corresponding to the haploid chromosome number of the species. An average of 586 markers were associated with each parental map, with a marker density ranging from 1 marker/cM to 4.4 markers/cM. The developed maps were used for QTL analysis for flower color, leading to the identification of major QTLs for purple pigmentation. These results contribute to dissect on the genetics of Persian buttercup, enabling the development of new approaches for future varietal development.

17.
Front Plant Sci ; 13: 898740, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865281

RESUMO

The knowledge of the organization of the domesticated gene pool of crop species is an essential requirement to understand crop evolution, to rationalize conservation programs, and to support practical decisions in plant breeding. Here, we integrate simple sequence repeat (SSR) analysis and phenotypic characterization to investigate a globe artichoke collection that comprises most of the varieties cultivated worldwide. We show that the cultivated gene pool of globe artichoke includes five distinct genetic groups associated with the major phenotypic typologies: Catanesi (which based on our analysis corresponds to Violetti di Provenza), Spinosi, Violetti di Toscana, Romaneschi, and Macau. We observed that 17 and 11% of the molecular and phenotypic variance, respectively, is between these groups, while within groups, strong linkage disequilibrium and heterozygote excess are evident. The divergence between groups for quantitative traits correlates with the average broad-sense heritability within the groups. The phenotypic divergence between groups for both qualitative and quantitative traits is strongly and positively correlated with SSR divergence (FST) between groups. All this implies a low population size and strong bottleneck effects, and indicates a long history of clonal propagation and selection during the evolution of the domesticated gene pool of globe artichoke. Moreover, the comparison between molecular and phenotypic population structures suggests that harvest time, plant architecture (i.e., plant height, stem length), leaf spininess, head morphology (i.e., head shape, bract shape, spininess) together with the number of heads per plant were the main targets of selection during the evolution of the cultivated germplasm. We emphasize our findings in light of the potential exploitation of this collection for association mapping studies.

18.
Front Plant Sci ; 13: 936089, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898224

RESUMO

Gene editing has already proved itself as an invaluable tool for the generation of mutants for crop breeding, yet its ultimate impact on agriculture will depend on how crops generated by gene editing technologies are regulated, and on our ability to characterize the impact of mutations on plant phenotype. A starting operational strategy for evaluating gene editing-based approaches to plant breeding might consist of assessing the effect of the induced mutations in a crop- and locus-specific manner: this involves the analysis of editing efficiency in different cultivars of a crop, the assessment of potential off-target mutations, and a phenotypic evaluation of edited lines carrying different mutated alleles. Here, we targeted the GREENFLESH (GF) locus in two tomato cultivars ('MoneyMaker' and 'San Marzano') and evaluated the efficiency, specificity and mutation patterns associated with CRISPR/Cas9 activity for this gene. The GF locus encodes a Mg-dechelatase responsible for initiating chlorophyll degradation; in gf mutants, ripe fruits accumulate both carotenoids and chlorophylls. Phenotypic evaluations were conducted on two transgene-free T2 'MoneyMaker' gf lines with different mutant alleles (a small insertion of 1 nucleotide and a larger deletion of 123 bp). Both lines, in addition to reduced chlorophyll degradation, showed a notable increase in carotenoid and tocopherol levels during fruit ripening. Infection of gf leaves and fruits with Botrytis cinerea resulted in a significant reduction of infected area and pathogen proliferation compared to the wild type (WT). Our data indicates that the CRISPR/Cas9-mediated mutation of the GF locus in tomato is efficient, specific and reproducible and that the resulting phenotype is robust and consistent with previously characterized greenflesh mutants obtained with different breeding techniques, while also shedding light on novel traits such as vitamin E overaccumulation and pathogen resistance. This makes GF an appealing target for breeding tomato cultivars with improved features for cultivation, as well as consumer appreciation and health.

19.
BMC Genomics ; 12: 304, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21663628

RESUMO

BACKGROUND: The eggplant (Solanum melongena L.) genome is relatively unexplored, especially compared to those of the other major Solanaceae crops tomato and potato. In particular, no SNP markers are publicly available; on the other hand, over 1,000 SSR markers were developed and publicly available. We have combined the recently developed Restriction-site Associated DNA (RAD) approach with Illumina DNA sequencing for rapid and mass discovery of both SNP and SSR markers for eggplant. RESULTS: RAD tags were generated from the genomic DNA of a pair of eggplant mapping parents, and sequenced to produce ~17.5 Mb of sequences arrangeable into ~78,000 contigs. The resulting non-redundant genomic sequence dataset consisted of ~45,000 sequences, of which ~29% were putative coding sequences and ~70% were in common between the mapping parents. The shared sequences allowed the discovery of ~10,000 SNPs and nearly 1,000 indels, equivalent to a SNP frequency of 0.8 per Kb and an indel frequency of 0.07 per Kb. Over 2,000 of the SNPs are likely to be mappable via the Illumina GoldenGate assay. A subset of 384 SNPs was used to successfully fingerprint a panel of eggplant germplasm, producing a set of informative diversity data. The RAD sequences also included nearly 2,000 putative SSRs, and primer pairs were designed to amplify 1,155 loci. CONCLUSION: The high throughput sequencing of the RAD tags allowed the discovery of a large number of DNA markers, which will prove useful for extending our current knowledge of the genome organization of eggplant, for assisting in marker-aided selection and for carrying out comparative genomic analyses within the Solanaceae family.


Assuntos
Enzimas de Restrição do DNA/metabolismo , DNA de Plantas/genética , DNA de Plantas/metabolismo , Repetições Minissatélites/genética , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA/métodos , Solanum melongena/genética , Sítios de Ligação , Mapeamento Cromossômico , Genômica , Anotação de Sequência Molecular
20.
Front Genet ; 12: 743902, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745217

RESUMO

Capsicum annuum L. is one of the most cultivated Solanaceae species, and in the open field, water limitation leading to drought stress affects its fruit quality, fruit setting, fruit size and ultimately yield. We identified stage-specific and a common core set of differentially expressed genes, following RNA-seq transcriptome analyses of a breeding line subjected to acute drought stress followed by recovery (rewatering), at three stages of plant development. Among them, two NAC transcription factor (TF) genes, i.e., CaNAC072 and CaNAC104, were always upregulated after drought stress and downregulated after recovery. The two TF proteins were observed to be localized in the nucleus following their transient expression in Nicotiana benthamiana leaves. The expression of the two NACs was also induced by NaCl, polyethylene glycol (PEG) and abscisic acid (ABA) treatments, suggesting that CaNAC072 is an early, while CaNAC104 is a late abiotic stress-responsive gene. Virus-induced gene silencing (VIGS) of CaNAC104 did not affect the pepper plantlet's tolerance to drought stress, while VIGS of CaNAC072 increased drought tolerance. Heterologous expression of CaNAC072 in Arabidopsis thaliana as well as in plants mutated for its homolog ANAC072 did not increase drought stress tolerance. This highlights a different role of the two NAC homologs in the two species. Here, we discuss the complex role of NACs as transcriptional switches in the response to drought stress in bell pepper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA