Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Pediatr Gastroenterol Nutr ; 72(1): 108-114, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32925554

RESUMO

OBJECTIVES: Autoimmune hepatitis (AIH) is a progressive liver disease managed with corticosteroids and immunosuppression and monitored using a combination of liver biochemistry and histology. However, liver biopsy is invasive with risk of pain and bleeding. The aim of the present study was to investigate the utility of noninvasive imaging with multiparametric magnetic resonance imaging (MRI) (mpMRI) to provide clinically useful information on the presence and extent of hepatic inflammation, potentially guiding immunosuppression. METHODS: Eighty-one participants (aged 6-18), 21 healthy and 60 AIH patients, underwent multiparametric MRI to measure fibro-inflammation with iron-corrected T1 (cT1) at the Children's Memorial Health Institute in Warsaw alongside other clinical blood tests and liver biopsy at recruitment and after an average of 16-month follow-up (range 9-22 months). Correlation analyses were used to investigate the associations between cT1 with blood serum markers and histological scores. RESULTS: At recruitment, patients with AIH had a higher cT1 value than healthy controls (P < 0.01). cT1 correlated significantly with key histopathological features of disease. Treatment naïve AIH patients showed evidence of inflammation and heterogeneity across the liver compared to healthy controls.At follow-up, cT1 showed utility in monitoring disease regression as most patients showed significantly reduced fibro-inflammation with treatment (P < 0.0001) over the observational period. Six patients had histological fibrosis and clear fibro-inflammation on MR despite biochemical remission (normalized aspartate aminotransferase (AST), alanine aminotransferase (ALT), and immunoglobulin G [IgG]). CONCLUSIONS: Multiparametric MRI can measure disease burden in pediatric AIH and can show changes over time in response to therapy. Active disease can be seen even in biochemical remission in children.


Assuntos
Hepatite Autoimune , Imageamento por Ressonância Magnética Multiparamétrica , Alanina Transaminase , Aspartato Aminotransferases , Criança , Hepatite Autoimune/diagnóstico por imagem , Humanos
2.
J Neurosci ; 38(33): 7327-7336, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30030397

RESUMO

Learning a novel motor skill is dependent both on regional changes within the primary motor cortex (M1) contralateral to the active hand and also on modulation between and within anatomically distant but functionally connected brain regions. Interregional changes are particularly important in functional recovery after stroke, when critical plastic changes underpinning behavioral improvements are observed in both ipsilesional and contralesional M1s. It is increasingly understood that reduction in GABA in the contralateral M1 is necessary to allow learning of a motor task. However, the physiological mechanisms underpinning plasticity within other brain regions, most importantly the ipsilateral M1, are not well understood. Here, we used concurrent two-voxel magnetic resonance spectroscopy to simultaneously quantify changes in neurochemicals within left and right M1s in healthy humans of both sexes in response to transcranial direct current stimulation (tDCS) applied to left M1. We demonstrated a decrease in GABA in both the stimulated (left) and nonstimulated (right) M1 after anodal tDCS, whereas a decrease in GABA was only observed in nonstimulated M1 after cathodal stimulation. This GABA decrease in the nonstimulated M1 during cathodal tDCS was negatively correlated with microstructure of M1:M1 callosal fibers, as quantified by diffusion MRI, suggesting that structural features of these fibers may mediate GABA decrease in the unstimulated region. We found no significant changes in glutamate. Together, these findings shed light on the interactions between the two major network nodes underpinning motor plasticity, offering a potential framework from which to optimize future interventions to improve motor function after stroke.SIGNIFICANCE STATEMENT Learning of new motor skills depends on modulation both within and between brain regions. Here, we use a novel two-voxel magnetic resonance spectroscopy approach to quantify GABA and glutamate changes concurrently within the left and right primary motor cortex (M1) during three commonly used transcranial direct current stimulation montages: anodal, cathodal, and bilateral. We also examined how the neurochemical changes in the unstimulated hemisphere were related to white matter microstructure between the two M1s. Our results provide insights into the neurochemical changes underlying motor plasticity and may therefore assist in the development of further adjunct therapies.


Assuntos
Córtex Motor/metabolismo , Destreza Motora/fisiologia , Estimulação Transcraniana por Corrente Contínua , Ácido gama-Aminobutírico/metabolismo , Adulto , Corpo Caloso/ultraestrutura , Imagem de Difusão por Ressonância Magnética , Dominância Cerebral , Feminino , Ácido Glutâmico/metabolismo , Humanos , Espectroscopia de Ressonância Magnética/métodos , Masculino , Córtex Motor/química , Córtex Motor/ultraestrutura , Fibras Nervosas Mielinizadas/ultraestrutura , Plasticidade Neuronal , Adulto Jovem
3.
BMC Cancer ; 18(1): 890, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30208871

RESUMO

BACKGROUND: Accurate assessment of liver health prior to undertaking resectional liver surgery or chemoembolisation for primary and secondary cancers is essential for patient safety and optimal outcomes. LiverMultiScan™, an MRI-based technology, non-invasively quantifies hepatic fibroinflammatory disease, steatosis and iron content. We hypothesise that LiverMultiScan™can quantify liver health prior to surgery and inform the risk assessment for patients considering liver surgery or chemoembolization and seek to evaluate this technology in an operational environment. METHODS/DESIGN: HepaT1ca is an observational cohort study in two tertiary-referral liver surgery centres in the United Kingdom. The primary outcome is correlation between the pre-operative liver health assessment score (Hepatica score - calculated by weighting future remnant liver volume by liver inflammation and fibrosis (LIF) score) and the post-operative liver function composite integer-based risk (Hyder-Pawlik) score. With ethical approval and fully-informed consent, individuals considering liver surgery for primary or secondary cancer will undergo clinical assessment, blood sampling, and LiverMultiScan™multiparametric MRI before and after surgical liver resection or TACE. In nested cohorts of individuals undergoing chemotherapy prior to surgery, or those undergoing portal vein embolization (PVE) as an adjunct to surgery, an additional testing session prior to commencement of treatment will occur. Tissue will be examined histologically and by immunohistochemistry. Pre-operative liver health assessment scores and the post-operative risk scores will be correlated to define the ability of LiverMultiScan™to predict the risk of post-operative morbidity and mortality. Because technology performance in this setting is unknown, a pragmatic sample size will be used. For the primary outcome, n = 200 for the main cohort will allow detection of a minimum correlation coefficient of 0.2 with 5% significance and power of 80%. DISCUSSION: This study will refine the technology and clinical application of multiparametric MRI (including LiverMultiScan™), to quantify pre-existing liver health and predict post-intervention outcomes following liver resection. If successful, this study will advance the technology and support the use of multiparametric MRI as part of an enhanced pre-operative assessment to improve patient safety and to personalise operative risk assessment of liver surgery/non-surgical intervention. TRIAL REGISTRATION: This study is registered on ClinicalTrials.gov Identifier: NCT03213314 .


Assuntos
Protocolos Clínicos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/metabolismo , Fígado/metabolismo , Cuidados Pré-Operatórios , Ensaios Clínicos como Assunto , Gerenciamento Clínico , Humanos , Fígado/patologia , Fígado/cirurgia , Testes de Função Hepática , Neoplasias Hepáticas/cirurgia , Imageamento por Ressonância Magnética
4.
NMR Biomed ; 28(7): 852-60, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25973740

RESUMO

The aim of this study was to acquire high-quality in vivo (1) H spectra concurrently from two voxels at ultra-high field (7 T) without specialized hardware. To this end, an acquisition scheme was developed in which first-order shims and flip angles are dynamically updated to acquire spectra from both of the brain's motor cortices in an alternating fashion. To validate this acquisition scheme, separate, static, single-voxel acquisitions were also performed for comparison. Six subjects were examined using semi-LASER spectroscopy at 7 T. Barium titanate pads were used to increase the extent of the effective transmit field (B1 (+) ). Spectra were obtained from the hand area of both motor cortices for both acquisition schemes. LCModel was used to determine neurochemical profiles in order to examine variations between acquisition schemes and volumes of interest. The dynamic two-voxel acquisition protocol produced water linewidths (full width at half-maximum between 11.6 and 12.8 Hz) and signal-to-noise ratios similar to those from static single-voxel measurements. The concentrations of 13 individual and 3 combined metabolites with Cramér-Rao lower bounds below 30% were reliably detected for both acquisition schemes, and agreed well with previous postmortem assay and spectroscopy studies. The results show that high spectral quality from two voxels can be acquired concurrently without specialized hardware. This practical technique can be applied to many neuroscience applications.


Assuntos
Algoritmos , Artefatos , Espectroscopia de Ressonância Magnética/métodos , Córtex Motor/metabolismo , Processamento de Sinais Assistido por Computador , Adulto , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
Neuroimage ; 85 Pt 3: 924-33, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23727528

RESUMO

Transcranial direct current stimulation (TDCS) of primary motor cortex (M1) can transiently improve paretic hand function in chronic stroke. However, responses are variable so there is incentive to try to improve efficacy and or to predict response in individual patients. Both excitatory (Anodal) stimulation of ipsilesional M1 and inhibitory (Cathodal) stimulation of contralesional M1 can speed simple reaction time. Here we tested whether combining these two effects simultaneously, by using a bilateral M1-M1 electrode montage, would improve efficacy. We tested the physiological efficacy of Bilateral, Anodal or Cathodal TDCS in changing motor evoked potentials (MEPs) in the healthy brain and their behavioural efficacy in changing reaction times with the paretic hand in chronic stroke. In addition, we aimed to identify clinical or neurochemical predictors of patients' behavioural response to TDCS. There were three main findings: 1) unlike Anodal and Cathodal TDCS, Bilateral M1-M1 TDCS (1 mA, 20 min) had no significant effect on MEPs in the healthy brain or on reaction time with the paretic hand in chronic stroke patients; 2) GABA levels in ipsilesional M1 predicted patients' behavioural gains from Anodal TDCS; and 3) although patients were in the chronic phase, time since stroke (and its combination with Fugl-Meyer score) was a positive predictor of behavioural gain from Cathodal TDCS. These findings indicate the superiority of Anodal or Cathodal over Bilateral TDCS in changing motor cortico-spinal excitability in the healthy brain and in speeding reaction time in chronic stroke. The identified clinical and neurochemical markers of behavioural response should help to inform the optimization of TDCS delivery and to predict patient outcome variability in future TDCS intervention studies in chronic motor stroke.


Assuntos
Terapia por Estimulação Elétrica/métodos , Potencial Evocado Motor/fisiologia , Córtex Motor/fisiopatologia , Plasticidade Neuronal/fisiologia , Reabilitação do Acidente Vascular Cerebral , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Mãos/fisiopatologia , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Córtex Motor/metabolismo , Tempo de Reação/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Estimulação Magnética Transcraniana , Adulto Jovem , Ácido gama-Aminobutírico/metabolismo
6.
Brain ; 135(Pt 1): 276-84, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22155982

RESUMO

Transcranial direct current stimulation, a form of non-invasive brain stimulation, is showing increasing promise as an adjunct therapy in rehabilitation following stroke. However, although significant behavioural improvements have been reported in proof-of-principle studies, the underlying mechanisms are poorly understood. The rationale for transcranial direct current stimulation as therapy for stroke is that therapeutic stimulation paradigms increase activity in ipsilesional motor cortical areas, but this has not previously been directly tested for conventional electrode placements. This study was performed to test directly whether increases in ipsilesional cortical activation with transcranial direct current stimulation are associated with behavioural improvements in chronic stroke patients. Patients at least 6 months post-first stroke participated in a behavioural experiment (n = 13) or a functional magnetic resonance imaging experiment (n = 11), each investigating the effects of three stimulation conditions in separate sessions: anodal stimulation to the ipsilesional hemisphere; cathodal stimulation to the contralesional hemisphere; and sham stimulation. Anodal (facilitatory) stimulation to the ipsilesional hemisphere led to significant improvements (5-10%) in response times with the affected hand in both experiments. This improvement was associated with an increase in movement-related cortical activity in the stimulated primary motor cortex and functionally interconnected regions. Cathodal (inhibitory) stimulation to the contralesional hemisphere led to a functional improvement only when compared with sham stimulation. We show for the first time that the significant behavioural improvements produced by anodal stimulation to the ipsilesional hemisphere are associated with a functionally relevant increase in activity within the ipsilesional primary motor cortex in patients with a wide range of disabilities following stroke.


Assuntos
Córtex Cerebral/fisiopatologia , Terapia por Estimulação Elétrica , Potencial Evocado Motor/fisiologia , Desempenho Psicomotor/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Força da Mão/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Tempo de Reação/fisiologia , Reabilitação do Acidente Vascular Cerebral
7.
Brain Stimul ; 15(5): 1153-1162, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35988862

RESUMO

BACKGROUND AND OBJECTIVE: Transcranial direct current stimulation (tDCS) has wide ranging applications in neuro-behavioural and physiological research, and in neurological rehabilitation. However, it is currently limited by substantial inter-subject variability in responses, which may be explained, at least in part, by anatomical differences that lead to variability in the electric field (E-field) induced in the cortex. Here, we tested whether the variability in the E-field in the stimulated cortex during anodal tDCS, estimated using computational simulations, explains the variability in tDCS induced changes in GABA, a neurophysiological marker of stimulation effect. METHODS: Data from five previously conducted MRS studies were combined. The anode was placed over the left primary motor cortex (M1, 3 studies, N = 24) or right temporal cortex (2 studies, N = 32), with the cathode over the contralateral supraorbital ridge. Single voxel spectroscopy was performed in a 2x2x2cm voxel under the anode in all cases. MRS data were acquired before and either during or after 1 mA tDCS using either a sLASER sequence (7T) or a MEGA-PRESS sequence (3T). sLASER MRS data were analysed using LCModel, and MEGA-PRESS using FID-A and Gannet. E-fields were simulated in a finite element model of the head, based on individual structural MR images, using SimNIBS. Separate linear mixed effects models were run for each E-field variable (mean and 95th percentile; magnitude, and components normal and tangential to grey matter surface, within the MRS voxel). The model included effects of time (pre or post tDCS), E-field, grey matter volume in the MRS voxel, and a 3-way interaction between time, E-field and grey matter volume. Additionally, we ran a permutation analysis using PALM to determine whether E-field anywhere in the brain, not just in the MRS voxel, correlated with GABA change. RESULTS: In M1, higher mean E-field magnitude was associated with greater anodal tDCS-induced decreases in GABA (t(24) = 3.24, p = 0.003). Further, the association between mean E-field magnitude and GABA change was moderated by the grey matter volume in the MRS voxel (t(24) = -3.55, p = 0.002). These relationships were consistent across all E-field variables except the mean of the normal component. No significant relationship was found between tDCS-induced GABA decrease and E-field in the temporal voxel. No significant clusters were found in the whole brain analysis. CONCLUSIONS: Our data suggest that the electric field induced by tDCS within the brain is variable, and is significantly related to anodal tDCS-induced decrease in GABA, a key neurophysiological marker of stimulation. These findings strongly support individualised dosing of tDCS, at least in M1. Further studies examining E-fields in relation to other outcome measures, including behaviour, will help determine the optimal E-fields required for any desired effects.


Assuntos
Córtex Motor , Estimulação Transcraniana por Corrente Contínua , Encéfalo/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Ácido gama-Aminobutírico
8.
PLoS One ; 14(4): e0214921, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30970039

RESUMO

As the burden of liver disease reaches epidemic levels, there is a high unmet medical need to develop robust, accurate and reproducible non-invasive methods to quantify liver tissue characteristics for use in clinical development and ultimately in clinical practice. This prospective cross-sectional study systematically examines the repeatability and reproducibility of iron-corrected T1 (cT1), T2*, and hepatic proton density fat fraction (PDFF) quantification with multiparametric MRI across different field strengths, scanner manufacturers and models. 61 adult participants with mixed liver disease aetiology and those without any history of liver disease underwent multiparametric MRI on combinations of 5 scanner models from two manufacturers (Siemens and Philips) at different field strengths (1.5T and 3T). We report high repeatability and reproducibility across different field strengths, manufacturers, and scanner models in standardized cT1 (repeatability CoV: 1.7%, bias -7.5ms, 95% LoA of -53.6 ms to 38.5 ms; reproducibility CoV 3.3%, bias 6.5 ms, 95% LoA of -76.3 to 89.2 ms) and T2* (repeatability CoV: 5.5%, bias -0.18 ms, 95% LoA -5.41 to 5.05 ms; reproducibility CoV 6.6%, bias -1.7 ms, 95% LoA -6.61 to 3.15 ms) in human measurements. PDFF repeatability (0.8%) and reproducibility (0.75%) coefficients showed high precision of this metric. Similar precision was observed in phantom measurements. Inspection of the ICC model indicated that most of the variance in cT1 could be accounted for by study participants (ICC = 0.91), with minimal contribution from technical differences. We demonstrate that multiparametric MRI is a non-invasive, repeatable and reproducible method for quantifying liver tissue characteristics across manufacturers (Philips and Siemens) and field strengths (1.5T and 3T).


Assuntos
Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética Multiparamétrica/instrumentação , Imageamento por Ressonância Magnética Multiparamétrica/estatística & dados numéricos , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Imagens de Fantasmas/normas , Estudos Prospectivos , Reprodutibilidade dos Testes , Adulto Jovem
9.
Elife ; 4: e08789, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26381352

RESUMO

We previously demonstrated that network level functional connectivity in the human brain could be related to levels of inhibition in a major network node at baseline (Stagg et al., 2014). In this study, we build upon this finding to directly investigate the effects of perturbing M1 GABA and resting state functional connectivity using transcranial direct current stimulation (tDCS), a neuromodulatory approach that has previously been demonstrated to modulate both metrics. FMRI data and GABA levels, as assessed by Magnetic Resonance Spectroscopy, were measured before and after 20 min of 1 mA anodal or sham tDCS. In line with previous studies, baseline GABA levels were negatively correlated with the strength of functional connectivity within the resting motor network. However, although we confirm the previously reported findings that anodal tDCS reduces GABA concentration and increases functional connectivity in the stimulated motor cortex; these changes are not correlated, suggesting they may be driven by distinct underlying mechanisms.


Assuntos
Córtex Motor/fisiologia , Estimulação Transcraniana por Corrente Contínua , Ácido gama-Aminobutírico/análise , Adulto , Feminino , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
10.
Elife ; 3: e01465, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24668166

RESUMO

Anatomically plausible networks of functionally inter-connected regions have been reliably demonstrated at rest, although the neurochemical basis of these 'resting state networks' is not well understood. In this study, we combined magnetic resonance spectroscopy (MRS) and resting state fMRI and demonstrated an inverse relationship between levels of the inhibitory neurotransmitter GABA within the primary motor cortex (M1) and the strength of functional connectivity across the resting motor network. This relationship was both neurochemically and anatomically specific. We then went on to show that anodal transcranial direct current stimulation (tDCS), an intervention previously shown to decrease GABA levels within M1, increased resting motor network connectivity. We therefore suggest that network-level functional connectivity within the motor system is related to the degree of inhibition in M1, a major node within the motor network, a finding in line with converging evidence from both simulation and empirical studies. DOI: http://dx.doi.org/10.7554/eLife.01465.001.


Assuntos
Córtex Motor/metabolismo , Rede Nervosa/metabolismo , Inibição Neural , Neurônios/metabolismo , Ácido gama-Aminobutírico/metabolismo , Adulto , Idoso , Mapeamento Encefálico/métodos , Regulação para Baixo , Feminino , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Córtex Motor/citologia , Rede Nervosa/citologia , Estimulação Transcraniana por Corrente Contínua , Adulto Jovem
11.
Curr Biol ; 21(6): 480-4, 2011 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-21376596

RESUMO

GABA modification plays an important role in motor cortical plasticity. We therefore hypothesized that interindividual variation in the responsiveness of the GABA system to modification influences learning capacity in healthy adults. We assessed GABA responsiveness by transcranial direct current stimulation (tDCS), an intervention known to decrease GABA. The magnitude of M1 GABA decrease induced by anodal tDCS correlated positively with both the degree of motor learning and the degree of fMRI signal change within the left M1 during learning. This study therefore suggests that the responsiveness of the GABAergic system to modification may be relevant to short-term motor learning behavior and learning-related brain activity.


Assuntos
Aprendizagem/fisiologia , Atividade Motora/fisiologia , Córtex Motor/fisiologia , Ácido gama-Aminobutírico/metabolismo , Adulto , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Estimulação Encefálica Profunda , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino
12.
Commun Integr Biol ; 4(5): 573-5, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22046466

RESUMO

A number of recent papers1-3 have demonstrated a relationship between in vivo concentration of GABA, as assessed using Magnetic Resonance Spectroscopy (MRS), and an individual's task performance, giving a unique insight into the relationship between physiology and behavior. However, interpretation of the functional significance of the MRS GABA measure is not straightforward. Here we discuss some of the outstanding questions as to how total concentration of GABA within a cortical region relates to phasic and tonic GABA activity within the cortical volume studied.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA