Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 27(Pt 1): 1-10, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31868729

RESUMO

A new visualization tool, Cinema:Bandit, and its demonstration with a continuous workflow for analyzing shock physics experiments and visually exploring the data in real time at X-ray light sources is presented. Cinema:Bandit is an open-source, web-based visualization application in which the experimenter may explore an aggregated dataset to inform real-time beamline decisions and enable post hoc data analysis. The tool integrates with experimental workflows that process raw detector data into a simple database format, and it allows visualization of disparate data types, including experimental parameters, line graphs, and images. Use of parallel coordinates accommodates the irregular sampling of experimental parameters and allows for display and filtering of both experimental inputs and measurements. The tool is demonstrated on a dataset of shock-compressed titanium collected at the Matter in Extreme Conditions hutch at the Linac Coherent Light Source.

2.
J Phys Chem A ; 124(35): 7031-7046, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32786976

RESUMO

Thin films of pentaerythritol tetranitrate (PETN) were shock compressed using the laser driven shock apparatus at Los Alamos National Laboratory (LANL). Two spectroscopic probes were available to this apparatus: visible white light transient absorption spectroscopy (VIS) from 400 to 700 nm and mid-infrared transient absorption spectroscopy (MIR) from 1150 to 3800 cm-1. Important PETN vibrational modes are the symmetric and antisymmetric NO2 stretches at 1280 and 1650 cm-1, respectively, as well as CH stretches at ∼2900 cm-1. Shock strength was varied from approximately 3 to 55 GPa to span from the chemically unreactive regime to the regime in which fast chemical reaction took place on the 250 ps time scale of the measurements. VIS and MIR results suggest irreversible chemistry was induced in PETN at pressures above 30 GPa. At lower shock pressures, the spectroscopy showed minimal changes attributable to pressure induced effects. Under the higher-pressure reactive conditions, the frequency region at the antisymmetric NO2 stretch mode had a significantly increased absorption while the region around the symmetric NO2 stretch did not. No observable increased absorption occurred in the higher frequency regions where CH-, NH-, and OH- bond absorptions would be observed. A broad absorption appeared on the shoulder at the red-edge of the CO2 vibrational band around 2200 cm-1. In addition to the experiments, reactive molecular dynamics were carried out under equivalent shock conditions to correlate the evolution of the infrared spectrum to molecular processes. The simulations show results consistent to experiments up to 30 GPa but suggest that NO and NO2 related features provided the strongest contributions to the shocked infrared changes. Proposed mechanisms for shocked PETN chemistry are analyzed as consistent or inconsistent with the data presented here. Our experimental data suggests C≡O or N2O bond formation, nitrite formation, and absence of significant hydroxyl or amine concentrations in the initial chemistry steps in PETN shocked above 30 GPa.

3.
Phys Rev Lett ; 122(25): 255704, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31347883

RESUMO

Ultrafast x-ray diffraction at the LCLS x-ray free electron laser has been used to resolve the structural behavior of antimony under shock compression to 59 GPa. Antimony is seen to transform to the incommensurate, host-guest phase Sb-II at ∼11 GPa, which forms on nanosecond timescales with ordered guest-atom chains. The high-pressure bcc phase Sb-III is observed above ∼15 GPa, some 8 GPa lower than in static compression studies, and mixed Sb-III/liquid diffraction are obtained between 38 and 59 GPa. An additional phase which does not exist under static compression, Sb-I^{'}, is also observed between 8 and 12 GPa, beyond the normal stability field of Sb-I, and resembles Sb-I with a resolved Peierls distortion. The incommensurate Sb-II high-pressure phase can be recovered metastably on release to ambient pressure, where it is stable for more than 10 ns.

4.
Phys Rev Lett ; 123(24): 245501, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31922830

RESUMO

We present molecular dynamics simulations of shock and release in micron-scale tantalum crystals that exhibit postbreakout temperatures far exceeding those expected under the standard assumption of isentropic release. We show via an energy-budget analysis that this is due to plastic-work heating from material strength that largely counters thermoelastic cooling. The simulations are corroborated by experiments where the release temperatures of laser-shocked tantalum foils are deduced from their thermal strains via in situ x-ray diffraction and are found to be close to those behind the shock.

5.
Phys Rev Lett ; 120(26): 265502, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-30004719

RESUMO

We have used femtosecond x-ray diffraction to study laser-shocked fiber-textured polycrystalline tantalum targets as the 37-253 GPa shock waves break out from the free surface. We extract the time and depth-dependent strain profiles within the Ta target as the rarefaction wave travels back into the bulk of the sample. In agreement with molecular dynamics simulations, the lattice rotation and the twins that are formed under shock compression are observed to be almost fully eliminated by the rarefaction process.

6.
Phys Rev Lett ; 119(2): 025701, 2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-28753373

RESUMO

Time-resolved x-ray diffraction (XRD) of compressed liquid water shows transformation to ice VII in 6 nsec, revealing crystallization rather than amorphous solidification during compression freezing. Application of classical nucleation theory indicates heterogeneous nucleation and one-dimensional (e.g., needlelike) growth. These first XRD data demonstrate rapid growth kinetics of ice VII with implications for fundamental physics of diffusion-mediated crystallization and thermodynamic modeling of collision or impact events on ice-rich planetary bodies.

7.
Phys Rev Lett ; 118(2): 025501, 2017 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-28128621

RESUMO

Using x-ray diffraction at the Linac Coherent Light Source x-ray free-electron laser, we have determined simultaneously and self-consistently the phase transitions and equation of state (EOS) of the lightest transition metal, scandium, under shock compression. On compression scandium undergoes a structural phase transition between 32 and 35 GPa to the same bcc structure seen at high temperatures at ambient pressures, and then a further transition at 46 GPa to the incommensurate host-guest polymorph found above 21 GPa in static compression at room temperature. Shock melting of the host-guest phase is observed between 53 and 72 GPa with the disappearance of Bragg scattering and the growth of a broad asymmetric diffraction peak from the high-density liquid.

8.
J Phys Chem A ; 121(1): 238-243, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-27997195

RESUMO

An equation of state for the energetic molecular crystal pentaerythritol tetranitrate (PETN) has been developed from a parametrized model for its Helmholtz free energy. The ion motion contribution to the free energy is represented by a sum of Debye models for the vibrational modes of mainly lattice phonon and intramolecular character. The dependence of the frequencies of the normal modes on density is captured using the quasi-harmonic approximation whereby the Debye temperatures for both populations of modes depend explicitly on specific volume. The dependence of the Debye temperatures on specific volume was parametrized to normal-mode frequencies computed from solid state dispersion-corrected density functional theory. The model provides a good description of the thermophysical properties of PETN. The equation of state has been applied to the calculation of thermodynamic states along the principal Hugoniot of single crystal PETN.

9.
J Phys Chem A ; 120(6): 895-902, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26797486

RESUMO

High explosives that are photoactive, i.e., can be initiated with light, offer significant advantages in reduced potential for accidental electrical initiation. We examined a series of structurally related tetrazine based photoactive high explosive materials to detail their photochemical and photophysical properties. Using photobleaching infrared absorption, we determined quantum yields of photochemistry for nanosecond pulsed excitation at 355 and 532 nm. Changes in mass spectrometry during laser irradiation in vacuum measured the evolution of gaseous products. Fluorescence spectra, quantum yields, and lifetimes were measured to observe radiative channels of energy decay that compete with photochemistry. For the 6 materials studied, quantum yields of photochemistry ranged from <10(-5) to 0.03 and quantum yield of fluorescence ranged from <10(-3) to 0.33. In all cases, the photoexcitation nonradiatively relaxed primarily to heat, appropriate for supporting photothermal initiation processes. The photochemistry observed was dominated by ring scission of the tetrazine, but there was evidence of more extensive multistep reactions as well.

10.
J Phys Chem A ; 116(42): 10301-9, 2012 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-22992159

RESUMO

The response to ultrafast laser shock loading of nine liquids was monitored in an effort to reveal evidence of chemical changes occurring during the first 350 ps following the shock front. In an effort to compare molecular structures possessing a variety of common bonding patterns, data were acquired for the liquids: cyclohexane, cyclohexene, 1,3-cyclohexadiene, benzene, water, acetonitrile, acrylonitrile, tert-butylacetylene, and phenylacetylene. Transient absorption spectra were measured in the spectral region from 440 to 780 nm over shock stress states from 7 to 20 GPa. Ultrafast dynamic ellipsometry was used to measure the shock and particle velocity as well as the shocked refractive index. Significant transient absorption attributed to chemical reaction was observed for shocked phenylacetylene and acrylonitrile. Evidence of volume decreasing chemical reactions was also observed in the ultrafast dynamic ellipsometry data for phenylacetylene and acrylonitrile. The liquid 1,3-cyclohexadiene exhibited volume decreasing reaction in the ultrafast dynamic ellipsometry data but did not exhibit an increase in the transient absorption spectra. There was no evidence of chemical reaction in cyclohexane, cyclohexene, benzene, water, acetonitrile, or tert-butylacetylene in the first 350 ps, despite the application of shock stress that was in many cases well above the reaction threshold observed at microsecond time scales.

11.
Sci Rep ; 12(1): 715, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027608

RESUMO

Recent discoveries of water-rich Neptune-like exoplanets require a more detailed understanding of the phase diagram of H2O at pressure-temperature conditions relevant to their planetary interiors. The unusual non-dipolar magnetic fields of ice giant planets, produced by convecting liquid ionic water, are influenced by exotic high-pressure states of H2O-yet the structure of ice in this state is challenging to determine experimentally. Here we present X-ray diffraction evidence of a body-centered cubic (BCC) structured H2O ice at 200 GPa and ~ 5000 K, deemed ice XIX, using the X-ray Free Electron Laser of the Linac Coherent Light Source to probe the structure of the oxygen sub-lattice during dynamic compression. Although several cubic or orthorhombic structures have been predicted to be the stable structure at these conditions, we show this BCC ice phase is stable to multi-Mbar pressures and temperatures near the melt boundary. This suggests variable and increased electrical conductivity to greater depths in ice giant planets that may promote the generation of multipolar magnetic fields.

12.
Nat Commun ; 13(1): 5535, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36130983

RESUMO

Silicon (Si) is one of the most abundant elements on Earth, and it is the most widely used semiconductor. Despite extensive study, some properties of Si, such as its behaviour under dynamic compression, remain elusive. A detailed understanding of Si deformation is crucial for various fields, ranging from planetary science to materials design. Simulations suggest that in Si the shear stress generated during shock compression is released via a high-pressure phase transition, challenging the classical picture of relaxation via defect-mediated plasticity. However, direct evidence supporting either deformation mechanism remains elusive. Here, we use sub-picosecond, highly-monochromatic x-ray diffraction to study (100)-oriented single-crystal Si under laser-driven shock compression. We provide the first unambiguous, time-resolved picture of Si deformation at ultra-high strain rates, demonstrating the predicted shear release via phase transition. Our results resolve the longstanding controversy on silicon deformation and provide direct proof of strain rate-dependent deformation mechanisms in a non-metallic system.

13.
Phys Rev Lett ; 107(4): 043001, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21866997

RESUMO

We demonstrate the capability of femtosecond stimulated Raman scattering (FSRS) data to measure the temperature of condensed matter at the molecular vibrational level. We report the temperature dependence of Raman loss to Raman gain ratios for low frequency modes (<300 cm(-1)) in a CaCO3 single crystal from cryogenic to room temperature, which is shown to be in agreement with theoretical predictions. We also report the measurements of nonequilibrium time evolution of mode specific vibrational temperatures in the CaCO3 single crystal to demonstrate that FSRS can measure temperature on picosecond time scales. Finally, we point out the unique origin of this temperature dependent anti-Stokes to Stokes ratio in stimulated Raman, which is not present in other coherent Raman spectroscopies. These measurements require no material dependent parameters or prior calibration.

14.
Sci Rep ; 10(1): 13172, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764631

RESUMO

Laser compression has long been used as a method to study solids at high pressure. This is commonly achieved by sandwiching a sample between two diamond anvils and using a ramped laser pulse to slowly compress the sample, while keeping it cool enough to stay below the melt curve. We demonstrate a different approach, using a multilayer 'ring-up' target whereby laser-ablation pressure compresses Pb up to 150 GPa while keeping it solid, over two times as high in pressure than where it would shock melt on the Hugoniot. We find that the efficiency of this approach compares favourably with the commonly used diamond sandwich technique and could be important for new facilities located at XFELs and synchrotrons which often have higher repetition rate, lower energy lasers which limits the achievable pressures that can be reached.

15.
Rev Sci Instrum ; 90(6): 063001, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31254979

RESUMO

Common Ti:sapphire chirped pulse amplified laser systems can be readily adapted to be both a generator of adjustable pressure shock waves and a source for multiple probes of the ensuing ultrafast shock dynamics. In this paper, we detail experimental considerations for optimizing the shock generation, interferometric characterization, and spectroscopic probing of shock dynamics with visible and mid-infrared transient absorption. While we have reported results using these techniques elsewhere, here we detail how the spectroscopies are integrated with the shock and interferometry experiment. The interferometric characterization uses information from beams at multiple polarizations and angles of incidence combined with thin film equations and shock dynamics to determine the shock velocity, particle velocity, and shocked refractive index. Visible transient absorption spectroscopy uses a white light supercontinuum in a reflection geometry, synchronized to the shock wave, to time resolve shock-induced changes in visible absorption such as changes to electronic structure or strongly absorbing products and intermediates due to reaction. Mid-infrared transient absorption spectroscopy uses two color filamentation supercontinuum generation combined with a simple thermal imaging microbolometer spectrometer to enable broadband single shot detection of changes in the vibrational spectra. These methods are demonstrated here in the study of shock dynamics at stresses from 5 to 30 GPa in organic materials and from a few GPa to >70 GPa in metals with spatial resolution of a few micrometers and temporal resolution of a few picoseconds. This experiment would be possible to replicate in any ultrafast laser laboratory containing a single bench top commercial chirped pulse amplification laser system.

16.
Sci Rep ; 8(1): 16927, 2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30446720

RESUMO

Bismuth has long been a prototypical system for investigating phase transformations and melting at high pressure. Despite decades of experimental study, however, the lattice-level response of Bi to rapid (shock) compression and the relationship between structures occurring dynamically and those observed during slow (static) compression, are still not clearly understood. We have determined the structural response of shock-compressed Bi to 68 GPa using femtosecond X-ray diffraction, thereby revealing the phase transition sequence and equation-of-state in unprecedented detail for the first time. We show that shocked-Bi exhibits a marked departure from equilibrium behavior - the incommensurate Bi-III phase is not observed, but rather a new metastable phase, and the Bi-V phase is formed at significantly lower pressures compared to static compression studies. We also directly measure structural changes in a shocked liquid for the first time. These observations reveal new behaviour in the solid and liquid phases of a shocked material and give important insights into the validity of comparing static and dynamic datasets.

17.
Nat Commun ; 8(1): 1481, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29133910

RESUMO

Understanding how rock-forming minerals transform under shock loading is critical for modeling collisions between planetary bodies, interpreting the significance of shock features in minerals and for using them as diagnostic indicators of impact conditions, such as shock pressure. To date, our understanding of the formation processes experienced by shocked materials is based exclusively on ex situ analyses of recovered samples. Formation mechanisms and origins of commonly observed mesoscale material features, such as diaplectic (i.e., shocked) glass, remain therefore controversial and unresolvable. Here we show in situ pump-probe X-ray diffraction measurements on fused silica crystallizing to stishovite on shock compression and then converting to an amorphous phase on shock release in only 2.4 ns from 33.6 GPa. Recovered glass fragments suggest permanent densification. These observations of real-time diaplectic glass formation attest that it is a back-transformation product of stishovite with implications for revising traditional shock metamorphism stages.

18.
Rev Sci Instrum ; 86(4): 043112, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25933846

RESUMO

A normal-incidence visible and near-infrared shock wave optical reflectivity diagnostic was constructed to investigate changes in the optical properties of materials under dynamic laser compression. Documenting wavelength- and time-dependent changes in the optical properties of laser-shock compressed samples has been difficult, primarily due to the small sample sizes and short time scales involved, but we succeeded in doing so by broadening a series of time delayed 800-nm pulses from an ultrafast Ti:sapphire laser to generate high-intensity broadband light at nanosecond time scales. This diagnostic was demonstrated over the wavelength range 450-1150 nm with up to 16 time displaced spectra during a single shock experiment. Simultaneous off-normal incidence velocity interferometry (velocity interferometer system for any reflector) characterized the sample under laser-compression and also provided an independent reflectivity measurement at 532 nm wavelength. The shock-driven semiconductor-to-metallic transition in germanium was documented by the way of reflectivity measurements with 0.5 ns time resolution and a wavelength resolution of 10 nm.

19.
Nat Commun ; 6: 8191, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26337754

RESUMO

Pressure- and temperature-induced phase transitions have been studied for more than a century but very little is known about the non-equilibrium processes by which the atoms rearrange. Shock compression generates a nearly instantaneous propagating high-pressure/temperature condition while in situ X-ray diffraction (XRD) probes the time-dependent atomic arrangement. Here we present in situ pump-probe XRD measurements on shock-compressed fused silica, revealing an amorphous to crystalline high-pressure stishovite phase transition. Using the size broadening of the diffraction peaks, the growth of nanocrystalline stishovite grains is resolved on the nanosecond timescale just after shock compression. At applied pressures above 18 GPa the nuclueation of stishovite appears to be kinetically limited to 1.4±0.4 ns. The functional form of this grain growth suggests homogeneous nucleation and attachment as the growth mechanism. These are the first observations of crystalline grain growth in the shock front between low- and high-pressure states via XRD.

20.
Rev Sci Instrum ; 85(6): 063115, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24985807

RESUMO

Previous velocity interferometers used at research laboratories for shock physics experiments measured target motion at a point or many points on a line on the target. Recently, a two-dimensional (2d) version (2d-velocity interferometer system for any reflector) has been demonstrated using a pair of ultrashort (3 ps) pulses for illumination, separated by 268 ps. We have discovered new abilities for this instrument, by treating the complex output image as a hologram. For data taken in an out of focus configuration, we can Fourier process to bring narrow features such as cracks into sharp focus, which are otherwise completely blurred. This solves a practical problem when using high numerical aperture optics having narrow depth of field to observe moving surface features such as cracks. Furthermore, theory predicts that the target appearance (position and reflectivity) at two separate moments in time are recorded by the main and conjugate images of the same hologram, and are partially separable during analysis for narrow features. Hence, for the cracks we bring into refocus, we can make a two-frame movie with a subnanosecond frame period. Longer and shorter frame periods are possible with different interferometer delays. Since the megapixel optical detectors we use have superior spatial resolution over electronic beam based framing cameras, this technology could be of great use in studying microscopic three-dimensional-behavior of targets at ultrafast times scales. Demonstrations on shocked silicon are shown.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA