Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Mol Cell ; 80(6): 1092-1103.e4, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33248025

RESUMO

The nucleocapsid (N) protein of coronaviruses serves two major functions: compaction of the RNA genome in the virion and regulation of viral gene transcription. It is not clear how the N protein mediates such distinct functions. The N protein contains two RNA-binding domains surrounded by regions of intrinsic disorder. Phosphorylation of the central disordered region promotes the protein's transcriptional function, but the underlying mechanism is not known. Here, we show that the N protein of SARS-CoV-2, together with viral RNA, forms biomolecular condensates. Unmodified N protein forms partially ordered gel-like condensates and discrete 15-nm particles based on multivalent RNA-protein and protein-protein interactions. Phosphorylation reduces these interactions, generating a more liquid-like droplet. We propose that distinct oligomeric states support the two functions of the N protein: unmodified protein forms a structured oligomer that is suited for nucleocapsid assembly, and phosphorylated protein forms a liquid-like compartment for viral genome processing.


Assuntos
COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus/química , Multimerização Proteica , RNA Viral/química , SARS-CoV-2/química , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Humanos , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Domínios Proteicos , RNA Viral/genética , RNA Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo
2.
Am J Hum Genet ; 109(4): 669-679, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35263625

RESUMO

One mechanism by which genetic factors influence complex traits and diseases is altering gene expression. Direct measurement of gene expression in relevant tissues is rarely tenable; however, genetically regulated gene expression (GReX) can be estimated using prediction models derived from large multi-omic datasets. These approaches have led to the discovery of many gene-trait associations, but whether models derived from predominantly European ancestry (EA) reference panels can map novel associations in ancestrally diverse populations remains unclear. We applied PrediXcan to impute GReX in 51,520 ancestrally diverse Population Architecture using Genomics and Epidemiology (PAGE) participants (35% African American, 45% Hispanic/Latino, 10% Asian, and 7% Hawaiian) across 25 key cardiometabolic traits and relevant tissues to identify 102 novel associations. We then compared associations in PAGE to those in a random subset of 50,000 White British participants from UK Biobank (UKBB50k) for height and body mass index (BMI). We identified 517 associations across 47 tissues in PAGE but not UKBB50k, demonstrating the importance of diverse samples in identifying trait-associated GReX. We observed that variants used in PrediXcan models were either more or less differentiated across continental-level populations than matched-control variants depending on the specific population reflecting sampling bias. Additionally, variants from identified genes specific to either PAGE or UKBB50k analyses were more ancestrally differentiated than those in genes detected in both analyses, underlining the value of population-specific discoveries. This suggests that while EA-derived transcriptome imputation models can identify new associations in non-EA populations, models derived from closely matched reference panels may yield further insights. Our findings call for more diversity in reference datasets of tissue-specific gene expression.


Assuntos
Doenças Cardiovasculares , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença , Humanos , Estilo de Vida , Polimorfismo de Nucleotídeo Único , Transcriptoma
3.
Genes Dev ; 31(8): 802-815, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28487408

RESUMO

Post-translational modification by SUMO (small ubiquitin-like modifier) plays important but still poorly understood regulatory roles in eukaryotic cells, including as a signal for ubiquitination by SUMO targeted ubiquitin ligases (STUbLs). Here, we delineate the molecular mechanisms for SUMO-dependent control of ribosomal DNA (rDNA) silencing through the opposing actions of a STUbL (Slx5:Slx8) and a SUMO isopeptidase (Ulp2). We identify a conserved region in the Ulp2 C terminus that mediates its specificity for rDNA-associated proteins and show that this region binds directly to the rDNA-associated protein Csm1. Two crystal structures show that Csm1 interacts with Ulp2 and one of its substrates, the rDNA silencing protein Tof2, through adjacent conserved interfaces in its C-terminal domain. Disrupting Csm1's interaction with either Ulp2 or Tof2 dramatically reduces rDNA silencing and causes a marked drop in Tof2 abundance, suggesting that Ulp2 promotes rDNA silencing by opposing STUbL-mediated degradation of silencing proteins. Tof2 abundance is rescued by deletion of the STUbL SLX5 or disruption of its SUMO-interacting motifs, confirming that Tof2 is targeted for degradation in a SUMO- and STUbL-dependent manner. Overall, our results demonstrate how the opposing actions of a localized SUMO isopeptidase and a STUbL regulate rDNA silencing by controlling the abundance of a key rDNA silencing protein, Tof2.


Assuntos
DNA Ribossômico/metabolismo , Endopeptidases/química , Endopeptidases/metabolismo , Inativação Gênica , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Motivos de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Nucléolo Celular/metabolismo , Cristalização , Endopeptidases/genética , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína , Proteólise , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/química , Sumoilação , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
4.
J Biol Chem ; 299(12): 105362, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37863261

RESUMO

The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) compacts the RNA genome into viral ribonucleoprotein (vRNP) complexes within virions. Assembly of vRNPs is inhibited by phosphorylation of the N protein serine/arginine (SR) region. Several SARS-CoV-2 variants of concern carry N protein mutations that reduce phosphorylation and enhance the efficiency of viral packaging. Variants of the dominant B.1.1 viral lineage also encode a truncated N protein, termed N∗ or Δ(1-209), that mediates genome packaging despite lacking the N-terminal RNA-binding domain and SR region. Here, we use mass photometry and negative stain electron microscopy to show that purified Δ(1-209) and viral RNA assemble into vRNPs that are remarkably similar in size and shape to those formed with full-length N protein. We show that assembly of Δ(1-209) vRNPs requires the leucine-rich helix of the central disordered region and that this helix promotes N protein oligomerization. We also find that fusion of a phosphomimetic SR region to Δ(1-209) inhibits RNA binding and vRNP assembly. Our results provide new insights into the mechanisms by which RNA binding promotes N protein self-association and vRNP assembly, and how this process is modulated by phosphorylation.


Assuntos
Proteínas do Nucleocapsídeo , SARS-CoV-2 , Humanos , COVID-19/virologia , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Proteínas do Nucleocapsídeo/ultraestrutura , RNA Viral/metabolismo , RNA Viral/ultraestrutura , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/ultraestrutura , Fosforilação , Montagem de Vírus/genética
5.
Nat Mater ; 22(4): 511-523, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36928381

RESUMO

Activated B-cell-like diffuse large B-cell lymphomas (ABC-DLBCLs) are characterized by constitutive activation of nuclear factor κB driven by the B-cell receptor (BCR) and Toll-like receptor (TLR) pathways. However, BCR-pathway-targeted therapies have limited impact on DLBCLs. Here we used >1,100 DLBCL patient samples to determine immune and extracellular matrix cues in the lymphoid tumour microenvironment (Ly-TME) and built representative synthetic-hydrogel-based B-cell-lymphoma organoids accordingly. We demonstrate that Ly-TME cellular and biophysical factors amplify the BCR-MYD88-TLR9 multiprotein supercomplex and induce cooperative signalling pathways in ABC-DLBCL cells, which reduce the efficacy of compounds targeting the BCR pathway members Bruton tyrosine kinase and mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1). Combinatorial inhibition of multiple aberrant signalling pathways induced higher antitumour efficacy in lymphoid organoids and implanted ABC-DLBCL patient tumours in vivo. Our studies define the complex crosstalk between malignant ABC-DLBCL cells and Ly-TME, and provide rational combinatorial therapies that rescue Ly-TME-mediated attenuation of treatment response to MALT1 inhibitors.


Assuntos
Linfoma Difuso de Grandes Células B , Microambiente Tumoral , Humanos , Linhagem Celular Tumoral , Transdução de Sinais , NF-kappa B/metabolismo , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/metabolismo , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo
6.
J Biol Chem ; 298(11): 102560, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36202211

RESUMO

The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 is responsible for compaction of the ∼30-kb RNA genome in the ∼90-nm virion. Previous studies suggest that each virion contains 35 to 40 viral ribonucleoprotein (vRNP) complexes, or ribonucleosomes, arrayed along the genome. There is, however, little mechanistic understanding of the vRNP complex. Here, we show that N protein, when combined in vitro with short fragments of the viral genome, forms 15-nm particles similar to the vRNP structures observed within virions. These vRNPs depend on regions of N protein that promote protein-RNA and protein-protein interactions. Phosphorylation of N protein in its disordered serine/arginine region weakens these interactions to generate less compact vRNPs. We propose that unmodified N protein binds structurally diverse regions in genomic RNA to form compact vRNPs within the nucleocapsid, while phosphorylation alters vRNP structure to support other N protein functions in viral transcription.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Fosforilação , RNA Viral/metabolismo , COVID-19/genética , Proteínas do Nucleocapsídeo/metabolismo , Ribonucleoproteínas/metabolismo , Genômica
7.
Mol Ecol ; 32(14): 3793-3797, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37350376

RESUMO

Mutualisms are often framed as 'delicately balanced antagonisms' (Bronstein, 1994), with the net fitness benefits to both partners potentially masking underlying conflicts of interest. How commonly symbionts evolve to 'cheat' their hosts and hosts evolve to 'sanction' or 'control' uncooperative symbionts is the subject of debate, especially in legume-rhizobium interactions (Frederickson, 2013; Kiers et al., 2003). This kind of antagonistic coevolution should result in either arms-race dynamics characterized by repeated selective sweeps or fluctuating selection dynamics that leave signatures of balancing selection in host and symbiont genomes (Frederickson, 2013; Kortright et al., 2022; O'Brien et al., 2021). In a From the Cover article in this issue of Molecular Ecology, Epstein et al. (2022) combine GWAS and population genomic analyses to assess the evidence for positive or balancing selection consistent with ongoing, antagonistic coevolution between legumes and rhizobia. They found few genomic signatures of fitness conflicts between mutualistic partners, suggesting that legume and rhizobium fitness interests are largely aligned and symbiotic traits are mostly under stabilizing selection. In combination with other recent work (e.g. Batstone et al., 2020), the results of Epstein et al. (2022) indicate that there is little ongoing fitness conflict between legumes and rhizobia that shapes host and symbiont genomes in this system. It may be time to move beyond symbiont 'cheating' and host 'control' as the dominant paradigm for understanding how partners in mutualism coevolve.


Assuntos
Fabaceae , Rhizobium , Fabaceae/genética , Rhizobium/genética , Simbiose/genética , Ecologia , Fenótipo
8.
PLoS Genet ; 16(3): e1008684, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32226016

RESUMO

Lipid levels are important markers for the development of cardio-metabolic diseases. Although hundreds of associated loci have been identified through genetic association studies, the contribution of genetic factors to variation in lipids is not fully understood, particularly in U.S. minority groups. We performed genome-wide association analyses for four lipid traits in over 45,000 ancestrally diverse participants from the Population Architecture using Genomics and Epidemiology (PAGE) Study, followed by a meta-analysis with several European ancestry studies. We identified nine novel lipid loci, five of which showed evidence of replication in independent studies. Furthermore, we discovered one novel gene in a PrediXcan analysis, minority-specific independent signals at eight previously reported loci, and potential functional variants at two known loci through fine-mapping. Systematic examination of known lipid loci revealed smaller effect estimates in African American and Hispanic ancestry populations than those in Europeans, and better performance of polygenic risk scores based on minority-specific effect estimates. Our findings provide new insight into the genetic architecture of lipid traits and highlight the importance of conducting genetic studies in diverse populations in the era of precision medicine.


Assuntos
Lipídeos/sangue , Lipídeos/genética , Grupos Raciais/genética , Bases de Dados Genéticas , Feminino , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Lipídeos/análise , Masculino , Metagenômica/métodos , Grupos Minoritários , Herança Multifatorial/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Estados Unidos/epidemiologia
9.
Diabetologia ; 65(3): 477-489, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34951656

RESUMO

AIMS/HYPOTHESIS: Type 2 diabetes is a growing global public health challenge. Investigating quantitative traits, including fasting glucose, fasting insulin and HbA1c, that serve as early markers of type 2 diabetes progression may lead to a deeper understanding of the genetic aetiology of type 2 diabetes development. Previous genome-wide association studies (GWAS) have identified over 500 loci associated with type 2 diabetes, glycaemic traits and insulin-related traits. However, most of these findings were based only on populations of European ancestry. To address this research gap, we examined the genetic basis of fasting glucose, fasting insulin and HbA1c in participants of the diverse Population Architecture using Genomics and Epidemiology (PAGE) Study. METHODS: We conducted a GWAS of fasting glucose (n = 52,267), fasting insulin (n = 48,395) and HbA1c (n = 23,357) in participants without diabetes from the diverse PAGE Study (23% self-reported African American, 46% Hispanic/Latino, 40% European, 4% Asian, 3% Native Hawaiian, 0.8% Native American), performing transethnic and population-specific GWAS meta-analyses, followed by fine-mapping to identify and characterise novel loci and independent secondary signals in known loci. RESULTS: Four novel associations were identified (p < 5 × 10-9), including three loci associated with fasting insulin, and a novel, low-frequency African American-specific locus associated with fasting glucose. Additionally, seven secondary signals were identified, including novel independent secondary signals for fasting glucose at the known GCK locus and for fasting insulin at the known PPP1R3B locus in transethnic meta-analysis. CONCLUSIONS/INTERPRETATION: Our findings provide new insights into the genetic architecture of glycaemic traits and highlight the continued importance of conducting genetic studies in diverse populations. DATA AVAILABILITY: Full summary statistics from each of the population-specific and transethnic results are available at NHGRI-EBI GWAS catalog ( https://www.ebi.ac.uk/gwas/downloads/summary-statistics ).


Assuntos
Diabetes Mellitus Tipo 2 , Estudo de Associação Genômica Ampla , Glicemia/genética , Diabetes Mellitus Tipo 2/genética , Estudo de Associação Genômica Ampla/métodos , Genômica , Humanos , Polimorfismo de Nucleotídeo Único/genética
10.
N Engl J Med ; 378(4): 321-330, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29365294

RESUMO

BACKGROUND: Alzheimer's disease is characterized by amyloid-beta (Aß) plaques and neurofibrillary tangles. The humanized monoclonal antibody solanezumab was designed to increase the clearance from the brain of soluble Aß, peptides that may lead to toxic effects in the synapses and precede the deposition of fibrillary amyloid. METHODS: We conducted a double-blind, placebo-controlled, phase 3 trial involving patients with mild dementia due to Alzheimer's disease, defined as a Mini-Mental State Examination (MMSE) score of 20 to 26 (on a scale from 0 to 30, with higher scores indicating better cognition) and with amyloid deposition shown by means of florbetapir positron-emission tomography or Aß1-42 measurements in cerebrospinal fluid. Patients were randomly assigned to receive solanezumab at a dose of 400 mg or placebo intravenously every 4 weeks for 76 weeks. The primary outcome was the change from baseline to week 80 in the score on the 14-item cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-cog14; scores range from 0 to 90, with higher scores indicating greater cognitive impairment). RESULTS: A total of 2129 patients were enrolled, of whom 1057 were assigned to receive solanezumab and 1072 to receive placebo. The mean change from baseline in the ADAS-cog14 score was 6.65 in the solanezumab group and 7.44 in the placebo group, with no significant between-group difference at week 80 (difference, -0.80; 95% confidence interval, -1.73 to 0.14; P=0.10). As a result of the failure to reach significance with regard to the primary outcome in the prespecified hierarchical analysis, the secondary outcomes were considered to be descriptive and are reported without significance testing. The change from baseline in the MMSE score was -3.17 in the solanezumab group and -3.66 in the placebo group. Adverse cerebral edema or effusion lesions that were observed on magnetic resonance imaging after randomization occurred in 1 patient in the solanezumab group and in 2 in the placebo group. CONCLUSIONS: Solanezumab at a dose of 400 mg administered every 4 weeks in patients with mild Alzheimer's disease did not significantly affect cognitive decline. (Funded by Eli Lilly; EXPEDITION3 ClinicalTrials.gov number, NCT01900665 .).


Assuntos
Doença de Alzheimer/tratamento farmacológico , Anticorpos Monoclonais Humanizados/uso terapêutico , Imunoterapia , Atividades Cotidianas , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Anticorpos Monoclonais Humanizados/efeitos adversos , Biomarcadores/líquido cefalorraquidiano , Método Duplo-Cego , Feminino , Humanos , Infusões Intravenosas , Masculino , Testes de Estado Mental e Demência , Pessoa de Meia-Idade , Fragmentos de Peptídeos/líquido cefalorraquidiano , Placa Amiloide/tratamento farmacológico , Tomografia por Emissão de Pósitrons , Falha de Tratamento
11.
Glob Chang Biol ; 27(12): 2728-2743, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33784420

RESUMO

Ocean warming is causing global coral bleaching events to increase in frequency, resulting in widespread coral mortality and disrupting the function of coral reef ecosystems. However, even during mass bleaching events, many corals resist bleaching despite exposure to abnormally high temperatures. While the physiological effects of bleaching have been well documented, the consequences of heat stress for bleaching-resistant individuals are not well understood. In addition, much remains to be learned about how heat stress affects cellular-level processes that may be overlooked at the organismal level, yet are crucial for coral performance in the short term and ecological success over the long term. Here we compared the physiological and cellular responses of bleaching-resistant and bleaching-susceptible corals throughout the 2019 marine heatwave in Hawai'i, a repeat bleaching event that occurred 4 years after the previous regional event. Relative bleaching susceptibility within species was consistent between the two bleaching events, yet corals of both resistant and susceptible phenotypes exhibited pronounced metabolic depression during the heatwave. At the cellular level, bleaching-susceptible corals had lower intracellular pH than bleaching-resistant corals at the peak of bleaching for both symbiont-hosting and symbiont-free cells, indicating greater disruption of acid-base homeostasis in bleaching-susceptible individuals. Notably, cells from both phenotypes were unable to compensate for experimentally induced cellular acidosis, indicating that acid-base regulation was significantly impaired at the cellular level even in bleaching-resistant corals and in cells containing symbionts. Thermal disturbances may thus have substantial ecological consequences, as even small reallocations in energy budgets to maintain homeostasis during stress can negatively affect fitness. These results suggest concern is warranted for corals coping with ocean acidification alongside ocean warming, as the feedback between temperature stress and acid-base regulation may further exacerbate the physiological effects of climate change.


Assuntos
Antozoários , Animais , Recifes de Corais , Ecossistema , Havaí , Homeostase , Concentração de Íons de Hidrogênio , Água do Mar , Simbiose
12.
J Biol Chem ; 293(31): 12105-12119, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29903909

RESUMO

Ulp1 and Ulp2, in the yeast Saccharomyces cerevisiae, are the founding members of deSUMOylating enzymes. These enzymes remove small ubiquitin-like modifier (SUMO) from proteins and are conserved in all eukaryotes. Previous studies have shown that Ulp1 deSUMOylates the bulk of intracellular SUMOylated proteins, whereas Ulp2 is a highly specific enzyme. However, the mechanism for Ulp2's substrate specificity has been insufficiently understood. Here we show that the C-terminal regulatory domain of Ulp2 contains three distinct, yet conserved, motifs that control its in vivo substrate specificity and cell growth. Among them, a SUMO-interacting motif (SIM) was found to coordinate with the domain of Ulp2 that binds to the nucleolar protein Csm1 to ensure maximal deSUMOylation of Ulp2's nucleolar substrates. We found that whereas the Csm1-binding domain of Ulp2 recruits this enzyme to the nucleolus, Ulp2's C-terminal SIM promotes its SUMO protease activity and plays a key role in mediating the in vivo specificity of Ulp2. Thus, the substrate specificity of Ulp2 is controlled by both its subcellular localization and the SUMOylation status of its substrates. These findings illustrate the highly coordinated and dynamic nature of the SUMO pathways in maintaining homeostasis of intracellular SUMOylation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Endopeptidases/química , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Núcleo Celular/genética , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Regulação Fúngica da Expressão Gênica , Cinética , Proteínas Nucleares/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Especificidade por Substrato , Sumoilação , Ubiquitina/genética , Ubiquitinação
13.
Hum Genet ; 138(4): 307-326, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30820706

RESUMO

Genome-wide association studies have reported 56 independently associated colorectal cancer (CRC) risk variants, most of which are non-coding and believed to exert their effects by modulating gene expression. The computational method PrediXcan uses cis-regulatory variant predictors to impute expression and perform gene-level association tests in GWAS without directly measured transcriptomes. In this study, we used reference datasets from colon (n = 169) and whole blood (n = 922) transcriptomes to test CRC association with genetically determined expression levels in a genome-wide analysis of 12,186 cases and 14,718 controls. Three novel associations were discovered from colon transverse models at FDR ≤ 0.2 and further evaluated in an independent replication including 32,825 cases and 39,933 controls. After adjusting for multiple comparisons, we found statistically significant associations using colon transcriptome models with TRIM4 (discovery P = 2.2 × 10- 4, replication P = 0.01), and PYGL (discovery P = 2.3 × 10- 4, replication P = 6.7 × 10- 4). Interestingly, both genes encode proteins that influence redox homeostasis and are related to cellular metabolic reprogramming in tumors, implicating a novel CRC pathway linked to cell growth and proliferation. Defining CRC risk regions as one megabase up- and downstream of one of the 56 independent risk variants, we defined 44 non-overlapping CRC-risk regions. Among these risk regions, we identified genes associated with CRC (P < 0.05) in 34/44 CRC-risk regions. Importantly, CRC association was found for two genes in the previously reported 2q25 locus, CXCR1 and CXCR2, which are potential cancer therapeutic targets. These findings provide strong candidate genes to prioritize for subsequent laboratory follow-up of GWAS loci. This study is the first to implement PrediXcan in a large colorectal cancer study and findings highlight the utility of integrating transcriptome data in GWAS for discovery of, and biological insight into, risk loci.


Assuntos
Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles , Neoplasias Colorretais/epidemiologia , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Frequência do Gene , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Humanos , Valor Preditivo dos Testes , Prognóstico , Fatores de Risco
15.
Cancer Causes Control ; 30(1): 103-112, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30542984

RESUMO

PURPOSE: Tamoxifen is widely used to reduce the risk of breast cancer (BC) recurrence and extend disease-free survival among women with estrogen-sensitive breast cancers. Tamoxifen efficacy is thought to be attributable to its active metabolite, which is formed through a reaction catalyzed by the P450 enzyme, CYP2D6. Inhibition of tamoxifen metabolism as a result of germline genetic variation and/or use of CYP2D6-inhibiting medications ("inhibitors") is hypothesized to increase the risk of adverse BC outcomes among women taking tamoxifen. METHODS: The present cohort study of 960 women diagnosed with early-stage BC between 1993 and 1999 examined the association between concomitant use of CYP2D6 inhibitors and adjuvant tamoxifen and the risk of adverse BC outcomes (recurrence, second primary BC, BC mortality), both overall and according to CYP2D6 metabolic phenotype. RESULTS: Six or more months of CYP2D6 inhibitor use concomitant with tamoxifen was not associated with any appreciable increase in risk of recurrence or second primary BC or BC mortality, and there was no clear evidence of variation by CYP2D6 metabolic phenotype. CONCLUSIONS: These results are consistent with the relatively few other large, population-based studies conducted to date that have not observed an increased risk of adverse BC outcomes associated with CYP2D6 inhibition.


Assuntos
Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Citocromo P-450 CYP2D6/genética , Tamoxifeno/uso terapêutico , Idoso , Neoplasias da Mama/genética , Estudos de Coortes , Inibidores do Citocromo P-450 CYP2D6/farmacologia , Intervalo Livre de Doença , Feminino , Humanos , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Fenótipo
16.
Diabetologia ; 60(12): 2384-2398, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28905132

RESUMO

AIMS/HYPOTHESIS: Elevated levels of fasting glucose and fasting insulin in non-diabetic individuals are markers of dysregulation of glucose metabolism and are strong risk factors for type 2 diabetes. Genome-wide association studies have discovered over 50 SNPs associated with these traits. Most of these loci were discovered in European populations and have not been tested in a well-powered multi-ethnic study. We hypothesised that a large, ancestrally diverse, fine-mapping genetic study of glycaemic traits would identify novel and population-specific associations that were previously undetectable by European-centric studies. METHODS: A multiethnic study of up to 26,760 unrelated individuals without diabetes, of predominantly Hispanic/Latino and African ancestries, were genotyped using the Metabochip. Transethnic meta-analysis of racial/ethnic-specific linear regression analyses were performed for fasting glucose and fasting insulin. We attempted to replicate 39 fasting glucose and 17 fasting insulin loci. Genetic fine-mapping was performed through sequential conditional analyses in 15 regions that included both the initially reported SNP association(s) and denser coverage of SNP markers. In addition, Metabochip-wide analyses were performed to discover novel fasting glucose and fasting insulin loci. The most significant SNP associations were further examined using bioinformatic functional annotation. RESULTS: Previously reported SNP associations were significantly replicated (p ≤ 0.05) in 31/39 fasting glucose loci and 14/17 fasting insulin loci. Eleven glycaemic trait loci were refined to a smaller list of potentially causal variants through transethnic meta-analysis. Stepwise conditional analysis identified two loci with independent secondary signals (G6PC2-rs477224 and GCK-rs2908290), which had not previously been reported. Population-specific conditional analyses identified an independent signal in G6PC2 tagged by the rare variant rs77719485 in African ancestry. Further Metabochip-wide analysis uncovered one novel fasting insulin locus at SLC17A2-rs75862513. CONCLUSIONS/INTERPRETATION: These findings suggest that while glycaemic trait loci often have generalisable effects across the studied populations, transethnic genetic studies help to prioritise likely functional SNPs, identify novel associations that may be population-specific and in turn have the potential to influence screening efforts or therapeutic discoveries. DATA AVAILABILITY: The summary statistics from each of the ancestry-specific and transethnic (combined ancestry) results can be found under the PAGE study on dbGaP here: https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000356.v1.p1.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Jejum/sangue , Feminino , Estudo de Associação Genômica Ampla , Humanos , Insulina/sangue , Masculino , Polimorfismo de Nucleotídeo Único/genética , População Branca
18.
Hum Mol Genet ; 24(2): 559-71, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25187575

RESUMO

C-reactive protein (CRP) concentration is a heritable systemic marker of inflammation that is associated with cardiovascular disease risk. Genome-wide association studies have identified CRP-associated common variants associated in ∼25 genes. Our aims were to apply exome sequencing to (1) assess whether the candidate loci contain rare coding variants associated with CRP levels and (2) perform an exome-wide search for rare variants in novel genes associated with CRP levels. We exome-sequenced 6050 European-Americans (EAs) and 3109 African-Americans (AAs) from the NHLBI-ESP and the CHARGE consortia, and performed association tests of sequence data with measured CRP levels. In single-variant tests across candidate loci, a novel rare (minor allele frequency = 0.16%) CRP-coding variant (rs77832441-A; p.Thr59Met) was associated with 53% lower mean CRP levels (P = 2.9 × 10(-6)). We replicated the association of rs77832441 in an exome array analysis of 11 414 EAs (P = 3.0 × 10(-15)). Despite a strong effect on CRP levels, rs77832441 was not associated with inflammation-related phenotypes including coronary heart disease. We also found evidence for an AA-specific association of APOE-ε2 rs7214 with higher CRP levels. At the exome-wide significance level (P < 5.0 × 10(-8)), we confirmed associations for reported common variants of HNF1A, CRP, IL6R and TOMM40-APOE. In gene-based tests, a burden of rare/lower frequency variation in CRP in EAs (P ≤ 6.8 × 10(-4)) and in retinoic acid receptor-related orphan receptor α (RORA) in AAs (P = 1.7 × 10(-3)) were associated with CRP levels at the candidate gene level (P < 2.0 × 10(-3)). This inquiry did not elucidate novel genes, but instead demonstrated that variants distributed across the allele frequency spectrum within candidate genes contribute to CRP levels.


Assuntos
Proteína C-Reativa/genética , Proteína C-Reativa/metabolismo , Doenças Cardiovasculares/sangue , Exoma , Adulto , Negro ou Afro-Americano/genética , Doenças Cardiovasculares/genética , Estudos de Coortes , Feminino , Frequência do Gene , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Fator 1-alfa Nuclear de Hepatócito/genética , Humanos , Masculino , Plasma/química , Polimorfismo de Nucleotídeo Único , Receptores de Interleucina-6/genética , Fatores de Risco , População Branca/genética
19.
Am J Hum Genet ; 94(2): 223-32, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24507774

RESUMO

Low-frequency coding DNA sequence variants in the proprotein convertase subtilisin/kexin type 9 gene (PCSK9) lower plasma low-density lipoprotein cholesterol (LDL-C), protect against risk of coronary heart disease (CHD), and have prompted the development of a new class of therapeutics. It is uncertain whether the PCSK9 example represents a paradigm or an isolated exception. We used the "Exome Array" to genotype >200,000 low-frequency and rare coding sequence variants across the genome in 56,538 individuals (42,208 European ancestry [EA] and 14,330 African ancestry [AA]) and tested these variants for association with LDL-C, high-density lipoprotein cholesterol (HDL-C), and triglycerides. Although we did not identify new genes associated with LDL-C, we did identify four low-frequency (frequencies between 0.1% and 2%) variants (ANGPTL8 rs145464906 [c.361C>T; p.Gln121*], PAFAH1B2 rs186808413 [c.482C>T; p.Ser161Leu], COL18A1 rs114139997 [c.331G>A; p.Gly111Arg], and PCSK7 rs142953140 [c.1511G>A; p.Arg504His]) with large effects on HDL-C and/or triglycerides. None of these four variants was associated with risk for CHD, suggesting that examples of low-frequency coding variants with robust effects on both lipids and CHD will be limited.


Assuntos
HDL-Colesterol/genética , LDL-Colesterol/genética , Doença das Coronárias/genética , Frequência do Gene , Variação Genética , Triglicerídeos/sangue , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Adulto , Idoso , Alelos , Animais , População Negra/genética , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Estudos de Coortes , Doença das Coronárias/sangue , Feminino , Estudos de Associação Genética , Código Genético , Humanos , Modelos Lineares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade , Fenótipo , Análise de Sequência de DNA , Subtilisinas/genética , Subtilisinas/metabolismo , População Branca/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA