Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Mol Cell ; 83(12): 2020-2034.e6, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295429

RESUMO

Biomolecular condensation underlies the biogenesis of an expanding array of membraneless assemblies, including stress granules (SGs), which form under a variety of cellular stresses. Advances have been made in understanding the molecular grammar of a few scaffold proteins that make up these phases, but how the partitioning of hundreds of SG proteins is regulated remains largely unresolved. While investigating the rules that govern the condensation of ataxin-2, an SG protein implicated in neurodegenerative disease, we unexpectedly identified a short 14 aa sequence that acts as a condensation switch and is conserved across the eukaryote lineage. We identify poly(A)-binding proteins as unconventional RNA-dependent chaperones that control this regulatory switch. Our results uncover a hierarchy of cis and trans interactions that fine-tune ataxin-2 condensation and reveal an unexpected molecular function for ancient poly(A)-binding proteins as regulators of biomolecular condensate proteins. These findings may inspire approaches to therapeutically target aberrant phases in disease.


Assuntos
Ataxina-2 , Doenças Neurodegenerativas , Humanos , Ataxina-2/genética , Proteína I de Ligação a Poli(A) , Doenças Neurodegenerativas/metabolismo , Condensados Biomoleculares
2.
Mol Cell ; 75(4): 835-848.e8, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31378462

RESUMO

Mitochondrial dysfunction and proteostasis failure frequently coexist as hallmarks of neurodegenerative disease. How these pathologies are related is not well understood. Here, we describe a phenomenon termed MISTERMINATE (mitochondrial-stress-induced translational termination impairment and protein carboxyl terminal extension), which mechanistically links mitochondrial dysfunction with proteostasis failure. We show that mitochondrial dysfunction impairs translational termination of nuclear-encoded mitochondrial mRNAs, including complex-I 30kD subunit (C-I30) mRNA, occurring on the mitochondrial surface in Drosophila and mammalian cells. Ribosomes stalled at the normal stop codon continue to add to the C terminus of C-I30 certain amino acids non-coded by mRNA template. C-terminally extended C-I30 is toxic when assembled into C-I and forms aggregates in the cytosol. Enhancing co-translational quality control prevents C-I30 C-terminal extension and rescues mitochondrial and neuromuscular degeneration in a Parkinson's disease model. These findings emphasize the importance of efficient translation termination and reveal unexpected link between mitochondrial health and proteome homeostasis mediated by MISTERMINATE.


Assuntos
Códon de Terminação , Proteínas de Drosophila/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Deficiências na Proteostase/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Células HeLa , Humanos , Mitocôndrias/genética , Mitocôndrias/patologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Proteínas Mitocondriais/genética , Deficiências na Proteostase/genética , Deficiências na Proteostase/patologia , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo
3.
PLoS Genet ; 20(5): e1011251, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38768217

RESUMO

Ataxin-2 (ATXN2) is a gene implicated in spinocerebellar ataxia type II (SCA2), amyotrophic lateral sclerosis (ALS) and Parkinsonism. The encoded protein is a therapeutic target for ALS and related conditions. ATXN2 (or Atx2 in insects) can function in translational activation, translational repression, mRNA stability and in the assembly of mRNP-granules, a process mediated by intrinsically disordered regions (IDRs). Previous work has shown that the LSm (Like-Sm) domain of Atx2, which can help stimulate mRNA translation, antagonizes mRNP-granule assembly. Here we advance these findings through a series of experiments on Drosophila and human Ataxin-2 proteins. Results of Targets of RNA Binding Proteins Identified by Editing (TRIBE), co-localization and immunoprecipitation experiments indicate that a polyA-binding protein (PABP) interacting, PAM2 motif of Ataxin-2 may be a major determinant of the mRNA and protein content of Ataxin-2 mRNP granules. Experiments with transgenic Drosophila indicate that while the Atx2-LSm domain may protect against neurodegeneration, structured PAM2- and unstructured IDR- interactions both support Atx2-induced cytotoxicity. Taken together, the data lead to a proposal for how Ataxin-2 interactions are remodelled during translational control and how structured and non-structured interactions contribute differently to the specificity and efficiency of RNP granule condensation as well as to neurodegeneration.


Assuntos
Ataxina-2 , Proteínas de Drosophila , Drosophila melanogaster , RNA Mensageiro , Ribonucleoproteínas , Ataxina-2/genética , Ataxina-2/metabolismo , Animais , Humanos , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Proteínas de Ligação a Poli(A)/genética , Animais Geneticamente Modificados , Grânulos Citoplasmáticos/metabolismo , Grânulos Citoplasmáticos/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Biossíntese de Proteínas , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a DNA
4.
Cerebellum ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438827

RESUMO

The influence of brain atrophy on sleep microstructure in Spinocerebellar Ataxias (SCAs) has not been extensively explored limiting the use of these sleep traits as surrogate biomarkers of neurodegeneration and clinical phenotype. The objective of the study is to explore the relationship between sleep microstructure and brain atrophy in SCA2 and its role in the clinical phenotype. Fourteen SCA2 mutation carriers (7 pre-manifest and 7 manifest subjects) underwent polysomnographic, structural MRI, and clinical assessments. Particularly, markers of REM and non-REM sleep microstructure, measures of cerebellar and brainstem atrophy, and clinical scores were analyzed through correlation and mediation analyses. The sleep spindle activity exhibited a negative correlation with the number of trials required to complete the verbal memory test (VMT), and a positive correlation with the cerebellar volume, but the significance of the latter correlation did not survive multiple testing corrections. However, the causal mediation analyses unveiled that sleep spindle activity significantly mediates the association between cerebellar atrophy and VMT performance. Regarding REM sleep, both phasic EMG activity and REM sleep without atonia exhibited significant associations with pontine atrophy and disease severity measures. However, they did not demonstrate a causal mediation effect between the atrophy measures and disease severity. Our study provides evidence about the association of the pontocerebellar atrophy with sleep microstructure in SCA2 offering insights into the cerebellar involvement in cognition via the control of the sleep spindle activity. Therefore, our findings may help to understand the disease pathogenesis and to better characterize sleep microstructure parameters as disease biomarkers.Clinical trial registration number (TRN): No applicable.

5.
Mov Disord ; 38(5): 880-885, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36811296

RESUMO

BACKGROUND: The role of peripheral inflammation in spinocerebellar ataxia type 2 (SCA2) is unknown. OBJECTIVE: The objective of this study was to identify peripheral inflammation biomarkers and their relationship with the clinical and molecular features. METHODS: Blood cell count-derived inflammatory indices were measured in 39 SCA2 subjects and their matched controls. Clinical scores of ataxia, nonataxia, and cognitive dysfunction were assessed. RESULTS: The neutrophil-to-lymphocyte ratio (NLR), the platelet-to-lymphocyte ratio (PLR), the Systemic Inflammation Index (SII), and the Aggregate Index of Systemic Inflammation (AISI) were significantly increased in SCA2 subjects compared with controls. The increases in PLR, SII, and AISI were even observed in preclinical carriers. NLR, PLR, and SII were correlated with the Scale for the Assessment and Rating of Ataxia speech item score rather than with the total score. The NLR and SII were correlated with the nonataxia and the cognitive scores. CONCLUSIONS: Peripheral inflammatory indices are biomarkers in SCA2, which may help to design future immunomodulatory trials and advance our understanding of the disease. © 2023 International Parkinson and Movement Disorder Society.


Assuntos
Linfócitos , Ataxias Espinocerebelares , Humanos , Contagem de Linfócitos , Biomarcadores , Ataxias Espinocerebelares/complicações , Fenótipo , Inflamação , Estudos Retrospectivos
6.
Cerebellum ; 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37861884

RESUMO

Limited evidence suggests that the SARS-CoV-2 infection can accelerate the progression of neurodegenerative diseases, but this has been not verified in the spinocerebellar ataxias (SCA). The objective of this study is to assess the impact of COVID-19 on the mental health and motor features of SCA2. A follow-up study was carried out in 170 Cuban SCA2 subjects and 87 community controls between 2020 and 2021. All subjects underwent a structured questionnaire to assess the risks of exposure to COVID-19, the confirmation of COVID-19 diagnosis, and the Hospital Anxiety and Depression Scale (HADS). Moreover, 36 subjects underwent the Scale for the Assessment and Rating of ataxia (SARA). The risk of exposure to SARS-CoV-2 and the frequency of COVID-19 were similar between the ataxia cohort and the community controls. Within the ataxia group, significantly increased HADS scores existed at the 2nd visit in both groups, but this increase was more evident for the infected group regarding the depression score. Moreover, a significant within-group increase of SARA score was observed in the infected group but not the non-infected group, which was mainly mediated by the significant increase of the speech item score in the infected group. Similar results were observed within the subgroup of preclinical carriers. Our study identified no selective vulnerability nor protection to COVID-19 in SCA2, but once infected, the patients experienced a deterioration of mental health and speech function, even at preclinical disease stage. These findings set rationales for tele-health approaches that minimize the detrimental effect of COVID-19 on SCA2 progression and identify SCA2 individuals as clinical model to elucidate the link between SARS-CoV-2 infection and neurodegeneration.

7.
J Immunol ; 206(8): 1890-1900, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33731338

RESUMO

Caseinolytic mitochondrial matrix peptidase proteolytic subunit (CLPP) is a serine protease that degrades damaged or misfolded mitochondrial proteins. CLPP-null mice exhibit growth retardation, deafness, and sterility, resembling human Perrault syndrome, but also display immune system alterations. However, the molecular mechanisms and signaling pathways underlying immunological changes in CLPP-null mice remain unclear. In this study, we report the steady-state activation of type I IFN signaling and antiviral gene expression in CLPP-deficient cells and tissues, resulting in marked resistance to RNA and DNA virus infection. Depletion of the cyclic GMP-AMP (cGAS)-stimulator of IFN genes (STING) DNA sensing pathway reduces steady-state IFN-I signaling and abrogates the broad antiviral phenotype of CLPP-null cells. Moreover, we report that CLPP deficiency leads to mitochondrial DNA (mtDNA) instability and packaging alterations. Pharmacological and genetic approaches to deplete mtDNA or inhibit cytosolic release markedly reduce antiviral gene expression, implicating mtDNA stress as the driver of IFN-I signaling in CLPP-null mice. Our work places the cGAS-STING-IFN-I innate immune pathway downstream of CLPP and may have implications for understanding Perrault syndrome and other human diseases involving CLPP dysregulation.


Assuntos
Interferon beta , Nucleotidiltransferases , Animais , DNA Mitocondrial/genética , Endopeptidase Clp/genética , Humanos , Interferon beta/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Nucleotídeos Cíclicos , Nucleotidiltransferases/metabolismo , Peptídeo Hidrolases
8.
Nature ; 544(7650): 367-371, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28405022

RESUMO

Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disease that is characterized by motor neuron loss and that leads to paralysis and death 2-5 years after disease onset. Nearly all patients with ALS have aggregates of the RNA-binding protein TDP-43 in their brains and spinal cords, and rare mutations in the gene encoding TDP-43 can cause ALS. There are no effective TDP-43-directed therapies for ALS or related TDP-43 proteinopathies, such as frontotemporal dementia. Antisense oligonucleotides (ASOs) and RNA-interference approaches are emerging as attractive therapeutic strategies in neurological diseases. Indeed, treatment of a rat model of inherited ALS (caused by a mutation in Sod1) with ASOs against Sod1 has been shown to substantially slow disease progression. However, as SOD1 mutations account for only around 2-5% of ALS cases, additional therapeutic strategies are needed. Silencing TDP-43 itself is probably not appropriate, given its critical cellular functions. Here we present a promising alternative therapeutic strategy for ALS that involves targeting ataxin-2. A decrease in ataxin-2 suppresses TDP-43 toxicity in yeast and flies, and intermediate-length polyglutamine expansions in the ataxin-2 gene increase risk of ALS. We used two independent approaches to test whether decreasing ataxin-2 levels could mitigate disease in a mouse model of TDP-43 proteinopathy. First, we crossed ataxin-2 knockout mice with TDP-43 (also known as TARDBP) transgenic mice. The decrease in ataxin-2 reduced aggregation of TDP-43, markedly increased survival and improved motor function. Second, in a more therapeutically applicable approach, we administered ASOs targeting ataxin-2 to the central nervous system of TDP-43 transgenic mice. This single treatment markedly extended survival. Because TDP-43 aggregation is a component of nearly all cases of ALS, targeting ataxin-2 could represent a broadly effective therapeutic strategy.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/terapia , Ataxina-2/deficiência , Proteínas de Ligação a DNA/metabolismo , Longevidade , Oligonucleotídeos Antissenso/uso terapêutico , Agregação Patológica de Proteínas/terapia , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Ataxina-2/genética , Sistema Nervoso Central/metabolismo , Grânulos Citoplasmáticos/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Progressão da Doença , Feminino , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Destreza Motora/fisiologia , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/genética , Agregação Patológica de Proteínas/genética , Estresse Fisiológico , Análise de Sobrevida
9.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139332

RESUMO

The mitochondrial matrix peptidase CLPP is crucial during cell stress. Its loss causes Perrault syndrome type 3 (PRLTS3) with infertility, neurodegeneration, and a growth deficit. Its target proteins are disaggregated by CLPX, which also regulates heme biosynthesis via unfolding ALAS enzymes, providing access for pyridoxal-5'-phosphate (PLP). Despite efforts in diverse organisms with multiple techniques, CLPXP substrates remain controversial. Here, avoiding recombinant overexpression, we employed complexomics in mitochondria from three mouse tissues to identify endogenous targets. A CLPP absence caused the accumulation and dispersion of CLPX-VWA8 as AAA+ unfoldases, and of PLPBP. Similar changes and CLPX-VWA8 co-migration were evident for mitoribosomal central protuberance clusters, translation factors like GFM1-HARS2, the RNA granule components LRPPRC-SLIRP, and enzymes OAT-ALDH18A1. Mitochondrially translated proteins in testes showed reductions to <30% for MTCO1-3, the mis-assembly of the complex IV supercomplex, and accumulated metal-binding assembly factors COX15-SFXN4. Indeed, heavy metal levels were increased for iron, molybdenum, cobalt, and manganese. RT-qPCR showed compensatory downregulation only for Clpx mRNA; most accumulated proteins appeared transcriptionally upregulated. Immunoblots validated VWA8, MRPL38, MRPL18, GFM1, and OAT accumulation. Co-immunoprecipitation confirmed CLPX binding to MRPL38, GFM1, and OAT, so excess CLPX and PLP may affect their activity. Our data mechanistically elucidate the mitochondrial translation fidelity deficits which underlie progressive hearing impairment in PRLTS3.


Assuntos
Endopeptidase Clp , Perda Auditiva , Mitocôndrias , Animais , Camundongos , Adenosina Trifosfatases/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Perda Auditiva/genética , Perda Auditiva/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Respiração/genética , Biossíntese de Proteínas/genética
10.
Mol Psychiatry ; 26(4): 1286-1298, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-31712721

RESUMO

Multiplex families with a high prevalence of a psychiatric disorder are often examined to identify rare genetic variants with large effect sizes. In the present study, we analysed whether the risk for bipolar disorder (BD) in BD multiplex families is influenced by common genetic variants. Furthermore, we investigated whether this risk is conferred mainly by BD-specific risk variants or by variants also associated with the susceptibility to schizophrenia or major depression. In total, 395 individuals from 33 Andalusian BD multiplex families (166 BD, 78 major depressive disorder, 151 unaffected) as well as 438 subjects from an independent, BD case/control cohort (161 unrelated BD, 277 unrelated controls) were analysed. Polygenic risk scores (PRS) for BD, schizophrenia (SCZ), and major depression were calculated and compared between the cohorts. Both the familial BD cases and unaffected family members had higher PRS for all three psychiatric disorders than the independent controls, with BD and SCZ being significant after correction for multiple testing, suggesting a high baseline risk for several psychiatric disorders in the families. Moreover, familial BD cases showed significantly higher BD PRS than unaffected family members and unrelated BD cases. A plausible hypothesis is that, in multiplex families with a general increase in risk for psychiatric disease, BD development is attributable to a high burden of common variants that confer a specific risk for BD. The present analyses demonstrated that common genetic risk variants for psychiatric disorders are likely to contribute to the high incidence of affective psychiatric disorders in the multiplex families. However, the PRS explained only part of the observed phenotypic variance, and rare variants might have also contributed to disease development.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Esquizofrenia , Transtorno Bipolar/epidemiologia , Transtorno Bipolar/genética , Estudos de Casos e Controles , Transtorno Depressivo Maior/epidemiologia , Transtorno Depressivo Maior/genética , Predisposição Genética para Doença/genética , Humanos , Esquizofrenia/epidemiologia , Esquizofrenia/genética
11.
Nutr Neurosci ; 25(8): 1747-1755, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33687306

RESUMO

BACKGROUND: Body weight changes occur frequently during advanced stages of Spinocerebellar Ataxia type 2 (SCA2), nevertheless limited information exists on biomarkers of nutritional status of these patients. OBJECTIVE.: To assess changes in surrogate nutritional markers of SCA2 patients; to explore their associations with expanded CAG repeats and disease severity. METHODS: One-hundred-thirteen SCA2 patients and 50 healthy controls underwent a comprehensive anthropometrical and biochemical assessment protocol of the nutritional status. Neurological and genotype assessments were also performed. RESULTS: A decrease in weight, body mass index (BMI), cutaneous skinfold thickness, fat mass, arm muscle circumference, calf circumference and skeletal muscle mass was observed in SCA2 patients compared to the controls. The total/HDL cholesterol ratio was significantly reduced in patients. BMI was correlated with the age at onset. Overall, anthropometric measures were correlated with clinical markers of disease severity and were more evident in severe and moderate cases. CONCLUSIONS: Using anthropometric measures in the assessment of the nutritional status of SCA2 patients might provide hints about pathophysiological mechanisms that underlie metabolic abnormalities in SCA2. Anthropometric are close related with disease severity and progression, and trigger preventive therapies aimed to ameliorate weight loss and wasting in these patients.


Assuntos
Ataxias Espinocerebelares , Estudos de Coortes , Estudos Transversais , Humanos , Índice de Gravidade de Doença , Ataxias Espinocerebelares/genética , Redução de Peso
12.
Neurogenetics ; 22(4): 297-312, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34345994

RESUMO

Mitochondrial dysfunction may activate innate immunity, e.g. upon abnormal handling of mitochondrial DNA in TFAM mutants or in altered mitophagy. Recent reports showed that also deletion of mitochondrial matrix peptidase ClpP in mice triggers transcriptional upregulation of inflammatory factors. Here, we studied ClpP-null mouse brain at two ages and mouse embryonal fibroblasts, to identify which signaling pathways are responsible, employing mass spectrometry, subcellular fractionation, immunoblots, and reverse transcriptase polymerase chain reaction. Several mitochondrial unfolded protein response factors showed accumulation and altered migration in blue-native gels, prominently the co-chaperone DNAJA3. Its mitochondrial dysregulation increased also its extra-mitochondrial abundance in the nucleus, a relevant observation given that DNAJA3 modulates innate immunity. Similar observations were made for STAT1, a putative DNAJA3 interactor. Elevated expression was observed not only for the transcription factors Stat1/2, but also for two interferon-stimulated genes (Ifi44, Gbp3). Inflammatory responses were strongest for the RLR pattern recognition receptors (Ddx58, Ifih1, Oasl2, Trim25) and several cytosolic nucleic acid sensors (Ifit1, Ifit3, Oas1b, Ifi204, Mnda). The consistent dysregulation of these factors from an early age might influence also human Perrault syndrome, where ClpP loss-of-function leads to early infertility and deafness, with subsequent widespread neurodegeneration.


Assuntos
Proteínas de Choque Térmico HSP40/metabolismo , Imunidade Inata/imunologia , Ácidos Nucleicos/metabolismo , Fator de Transcrição STAT1/metabolismo , Animais , Citosol/imunologia , Citosol/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/imunologia , Proteínas de Choque Térmico HSP40/imunologia , Camundongos , Mitocôndrias/genética , Mitocôndrias/imunologia , Ácidos Nucleicos/imunologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Fator de Transcrição STAT1/imunologia , Regulação para Cima
13.
Neurobiol Dis ; 152: 105289, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33577922

RESUMO

Large polyglutamine expansions in Ataxin-2 (ATXN2) cause multi-system nervous atrophy in Spinocerebellar Ataxia type 2 (SCA2). Intermediate size expansions carry a risk for selective motor neuron degeneration, known as Amyotrophic Lateral Sclerosis (ALS). Conversely, the depletion of ATXN2 prevents disease progression in ALS. Although ATXN2 interacts directly with RNA, and in ALS pathogenesis there is a crucial role of RNA toxicity, the affected functional pathways remain ill defined. Here, we examined an authentic SCA2 mouse model with Atxn2-CAG100-KnockIn for a first definition of molecular mechanisms in spinal cord pathology. Neurophysiology of lower limbs detected sensory neuropathy rather than motor denervation. Triple immunofluorescence demonstrated cytosolic ATXN2 aggregates sequestrating TDP43 and TIA1 from the nucleus. In immunoblots, this was accompanied by elevated CASP3, RIPK1 and PQBP1 abundance. RT-qPCR showed increase of Grn, Tlr7 and Rnaset2 mRNA versus Eif5a2, Dcp2, Uhmk1 and Kif5a decrease. These SCA2 findings overlap well with known ALS features. Similar to other ataxias and dystonias, decreased mRNA levels for Unc80, Tacr1, Gnal, Ano3, Kcna2, Elovl5 and Cdr1 contrasted with Gpnmb increase. Preterminal stage tissue showed strongly activated microglia containing ATXN2 aggregates, with parallel astrogliosis. Global transcriptome profiles from stages of incipient motor deficit versus preterminal age identified molecules with progressive downregulation, where a cluster of cholesterol biosynthesis enzymes including Dhcr24, Msmo1, Idi1 and Hmgcs1 was prominent. Gas chromatography demonstrated a massive loss of crucial cholesterol precursor metabolites. Overall, the ATXN2 protein aggregation process affects diverse subcellular compartments, in particular stress granules, endoplasmic reticulum and receptor tyrosine kinase signaling. These findings identify new targets and potential biomarkers for neuroprotective therapies.


Assuntos
Colesterol/biossíntese , Medula Espinal/patologia , Ataxias Espinocerebelares/patologia , Proteinopatias TDP-43/patologia , Animais , Ataxina-2 , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Camundongos , Medula Espinal/metabolismo , Ataxias Espinocerebelares/metabolismo , Proteinopatias TDP-43/metabolismo
14.
Neuropathol Appl Neurobiol ; 47(7): 1060-1079, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33974284

RESUMO

AIMS: Parkinson's disease (PD) is frequently associated with a prodromal sensory neuropathy manifesting with sensory loss and chronic pain. We have recently shown that PD-associated sensory neuropathy in patients is associated with high levels of glucosylceramides. Here, we assessed the underlying pathology and mechanisms in Pink1-/- SNCAA53T double mutant mice. METHODS: We studied nociceptive and olfactory behaviour and the neuropathology of dorsal root ganglia (DRGs), including ultrastructure, mitochondrial respiration, transcriptomes, outgrowth and calcium currents of primary neurons, and tissue ceramides and sphingolipids before the onset of a PD-like disease that spontaneously develops in Pink1-/- SNCAA53T double mutant mice beyond 15 months of age. RESULTS: Similar to PD patients, Pink1-/- SNCAA53T mice developed a progressive prodromal sensory neuropathy with a loss of thermal sensitivity starting as early as 4 months of age. In analogy to human plasma, lipid analyses revealed an accumulation of glucosylceramides (GlcCer) in the DRGs and sciatic nerves, which was associated with pathological mitochondria, impairment of mitochondrial respiration, and deregulation of transient receptor potential channels (TRPV and TRPA) at mRNA, protein and functional levels in DRGs. Direct exposure of DRG neurons to GlcCer caused transient hyperexcitability, followed by a premature decline of the viability of sensory neurons cultures upon repeated GlcCer application. CONCLUSIONS: The results suggest that pathological GlcCer contribute to prodromal sensory disease in PD mice via mitochondrial damage and calcium channel hyperexcitability. GlcCer-associated sensory neuron pathology might be amenable to GlcCer lowering therapeutic strategies.


Assuntos
Mutação/genética , Doença de Parkinson/genética , Proteínas Quinases/genética , alfa-Sinucleína/genética , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neurônios/patologia , Doença de Parkinson/patologia , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/patologia , Proteínas Quinases/deficiência , alfa-Sinucleína/metabolismo
15.
Mov Disord ; 36(6): 1372-1380, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33548146

RESUMO

BACKGROUND: Spinocerebellar ataxia type 2 is a progressive neurodegenerative disorder due to an unstable expansion of a CAG repeat in the ATXN2 gene. Although weight loss has been associated with disease progression in several neurodegenerative conditions, it has been barely assessed in patients with spinocerebellar ataxia type 2. OBJECTIVE: The objective of this study was to test whether body mass index is altered in patients with spinocerebellar ataxia type 2 with varying expansion sizes from early to late disease stages. METHODS: A cross-sectional case-control study was performed, which included 222 clinically and molecularly diagnosed patients and 214 sex- and age-matched healthy individuals. ATXN2 genotypes and sex were considered as risk factors. Clinical outcomes included the body mass index, age at onset, disease duration, Scale for the Assessment and Rating of Ataxia score, disease stage, dysphagia, and progression rate. Multiple linear regression models were generated. RESULTS: Body mass index was significantly decreased in male patients, but not in female patients, relative to control subjects. In addition to sex, body mass index was significantly associated with age at onset and progression rate. Conversely, body mass index, along with repeat length in ATXN2 expanded alleles and disease duration, was associated with Scale for the Assessment and Rating of Ataxia score. In addition, body mass index, along with the age at onset and the repeat length in ATXN2 normal and expanded alleles, has a significant influence on progression rate. CONCLUSIONS: Body mass index might be a useful biomarker of disease severity, particularly in male patients with spinocerebellar ataxia type 2 in the context of nutritional interventions or clinical trials assessing the efficacy of promising new drugs. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Ataxias Espinocerebelares , Índice de Massa Corporal , Estudos de Casos e Controles , Estudos Transversais , Feminino , Humanos , Masculino , Índice de Gravidade de Doença , Ataxias Espinocerebelares/genética
16.
Mov Disord ; 36(2): 471-480, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33107647

RESUMO

BACKGROUND: The search for valid preclinical biomarkers of cerebellar dysfunction is a key research goal for the upcoming era of early interventional approaches in spinocerebellar ataxias. This study aims to describe novel preclinical biomarkers of subtle gait and postural sway abnormalities in prodromal spinocerebellar ataxia type 2 (pre-SCA2). METHODS: Thirty pre-SCA2 patients and their matched healthy controls underwent quantitative assessments of gait and postural sway using a wearable sensor-based system and semiquantitative evaluation of cerebellar features by SARA (Scale for the Assessment and Rating of Ataxia) score. RESULTS: Quantitative analysis of natural gait showed a significantly larger variability of the swing period, toe-off angle and toe-out angle in pre-SCA2, and larger mean coronal and transverse ranges of motion of the trunk at the lumbar location and of the sagittal range of motion of the trunk at the sternum location compared to controls. During tandem gait, pre-SCA2 subjects showed larger lumbar, trunk, and arm ranges of motion than controls. Postural sway analysis showed excessive body oscillation that was increased in tandem stance. Overall, these abnormalities were detected in pre-SCA2 patients without clinical evidence of abnormalities in SARA. The toe-off angle and swing time variability were significantly correlated with the time to ataxia onset, whereas the toe-off angle and transverse range of motion at trunk position during tandem gait were significantly associated with the SARA score. CONCLUSIONS: This study demonstrates early alteration of gait and postural sway control in prodromal SCA2 using a wearable sensor-based system. This offers new pathophysiological hints into this early disease stage and provides novel potential biomarkers for future clinical trials. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Ataxias Espinocerebelares , Marcha , Humanos , Equilíbrio Postural , Ataxias Espinocerebelares/complicações
17.
Neurogenetics ; 21(3): 187-203, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32342250

RESUMO

Human RNF213, which encodes the protein mysterin, is a known susceptibility gene for moyamoya disease (MMD), a cerebrovascular condition with occlusive lesions and compensatory angiogenesis. Mysterin mutations, together with exposure to environmental trigger factors, lead to an elevated stroke risk since childhood. Mysterin is induced during cell stress, to function as cytosolic AAA+ ATPase and ubiquitylation enzyme. Little knowledge exists, in which context mysterin is needed. Here, we found that genetic ablation of several mitochondrial matrix factors, such as the peptidase ClpP, the transcription factor Tfam, as well as the peptidase and AAA+ ATPase Lonp1, potently induces Rnf213 transcript expression in various organs, in parallel with other components of the innate immune system. Mostly in mouse fibroblasts and human endothelial cells, the Rnf213 levels showed prominent upregulation upon Poly(I:C)-triggered TLR3-mediated responses to dsRNA toxicity, as well as upon interferon gamma treatment. Only partial suppression of Rnf213 induction was achieved by C16 as an antagonist of PKR (dsRNA-dependent protein kinase). Since dysfunctional mitochondria were recently reported to release immune-stimulatory dsRNA into the cytosol, our results suggest that mysterin becomes relevant when mitochondrial dysfunction or infections have triggered RNA-dependent inflammation. Thus, MMD has similarities with vasculopathies that involve altered nucleotide processing, such as Aicardi-Goutières syndrome or systemic lupus erythematosus. Furthermore, in MMD, the low penetrance of RNF213 mutations might be modified by dysfunctions in mitochondria or the TLR3 pathway.


Assuntos
Proteases Dependentes de ATP/genética , Adenosina Trifosfatases/genética , Proteínas de Ligação a DNA/genética , Endopeptidase Clp/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Doença de Moyamoya/genética , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Animais , Linhagem Celular Tumoral , Citosol/metabolismo , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Sistema Imunitário , Inflamação , Interferon gama/metabolismo , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Espectrometria de Massas , Camundongos , Mutação , Poli I-C , Dobramento de Proteína , Proteoma , RNA/metabolismo , Transcriptoma
18.
Mov Disord ; 35(10): 1822-1833, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32652698

RESUMO

BACKGROUND: Parkinson's disease (PD) causes chronic pain in two-thirds of patients, in part originating from sensory neuropathies. The aim of the present study was to describe the phenotype of PD-associated sensory neuropathy and to evaluate its associations with lipid allostasis, the latter motivated by recent genetic studies associating mutations of glucocerebrosidase with PD onset and severity. Glucocerebrosidase catalyzes the metabolism of glucosylceramides. METHODS: We used quantitative sensory tests, pain ratings, and questionnaires and analyzed plasma levels of multiple bioactive lipid species using targeted lipidomic analyses. The study comprised 2 sets of patients and healthy controls: the first 128 Israeli PD patients and 224 young German healthy controls for exploration, the second 50/50 German PD patients and matched healthy controls for deeper analyses. RESULTS: The data showed a 70% prevalence of PD pain and sensory neuropathies with a predominant phenotype of thermal sensory loss plus mechanical hypersensitivity. Multivariate analyses of lipids revealed major differences between PD patients and healthy controls, mainly originating from glucosylceramides and endocannabinoids. Glucosylceramides were increased, whereas anandamide and lysophosphatidic acid 20:4 were reduced, stronger in patients with ongoing pain and with a linear relationship with pain intensity and sensory losses, particularly for glucosylceramide 18:1 and glucosylceramide 24:1. CONCLUSIONS: Our data suggest that PD-associated sensory neuropathies and PD pain are in part caused by accumulations of glucosylceramides, raising the intriguing possibility of reducing PD pain and sensory loss by glucocerebrosidase substituting or refolding approaches. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Ácidos Araquidônicos , Endocanabinoides , Glucosilceramidas , Humanos , Dor , Doença de Parkinson/complicações , Alcamidas Poli-Insaturadas
19.
EMBO Rep ; 19(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29420235

RESUMO

Caseinolytic peptidase P (ClpP) is a mammalian quality control protease that is proposed to play an important role in the initiation of the mitochondrial unfolded protein response (UPRmt), a retrograde signaling response that helps to maintain mitochondrial protein homeostasis. Mitochondrial dysfunction is associated with the development of metabolic disorders, and to understand the effect of a defective UPRmt on metabolism, ClpP knockout (ClpP-/-) mice were analyzed. ClpP-/- mice fed ad libitum have reduced adiposity and paradoxically improved insulin sensitivity. Absence of ClpP increased whole-body energy expenditure and markers of mitochondrial biogenesis are selectively up-regulated in the white adipose tissue (WAT) of ClpP-/- mice. When challenged with a metabolic stress such as high-fat diet, despite similar caloric intake, ClpP-/- mice are protected from diet-induced obesity, glucose intolerance, insulin resistance, and hepatic steatosis. Our results show that absence of ClpP triggers compensatory responses in mice and suggest that ClpP might be dispensable for mammalian UPRmt initiation. Thus, we made an unexpected finding that deficiency of ClpP in mice is metabolically beneficial.


Assuntos
Endopeptidase Clp/genética , Resistência à Insulina/genética , Mitocôndrias/genética , Obesidade/genética , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Animais , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/genética , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Resposta a Proteínas não Dobradas/genética
20.
Int J Mol Sci ; 21(14)2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32698485

RESUMO

Depletion of yeast/fly Ataxin-2 rescues TDP-43 overexpression toxicity. In mouse models of Amyotrophic Lateral Sclerosis via TDP-43 overexpression, depletion of its ortholog ATXN2 mitigated motor neuron degeneration and extended lifespan from 25 days to >300 days. There is another ortholog in mammals, named ATXN2L (Ataxin-2-like), which is almost uncharacterized but also functions in RNA surveillance at stress granules. We generated mice with Crispr/Cas9-mediated deletion of Atxn2l exons 5-8, studying homozygotes prenatally and heterozygotes during aging. Our novel findings indicate that ATXN2L absence triggers mid-gestational embryonic lethality, affecting female animals more strongly. Weight and development stages of homozygous mutants were reduced. Placenta phenotypes were not apparent, but brain histology showed lamination defects and apoptosis. Aged heterozygotes showed no locomotor deficits or weight loss over 12 months. Null mutants in vivo displayed compensatory efforts to maximize Atxn2l expression, which were prevented upon nutrient abundance in vitro. Mouse embryonal fibroblast cells revealed more multinucleated giant cells upon ATXN2L deficiency. In addition, in human neural cells, transcript levels of ATXN2L were induced upon starvation and glucose and amino acids exposure, but this induction was partially prevented by serum or low cholesterol administration. Neither ATXN2L depletion triggered dysregulation of ATXN2, nor a converse effect was observed. Overall, this essential role of ATXN2L for embryogenesis raises questions about its role in neurodegenerative diseases and neuroprotective therapies.


Assuntos
Perda do Embrião/genética , Deleção de Genes , Camundongos/embriologia , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Perda do Embrião/patologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos/genética , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA