Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 576(7785): 112-120, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31748746

RESUMO

The evolutionary processes that drive universal therapeutic resistance in adult patients with diffuse glioma remain unclear1,2. Here we analysed temporally separated DNA-sequencing data and matched clinical annotation from 222 adult patients with glioma. By analysing mutations and copy numbers across the three major subtypes of diffuse glioma, we found that driver genes detected at the initial stage of disease were retained at recurrence, whereas there was little evidence of recurrence-specific gene alterations. Treatment with alkylating agents resulted in a hypermutator phenotype at different rates across the glioma subtypes, and hypermutation was not associated with differences in overall survival. Acquired aneuploidy was frequently detected in recurrent gliomas and was characterized by IDH mutation but without co-deletion of chromosome arms 1p/19q, and further converged with acquired alterations in the cell cycle and poor outcomes. The clonal architecture of each tumour remained similar over time, but the presence of subclonal selection was associated with decreased survival. Finally, there were no differences in the levels of immunoediting between initial and recurrent gliomas. Collectively, our results suggest that the strongest selective pressures occur during early glioma development and that current therapies shape this evolution in a largely stochastic manner.


Assuntos
Glioma/genética , Adulto , Cromossomos Humanos Par 1 , Cromossomos Humanos Par 19 , Progressão da Doença , Glioma/patologia , Humanos , Isocitrato Desidrogenase/genética , Mutação , Polimorfismo de Nucleotídeo Único , Recidiva
2.
Nucleic Acids Res ; 50(13): 7637-7654, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35801921

RESUMO

Although the route to generate microRNAs (miRNAs) is often depicted as a linear series of sequential and constitutive cleavages, we now appreciate multiple alternative pathways as well as diverse strategies to modulate their processing and function. Here, we identify an unusually profound regulatory role of conserved loop sequences in vertebrate pre-mir-144, which are essential for its cleavage by the Dicer RNase III enzyme in human and zebrafish models. Our data indicate that pre-mir-144 dicing is positively regulated via its terminal loop, and involves the ILF3 complex (NF90 and its partner NF45/ILF2). We provide further evidence that this regulatory switch involves reshaping of the pre-mir-144 apical loop into a structure that is appropriate for Dicer cleavage. In light of our recent findings that mir-144 promotes the nuclear biogenesis of its neighbor mir-451, these data extend the complex hierarchy of nuclear and cytoplasmic regulatory events that can control the maturation of clustered miRNAs.


Assuntos
MicroRNAs/genética , Ribonuclease III/metabolismo , Peixe-Zebra , Animais , Humanos , MicroRNAs/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34548404

RESUMO

Homozygous mutation of the RNA kinase CLP1 (cleavage factor polyribonucleotide kinase subunit 1) causes pontocerebellar hypoplasia type 10 (PCH10), a pediatric neurodegenerative disease. CLP1 is associated with the transfer RNA (tRNA) splicing endonuclease complex and the cleavage and polyadenylation machinery, but its function remains unclear. We generated two mouse models of PCH10: one homozygous for the disease-associated Clp1 mutation, R140H, and one heterozygous for this mutation and a null allele. Both models exhibit loss of lower motor neurons and neurons of the deep cerebellar nuclei. To explore whether Clp1 mutation impacts tRNA splicing, we profiled the products of intron-containing tRNA genes. While mature tRNAs were expressed at normal levels in mutant mice, numerous other products of intron-containing tRNA genes were dysregulated, with pre-tRNAs, introns, and certain tRNA fragments up-regulated, and other fragments down-regulated. However, the spatiotemporal patterns of dysregulation do not correlate with pathogenicity for most altered tRNA products. To elucidate the effect of Clp1 mutation on precursor messenger RNA (pre-mRNA) cleavage, we analyzed poly(A) site (PAS) usage and gene expression in Clp1R140H/- spinal cord. PAS usage was shifted from proximal to distal sites in the mutant mouse, particularly in short and closely spaced genes. Many such genes were also expressed at lower levels in the Clp1R140H/- mouse, possibly as a result of impaired transcript maturation. These findings are consistent with the hypothesis that select genes are particularly dependent upon CLP1 for proper pre-mRNA cleavage, suggesting that impaired mRNA 3' processing may contribute to pathogenesis in PCH10.


Assuntos
Doenças Cerebelares/patologia , Doenças Neurodegenerativas/patologia , Poliadenilação , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/fisiologia , Fatores de Transcrição/fisiologia , Animais , Doenças Cerebelares/genética , Doenças Cerebelares/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Mensageiro/genética , RNA de Transferência/genética
4.
J Surg Oncol ; 127(3): 426-433, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36251352

RESUMO

BACKGROUND AND OBJECTIVES: Deep learning utilizing convolutional neural networks (CNNs) applied to hematoxylin & eosin (H&E)-stained slides numerically encodes histomorphological tumor features. Tumor heterogeneity is an emerging biomarker in colon cancer that is, captured by these features, whereas microsatellite instability (MSI) is an established biomarker traditionally assessed by immunohistochemistry or polymerase chain reaction. METHODS: H&E-stained slides from The Cancer Genome Atlas (TCGA) colon cohort are passed through the CNN. Resulting imaging features are used to cluster morphologically similar slide regions. Tile-level pairwise similarities are calculated and used to generate a tumor heterogeneity score (THS). Patient-level THS is then correlated with TCGA-reported biomarkers, including MSI-status. RESULTS: H&E-stained images from 313 patients generated 534 771 tiles. Deep learning automatically identified and annotated cells by type and clustered morphologically similar slide regions. MSI-high tumors demonstrated significantly higher THS than MSS/MSI-low (p < 0.001). THS was higher in MLH1-silent versus non-silent tumors (p < 0.001). The sequencing derived MSIsensor score also correlated with THS (r = 0.51, p < 0.0001). CONCLUSIONS: Deep learning provides spatially resolved visualization of imaging-derived biomarkers and automated quantification of tumor heterogeneity. Our novel THS correlates with MSI-status, indicating that with expanded training sets, translational tools could be developed that predict MSI-status using H&E-stained images alone.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Aprendizado Profundo , Humanos , Instabilidade de Microssatélites , Repetições de Microssatélites , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Neoplasias Colorretais/patologia
5.
Pediatr Blood Cancer ; : e30503, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37339930

RESUMO

BACKGROUND: While children with acute lymphoblastic leukemia (ALL) experience close to a 90% likelihood of cure, the outcome for certain high-risk pediatric ALL subtypes remains dismal. Spleen tyrosine kinase (SYK) is a prominent cytosolic nonreceptor tyrosine kinase in pediatric B-lineage ALL (B-ALL). Activating mutations or overexpression of Fms-related receptor tyrosine kinase 3 (FLT3) are associated with poor outcome in hematological malignancies. TAK-659 (mivavotinib) is a dual SYK/FLT3 reversible inhibitor, which has been clinically evaluated in several other hematological malignancies. Here, we investigate the in vivo efficacy of TAK-659 against pediatric ALL patient-derived xenografts (PDXs). METHODS: SYK and FLT3 mRNA expression was quantified by RNA-seq. PDX engraftment and drug responses in NSG mice were evaluated by enumerating the proportion of human CD45+ cells (%huCD45+ ) in the peripheral blood. TAK-659 was administered per oral at 60 mg/kg daily for 21 days. Events were defined as %huCD45+ ≥ 25%. In addition, mice were humanely killed to assess leukemia infiltration in the spleen and bone marrow (BM). Drug efficacy was assessed by event-free survival and stringent objective response measures. RESULTS: FLT3 and SYK mRNA expression was significantly higher in B-lineage compared with T-lineage PDXs. TAK-659 was well tolerated and significantly prolonged the time to event in six out of eight PDXs tested. However, only one PDX achieved an objective response. The minimum mean %huCD45+ was significantly reduced in five out of eight PDXs in TAK-659-treated mice compared with vehicle controls. CONCLUSIONS: TAK-659 exhibited low to moderate single-agent in vivo activity against pediatric ALL PDXs representative of diverse subtypes.

6.
Mod Pathol ; 35(1): 44-51, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34493825

RESUMO

The current standard of care for many patients with HER2-positive breast cancer is neoadjuvant chemotherapy in combination with anti-HER2 agents, based on HER2 amplification as detected by in situ hybridization (ISH) or protein immunohistochemistry (IHC). However, hematoxylin & eosin (H&E) tumor stains are more commonly available, and accurate prediction of HER2 status and anti-HER2 treatment response from H&E would reduce costs and increase the speed of treatment selection. Computational algorithms for H&E have been effective in predicting a variety of cancer features and clinical outcomes, including moderate success in predicting HER2 status. In this work, we present a novel convolutional neural network (CNN) approach able to predict HER2 status with increased accuracy over prior methods. We trained a CNN classifier on 188 H&E whole slide images (WSIs) manually annotated for tumor Regions of interest (ROIs) by our pathology team. Our classifier achieved an area under the curve (AUC) of 0.90 in cross-validation of slide-level HER2 status and 0.81 on an independent TCGA test set. Within slides, we observed strong agreement between pathologist annotated ROIs and blinded computational predictions of tumor regions / HER2 status. Moreover, we trained our classifier on pre-treatment samples from 187 HER2+ patients that subsequently received trastuzumab therapy. Our classifier achieved an AUC of 0.80 in a five-fold cross validation. Our work provides an H&E-based algorithm that can predict HER2 status and trastuzumab response in breast cancer at an accuracy that may benefit clinical evaluations.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Receptor ErbB-2/análise , Trastuzumab/uso terapêutico , Área Sob a Curva , Estudos de Coortes , Feminino , Humanos , Curva ROC , Distribuição Aleatória , Receptor ErbB-2/genética
7.
Mol Biol Evol ; 37(2): 320-326, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31642480

RESUMO

Cancer progression is an evolutionary process. During this process, evolving cancer cell populations encounter restrictive ecological niches within the body, such as the primary tumor, circulatory system, and diverse metastatic sites. Efforts to prevent or delay cancer evolution-and progression-require a deep understanding of the underlying molecular evolutionary processes. Herein we discuss a suite of concepts and tools from evolutionary and ecological theory that can inform cancer biology in new and meaningful ways. We also highlight current challenges to applying these concepts, and propose ways in which incorporating these concepts could identify new therapeutic modes and vulnerabilities in cancer.


Assuntos
Genômica/métodos , Neoplasias/genética , Progressão da Doença , Evolução Molecular , Aptidão Genética , Humanos , Filogenia , Nicho de Células-Tronco
8.
Bioinformatics ; 36(10): 3234-3235, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32044918

RESUMO

MOTIVATION: Modern genomic research is driven by next-generation sequencing experiments such as ChIP-seq and ChIA-PET that generate coverage files for transcription factor binding, as well as DHS and ATAC-seq that yield coverage files for chromatin accessibility. Such files are in a bedGraph text format or a bigWig binary format. Obtaining summary statistics in a given region is a fundamental task in analyzing protein binding intensity or chromatin accessibility. However, the existing Python package for operating on coverage files is not optimized for speed. RESULTS: We developed pyBedGraph, a Python package to quickly obtain summary statistics for a given interval in a bedGraph or a bigWig file. When tested on 12 ChIP-seq, ATAC-seq, RNA-seq and ChIA-PET datasets, pyBedGraph is on average 260 times faster than the existing program pyBigWig. On average, pyBedGraph can look up the exact mean signal of 1 million regions in ∼0.26 s and can compute their approximate means in <0.12 s on a conventional laptop. AVAILABILITY AND IMPLEMENTATION: pyBedGraph is publicly available at https://github.com/TheJacksonLaboratory/pyBedGraph under the MIT license. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genômica , Software , Cromatina , Genoma , Sequenciamento de Nucleotídeos em Larga Escala
9.
Blood ; 131(17): 1931-1941, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29475961

RESUMO

Epstein-Barr virus (EBV)-positive diffuse large B-cell lymphomas (EBV+-DLBLs) tend to occur in immunocompromised patients, such as the elderly or those undergoing solid organ transplantation. The pathogenesis and genomic characteristics of EBV+-DLBLs are largely unknown because of the limited availability of human samples and lack of experimental animal models. We observed the development of 25 human EBV+-DLBLs during the engraftment of gastric adenocarcinomas into immunodeficient mice. An integrated genomic analysis of the human-derived EBV+-DLBLs revealed enrichment of mutations in Rho pathway genes, including RHPN2, and Rho pathway transcriptomic activation. Targeting the Rho pathway using a Rho-associated protein kinase (ROCK) inhibitor, fasudil, markedly decreased tumor growth in EBV+-DLBL patient-derived xenograft (PDX) models. Thus, alterations in the Rho pathway appear to contribute to EBV-induced lymphomagenesis in immunosuppressed environments.


Assuntos
Adenocarcinoma/metabolismo , Transformação Celular Viral , Infecções por Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/metabolismo , Linfoma Difuso de Grandes Células B/metabolismo , Transdução de Sinais , Neoplasias Gástricas/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma/virologia , Animais , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/patologia , Herpesvirus Humano 4/genética , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Linfoma Difuso de Grandes Células B/virologia , Camundongos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/virologia , Proteínas rho de Ligação ao GTP/genética
10.
PLoS Comput Biol ; 15(6): e1007026, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31194735

RESUMO

Bioinformatics has become an indispensable part of life science over the past 2 decades. However, bioinformatics education is not well integrated at the undergraduate level, especially in liberal arts colleges and regional universities in the United States. One significant obstacle pointed out by the Network for Integrating Bioinformatics into Life Sciences Education is the lack of faculty in the bioinformatics area. Most current life science professors did not acquire bioinformatics analysis skills during their own training. Consequently, a great number of undergraduate and graduate students do not get the chance to learn bioinformatics or computational biology skills within a structured curriculum during their education. To address this gap, we developed a module-based, week-long short course to train small college and regional university professors with essential bioinformatics skills. The bioinformatics modules were built to be adapted by the professor-trainees afterward and used in their own classes. All the course materials can be accessed at https://github.com/TheJacksonLaboratory/JAXBD2K-ShortCourse.


Assuntos
Biologia Computacional/educação , Biologia Computacional/organização & administração , Docentes/educação , Docentes/organização & administração , Big Data , Currículo , Bases de Dados Genéticas , Humanos
11.
BMC Cancer ; 19(1): 96, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30665374

RESUMO

BACKGROUND: Triple negative breast cancer (TNBC) is aggressive with limited treatment options upon recurrence. Molecular discordance between primary and metastatic TNBC has been observed, but the degree of biological heterogeneity has not been fully explored. Furthermore, genomic evolution through treatment is poorly understood. In this study, we aim to characterize the genomic changes between paired primary and metastatic TNBCs through transcriptomic and genomic profiling, and to identify genomic alterations which may contribute to chemotherapy resistance. METHODS: Genomic alterations and mRNA expression of 10 paired primary and metastatic TNBCs were determined through targeted sequencing, microarray analysis, and RNA sequencing. Commonly mutated genes, as well as differentially expressed and co-expressed genes were identified. We further explored the clinical relevance of differentially expressed genes between primary and metastatic tumors to patient survival using large public datasets. RESULTS: Through gene expression profiling, we observed a shift in TNBC subtype classifications between primary and metastatic TNBCs. A panel of eight cancer driver genes (CCNE1, TPX2, ELF3, FANCL, JAK2, GSK3B, CEP76, and SYK) were differentially expressed in recurrent TNBCs, and were also overexpressed in TCGA and METABRIC. CCNE1 and TPX2 were co-overexpressed in TNBCs. DNA mutation profiling showed that multiple mutations occurred in genes comprising a number of potentially targetable pathways including PI3K/AKT/mTOR, RAS/MAPK, cell cycle, and growth factor receptor signaling, reaffirming the wide heterogeneity of mechanisms driving TNBC. CCNE1 amplification was associated with poor overall survival in patients with metastatic TNBC. CONCLUSIONS: CCNE1 amplification may confer resistance to chemotherapy and is associated with poor overall survival in TNBC.


Assuntos
Ciclina E/genética , Amplificação de Genes , Perfilação da Expressão Gênica/métodos , Proteínas Oncogênicas/genética , Neoplasias de Mama Triplo Negativas/genética , Adulto , Idoso , Ciclina E/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Predisposição Genética para Doença/genética , Humanos , Pessoa de Meia-Idade , Proteínas Oncogênicas/metabolismo , Prognóstico , Análise de Sobrevida , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Sequenciamento do Exoma
12.
PLoS Comput Biol ; 14(3): e1006078, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29596423

RESUMO

RNA-protein binding is critical to gene regulation, controlling fundamental processes including splicing, translation, localization and stability, and aberrant RNA-protein interactions are known to play a role in a wide variety of diseases. However, molecular understanding of RNA-protein interactions remains limited; in particular, identification of RNA motifs that bind proteins has long been challenging, especially when such motifs depend on both sequence and structure. Moreover, although RNA binding proteins (RBPs) often contain more than one binding domain, algorithms capable of identifying more than one binding motif simultaneously have not been developed. In this paper we present a novel pipeline to determine binding peaks in crosslinking immunoprecipitation (CLIP) data, to discover multiple possible RNA sequence/structure motifs among them, and to experimentally validate such motifs. At the core is a new semi-automatic algorithm SARNAclust, the first unsupervised method to identify and deconvolve multiple sequence/structure motifs simultaneously. SARNAclust computes similarity between sequence/structure objects using a graph kernel, providing the ability to isolate the impact of specific features through the bulge graph formalism. Application of SARNAclust to synthetic data shows its capability of clustering 5 motifs at once with a V-measure value of over 0.95, while GraphClust achieves only a V-measure of 0.083 and RNAcontext cannot detect any of the motifs. When applied to existing eCLIP sets, SARNAclust finds known motifs for SLBP and HNRNPC and novel motifs for several other RBPs such as AGGF1, AKAP8L and ILF3. We demonstrate an experimental validation protocol, a targeted Bind-n-Seq-like high-throughput sequencing approach that relies on RNA inverse folding for oligo pool design, that can validate the components within the SLBP motif. Finally, we use this protocol to experimentally interrogate the SARNAclust motif predictions for protein ILF3. Our results support a newly identified partially double-stranded UUUUUGAGA motif similar to that known for the splicing factor HNRNPC.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , Algoritmos , Sítios de Ligação , Análise por Conglomerados , Imunoprecipitação , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Ligação Proteica , RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/fisiologia , Proteínas de Ligação a RNA/metabolismo
13.
Proc Natl Acad Sci U S A ; 113(17): E2373-82, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27071093

RESUMO

Next-generation sequencing studies have revealed genome-wide structural variation patterns in cancer, such as chromothripsis and chromoplexy, that do not engage a single discernable driver mutation, and whose clinical relevance is unclear. We devised a robust genomic metric able to identify cancers with a chromotype called tandem duplicator phenotype (TDP) characterized by frequent and distributed tandem duplications (TDs). Enriched only in triple-negative breast cancer (TNBC) and in ovarian, endometrial, and liver cancers, TDP tumors conjointly exhibit tumor protein p53 (TP53) mutations, disruption of breast cancer 1 (BRCA1), and increased expression of DNA replication genes pointing at rereplication in a defective checkpoint environment as a plausible causal mechanism. The resultant TDs in TDP augment global oncogene expression and disrupt tumor suppressor genes. Importantly, the TDP strongly correlates with cisplatin sensitivity in both TNBC cell lines and primary patient-derived xenografts. We conclude that the TDP is a common cancer chromotype that coordinately alters oncogene/tumor suppressor expression with potential as a marker for chemotherapeutic response.


Assuntos
Neoplasias do Endométrio/genética , Neoplasias Ovarianas/genética , Duplicações Segmentares Genômicas/genética , Neoplasias de Mama Triplo Negativas/genética , Antineoplásicos/farmacologia , Feminino , Genes Neoplásicos/genética , Marcadores Genéticos/genética , Humanos , Fenótipo
14.
Bioinformatics ; 33(19): 3110-3112, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28605406

RESUMO

SUMMARY: We present CloudNeo, a cloud-based computational workflow for identifying patient-specific tumor neoantigens from next generation sequencing data. Tumor-specific mutant peptides can be detected by the immune system through their interactions with the human leukocyte antigen complex, and neoantigen presence has recently been shown to correlate with anti T-cell immunity and efficacy of checkpoint inhibitor therapy. However computing capabilities to identify neoantigens from genomic sequencing data are a limiting factor for understanding their role. This challenge has grown as cancer datasets become increasingly abundant, making them cumbersome to store and analyze on local servers. Our cloud-based pipeline provides scalable computation capabilities for neoantigen identification while eliminating the need to invest in local infrastructure for data transfer, storage or compute. The pipeline is a Common Workflow Language (CWL) implementation of human leukocyte antigen (HLA) typing using Polysolver or HLAminer combined with custom scripts for mutant peptide identification and NetMHCpan for neoantigen prediction. We have demonstrated the efficacy of these pipelines on Amazon cloud instances through the Seven Bridges Genomics implementation of the NCI Cancer Genomics Cloud, which provides graphical interfaces for running and editing, infrastructure for workflow sharing and version tracking, and access to TCGA data. AVAILABILITY AND IMPLEMENTATION: The CWL implementation is at: https://github.com/TheJacksonLaboratory/CloudNeo. For users who have obtained licenses for all internal software, integrated versions in CWL and on the Seven Bridges Cancer Genomics Cloud platform (https://cgc.sbgenomics.com/, recommended version) can be obtained by contacting the authors. CONTACT: jeff.chuang@jax.org. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Antígenos de Neoplasias/genética , Sequenciamento de Nucleotídeos em Larga Escala , Software , Antígenos de Neoplasias/química , Genômica , Teste de Histocompatibilidade , Humanos , Mutação , Peptídeos/química , Peptídeos/genética , Fluxo de Trabalho
15.
BMC Genomics ; 15: 1013, 2014 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-25417144

RESUMO

BACKGROUND: Structural mutations (SMs) play a major role in cancer development. In some cancers, such as breast and ovarian, DNA double-strand breaks (DSBs) occur more frequently in transcribed regions, while in other cancer types such as prostate, there is a consistent depletion of breakpoints in transcribed regions. Despite such regularity, little is understood about the mechanisms driving these effects. A few works have suggested that protein binding may be relevant, e.g. in studies of androgen receptor binding and active chromatin in specific cell types. We hypothesized that this behavior might be general, i.e. that correlation between protein-DNA binding (and open chromatin) and breakpoint locations is common across divergent cancers. RESULTS: We investigated this hypothesis by comprehensively analyzing the relationship among 457 ENCODE protein binding ChIP-seq experiments, 125 DnaseI and 24 FAIRE experiments, and 14,600 SMs from 8 diverse cancer datasets covering 147 samples. In most cancers, including breast and ovarian, we found enrichment of protein binding and open chromatin in the vicinity of SM breakpoints at distances up to 200 kb. Furthermore, for all cancer types we observed an enhanced enrichment in regions distant from genes when compared to regions proximal to genes, suggesting that the SM-induction mechanism is independent from the bias of DSBs to occur near transcribed regions. We also observed a stronger effect for sites with more than one protein bound. CONCLUSIONS: Protein binding and open chromatin state are associated with nearby SM breakpoints in many cancer datasets. These observations suggest a consistent mechanism underlying SM locations across different cancers.


Assuntos
Cromatina/metabolismo , Mutação/genética , Neoplasias/genética , Pareamento de Bases , Imunoprecipitação da Cromatina , Quebras de DNA de Cadeia Dupla , Humanos , Masculino , Proteínas de Neoplasias/metabolismo , Razão de Chances , Ligação Proteica
16.
EBioMedicine ; 99: 104908, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101298

RESUMO

BACKGROUND: Deep learning has revolutionized digital pathology, allowing automatic analysis of hematoxylin and eosin (H&E) stained whole slide images (WSIs) for diverse tasks. WSIs are broken into smaller images called tiles, and a neural network encodes each tile. Many recent works use supervised attention-based models to aggregate tile-level features into a slide-level representation, which is then used for downstream analysis. Training supervised attention-based models is computationally intensive, architecture optimization of the attention module is non-trivial, and labeled data are not always available. Therefore, we developed an unsupervised and fast approach called SAMPLER to generate slide-level representations. METHODS: Slide-level representations of SAMPLER are generated by encoding the cumulative distribution functions of multiscale tile-level features. To assess effectiveness of SAMPLER, slide-level representations of breast carcinoma (BRCA), non-small cell lung carcinoma (NSCLC), and renal cell carcinoma (RCC) WSIs of The Cancer Genome Atlas (TCGA) were used to train separate classifiers distinguishing tumor subtypes in FFPE and frozen WSIs. In addition, BRCA and NSCLC classifiers were externally validated on frozen WSIs. Moreover, SAMPLER's attention maps identify regions of interest, which were evaluated by a pathologist. To determine time efficiency of SAMPLER, we compared runtime of SAMPLER with two attention-based models. SAMPLER concepts were used to improve the design of a context-aware multi-head attention model (context-MHA). FINDINGS: SAMPLER-based classifiers were comparable to state-of-the-art attention deep learning models to distinguish subtypes of BRCA (AUC = 0.911 ± 0.029), NSCLC (AUC = 0.940 ± 0.018), and RCC (AUC = 0.987 ± 0.006) on FFPE WSIs (internal test sets). However, training SAMLER-based classifiers was >100 times faster. SAMPLER models successfully distinguished tumor subtypes on both internal and external test sets of frozen WSIs. Histopathological review confirmed that SAMPLER-identified high attention tiles contained subtype-specific morphological features. The improved context-MHA distinguished subtypes of BRCA and RCC (BRCA-AUC = 0.921 ± 0.027, RCC-AUC = 0.988 ± 0.010) with increased accuracy on internal test FFPE WSIs. INTERPRETATION: Our unsupervised statistical approach is fast and effective for analyzing WSIs, with greatly improved scalability over attention-based deep learning methods. The high accuracy of SAMPLER-based classifiers and interpretable attention maps suggest that SAMPLER successfully encodes the distinct morphologies within WSIs and will be applicable to general histology image analysis problems. FUNDING: This study was supported by the National Cancer Institute (Grant No. R01CA230031 and P30CA034196).


Assuntos
Neoplasias da Mama , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Renais , Neoplasias Renais , Neoplasias Pulmonares , Humanos , Feminino
17.
Cell Rep Methods ; 4(5): 100759, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38626768

RESUMO

We designed a Nextflow DSL2-based pipeline, Spatial Transcriptomics Quantification (STQ), for simultaneous processing of 10x Genomics Visium spatial transcriptomics data and a matched hematoxylin and eosin (H&E)-stained whole-slide image (WSI), optimized for patient-derived xenograft (PDX) cancer specimens. Our pipeline enables the classification of sequenced transcripts for deconvolving the mouse and human species and mapping the transcripts to reference transcriptomes. We align the H&E WSI with the spatial layout of the Visium slide and generate imaging and quantitative morphology features for each Visium spot. The pipeline design enables multiple analysis workflows, including single or dual reference genome input and stand-alone image analysis. We show the utility of our pipeline on a dataset from Visium profiling of four melanoma PDX samples. The clustering of Visium spots and clustering of H&E imaging features reveal similar patterns arising from the two data modalities.


Assuntos
Xenoenxertos , Humanos , Animais , Camundongos , Perfilação da Expressão Gênica/métodos , Amarelo de Eosina-(YS) , Hematoxilina , Transcriptoma , Processamento de Imagem Assistida por Computador/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
18.
bioRxiv ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38370717

RESUMO

Resistance of BRAF-mutant melanomas to targeted therapy arises from the ability of cells to enter a persister state, evade treatment with relative dormancy, and repopulate the tumor when reactivated. Using spatial transcriptomics in patient derived xenograft models, we capture clonal lineage evolution during treatment, finding the persister state to show increased oxidative phosphorylation, decreased proliferation, and increased invasive capacity, with central-to-peripheral gradients. Phylogenetic tracing identifies intrinsic- and acquired-resistance mechanisms (e.g. dual specific phosphatases, Reticulon-4, CDK2) and suggests specific temporal windows of potential therapeutic efficacy. Using deep learning to analyze histopathological slides, we find morphological features of specific cell states, demonstrating that juxtaposition of transcriptomics and histology data enables identification of phenotypically-distinct populations using imaging data alone. In summary, we define state change and lineage selection during melanoma treatment with spatiotemporal resolution, elucidating how choice and timing of therapeutic agents will impact the ability to eradicate resistant clones. Statement of Significance: Tumor evolution is accelerated by application of anti-cancer therapy, resulting in clonal expansions leading to dormancy and subsequently resistance, but the dynamics of this process are incompletely understood. Tracking clonal progression during treatment, we identify conserved, global transcriptional changes and local clone-clone and spatial patterns underlying the emergence of resistance.

19.
bioRxiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38585764

RESUMO

Cohesin is required for chromatin loop formation. However, its precise role in regulating gene transcription remains largely unknown. We investigated the relationship between cohesin and RNA Polymerase II (RNAPII) using single-molecule mapping and live-cell imaging methods in human cells. Cohesin-mediated transcriptional loops were highly correlated with those of RNAPII and followed the direction of gene transcription. Depleting RAD21, a subunit of cohesin, resulted in the loss of long-range (>100 kb) loops between distal (super-)enhancers and promoters of cell-type-specific genes. By contrast, the short-range (<50 kb) loops were insensitive to RAD21 depletion and connected genes that are mostly housekeeping. This result explains why only a small fraction of genes are affected by the loss of long-range chromatin interactions due to cohesin depletion. Remarkably, RAD21 depletion appeared to up-regulate genes located in early initiation zones (EIZ) of DNA replication, and the EIZ signals were amplified drastically without RAD21. Our results revealed new mechanistic insights of cohesin's multifaceted roles in establishing transcriptional loops, preserving long-range chromatin interactions for cell-specific genes, and maintaining timely order of DNA replication.

20.
Mol Cancer Ther ; 23(7): 924-938, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38641411

RESUMO

Although patient-derived xenografts (PDX) are commonly used for preclinical modeling in cancer research, a standard approach to in vivo tumor growth analysis and assessment of antitumor activity is lacking, complicating the comparison of different studies and determination of whether a PDX experiment has produced evidence needed to consider a new therapy promising. We present consensus recommendations for assessment of PDX growth and antitumor activity, providing public access to a suite of tools for in vivo growth analyses. We expect that harmonizing PDX study design and analysis and assessing a suite of analytical tools will enhance information exchange and facilitate identification of promising novel therapies and biomarkers for guiding cancer therapy.


Assuntos
Neoplasias , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Neoplasias/patologia , Neoplasias/tratamento farmacológico , National Cancer Institute (U.S.) , Estados Unidos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Consenso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA