RESUMO
Coronavirus disease-2019 (COVID-19), a potentially lethal respiratory illness caused by the coronavirus SARS-CoV-2, emerged in the end of 2019 and has since spread aggressively across the globe. A thorough understanding of the molecular mechanisms of cellular infection by coronaviruses is therefore of utmost importance. A critical stage in infection is the fusion between viral and host membranes. Here, we present a detailed investigation of the role of selected SARS-CoV-2 Spike fusion peptides, and the influence of calcium and cholesterol, in this fusion process. Structural information from specular neutron reflectometry and small angle neutron scattering, complemented by dynamics information from quasi-elastic and spin-echo neutron spectroscopy, revealed strikingly different functions encoded in the Spike fusion domain. Calcium drives the N-terminal of the Spike fusion domain to fully cross the host plasma membrane. Removing calcium, however, reorients the peptide back to the lipid leaflet closest to the virus, leading to significant changes in lipid fluidity and rigidity. In conjunction with other regions of the fusion domain, which are also positioned to bridge and dehydrate viral and host membranes, the molecular events leading to cell entry by SARS-CoV-2 are proposed.
Assuntos
Bicamadas Lipídicas/metabolismo , Fragmentos de Peptídeos/metabolismo , SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Sequência de Aminoácidos , Colesterol/química , Bicamadas Lipídicas/química , Fluidez de Membrana , Difração de Nêutrons , Domínios Proteicos , Espalhamento a Baixo Ângulo , Glicoproteína da Espícula de Coronavírus/química , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismoRESUMO
Spontaneous formation of vesicles from the self-assembly of two specific surfactants, one zwitterionic (oleyl amidopropyl betaine, OAPB) and the other anionic (Aerosol-OT, AOT), is explored in water using small-angle scattering techniques. Two factors were found to be critical in the formation of vesicles: surfactant ratio, as AOT concentrations less than equimolar with OAPB result in cylindrical micelles or mixtures of micellar structures, and salt concentration, whereby increasing the amount of NaCl promotes vesicle formation by reducing headgroup repulsions. Small-angle neutron scattering measurements reveal that the vesicles are approximately 30-40 nm in diameter, depending on sample composition. Small-angle X-ray scattering measurements suggest preferential partitioning of OAPB molecules on the vesicle inner layer to support vesicular packing. Heating the vesicles to physiological temperature (37 °C) causes them to collapse into smaller ellipsoidal micelles (2-3 nm), with higher salt concentrations (≥10 mM) inhibiting this transition. These aggregates could serve as responsive carriers for loading or unloading of aqueous cargoes such as drugs and pharmaceuticals, with temperature changes serving as a simple release/uptake mechanism.
Assuntos
Micelas , Tensoativos , Ânions , Betaína , Espalhamento a Baixo ÂnguloRESUMO
The remarkable properties of deuterium have led to many exciting and favourable results in enhancing material properties, for applications in the physical, medical, and biological sciences. Deuterated isotopologues of avobenzone, a sunscreen active ingredient, were synthesised to examine for any changes to the equilibrium between the diketone and enol isomers, as well as their UV photostability and photoprotective properties. Prior to UV irradiation, deuteration of the diketone methylene/enol moiety (i.e. avobenzone-d2) led to an increase in the % diketone compared to non-deuterated, determined by 1H NMR experiments in CDCl3 and C6D12. This can be rationalised from two angles; mechanistically by a deuterium kinetic isotope effect for the CH vs. CD abstraction step during tautomerisation from the diketone to the enol, and a weaker chelating hydrogen bond for the enol when deuterated allowing increased equilibration to the diketone. Avobenzone-d2 was further examined by solid state 13C NMR. The higher % diketone for avobenzone-d2 was postulated to favour increased photodegradation by a non-reversible pathway. This was investigated by UV irradiation of the avobenzone isotopologues in C6D12, both in real time in situ within the NMR by fibre optic cable as well as ex situ using sunlight. An increase in the relative amount of photoproducts for avobenzone-d2 compared to non-deuterated was observed by 1H NMR upon UV irradiation ex situ. Overall, the study demonstrates that deuteration can be applied to alter complex equilibria, and has potential to be manifested as changes to the properties and behaviour of materials.
Assuntos
Álcoois/química , Deutério/química , Cetonas/química , Propiofenonas/química , Protetores Solares/química , Estrutura Molecular , Processos Fotoquímicos , Raios UltravioletaRESUMO
The formation of excitons in OLEDs is spin dependent and can be controlled by electron-paramagnetic resonance, affecting device resistance and electroluminescence yield. We explore electrically detected magnetic resonance in the regime of very low magnetic fields (<1â mT). A pronounced feature emerges at zero field in addition to the conventional spin- 1 / 2 Zeeman resonance for which the Larmor frequency matches that of the incident radiation. By comparing a conventional π-conjugated polymer as the active material to a perdeuterated analogue, we demonstrate the interplay between the zero-field feature and local hyperfine fields. The zero-field peak results from a quasistatic magnetic-field effect of the RF radiation for periods comparable to the carrier-pair lifetime. Zeeman resonances are resolved down to 3.2â MHz, approximately twice the Larmor frequency of an electron in Earth's field. However, since reducing hyperfine fields sharpens the Zeeman peak at the cost of an increased zero-field peak, we suggest that this result may constitute a fundamental low-field limit of magnetic resonance in carrier-pair-based systems. OLEDs offer an alternative solid-state platform to investigate the radical-pair mechanism of magnetic-field effects in photochemical reactions, allowing models of biological magnetoreception to be tested by measuring spin decoherence directly in the time domain by pulsed experiments.
RESUMO
For evolving biological and biomedical applications of hybrid protein?lipid materials, understanding the behavior of the protein within the lipid mesophase is crucial. After more than two decades since the invention of the in meso crystallization method, a protein-eye view of its mechanism is still lacking. Numerous structural studies have suggested that integral membrane proteins preferentially partition at localized flat points on the bilayer surface of the cubic phase with crystal growth occurring from a local fluid lamellar L? phase conduit. However, studies to date have, by necessity, focused on structural transitions occurring in the lipid mesophase. Here, we demonstrate using small-angle neutron scattering that the lipid bilayer of monoolein (the most commonly used lipid for in meso crystallization) can be contrast-matched using deuteration, allowing us to isolate scattering from encapsulated peptides during the crystal growth process for the first time. During in meso crystallization, a clear decrease in form factor scattering intensity of the peptides was observed and directly correlated with crystal growth. A transient fluid lamellar L? phase was observed, providing direct evidence for the proposed mechanism for this technique. This suggests that the peptide passes through a transition from the cubic QII phase, via an L? phase to the lamellar crystalline Lc phase with similar layered spacing. When high protein loading was possible, the lamellar crystalline Lc phase of the peptide in the single crystals was observed. These findings show the mechanism of in meso crystallization for the first time from the perspective of integral membrane proteins.
Assuntos
Cristalização/métodos , Bicamadas Lipídicas/química , Glicerídeos/química , Difração de Raios XRESUMO
We combined the deuterium labeling and neutron reflectivity techniques to determine the fine structure of the electric double layer structure in an imidazolium ionic liquid (IL). For this, a simple and large scale deuteration method for imidazolium ILs was developed, where the deuteration level can be systematically controlled.
RESUMO
Plants from temperate climate zones are able to increase their freezing tolerance during exposure to low, above-zero temperatures in a process termed cold acclimation. During this process, several cold-regulated (COR) proteins are accumulated in the cells. One of them is COR15A, a small, intrinsically disordered protein that contributes to leaf freezing tolerance by stabilizing cellular membranes. The isolated protein folds into amphipathic α-helices in response to increased crowding conditions, such as high concentrations of glycerol. Although there is evidence for direct COR15A-membrane interactions, the orientation and depth of protein insertion were unknown. In addition, although folding due to high osmolyte concentrations had been established, the folding response of the protein under conditions of gradual dehydration had not been investigated. Here we show, using Fourier transform infrared spectroscopy, that COR15A starts to fold into α-helices already under mild dehydration conditions (97% relative humidity (RH), corresponding to freezing at -3°C) and that folding gradually increases with decreasing RH. Neutron diffraction experiments at 97 and 75% RH established that the presence of COR15A had no significant influence on the structure of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes. However, using deuterated POPC we could clearly establish that COR15A interacts with the membranes and penetrates below the headgroup region into the upper part of the fatty acyl chain region. This localization is in agreement with our hypothesis that COR15A-membrane interaction is at least, in part, driven by a hydrophobic interaction between the lipids and the hydrophobic face of the amphipathic protein α-helix.
Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Água/metabolismo , Fosfatidilcolinas/metabolismo , Conformação Proteica em alfa-Hélice , Dobramento de Proteína , Propriedades de SuperfícieRESUMO
Broadband phase-sensitive vibrational sum frequency generation (SFG) spectroscopy was utilized to study the molecular orientation of molecules adsorbed on dielectric solid substrates. A gold thin film was employed to generate a SFG signal as a local oscillator (LO). To simplify the phase measurement, a self-assembled monolayer (SAM) of octadecyltrichlorosilane (OTS) was used as a standard sample for phase correction of the phase-sensitive SFG measurements on the solid/air interface. It was demonstrated that the absolute orientation of molecules in the LB films on a fused quartz surface can be clearly distinguished by phase-sensitive SFG measurement. In addition, the observation on the SAM of d35-OTS reveals that the two C-H stretching modes for α-CH2 group are in opposite phase. Furthermore, by using the present phase-sensitive SFG setup, the orientation flipping of water molecules on positively and negatively charged solid/liquid interface can be distinguished.
Assuntos
Silanos/química , Ar , Eletrólitos/química , Ouro/química , Espectrofotometria Infravermelho , Propriedades de Superfície , Água/químicaRESUMO
Free fatty acids play a vital role as fuel for cells and in lipid metabolism. During lipid digestion in the gastrointestinal tract, triglycerides are hydrolyzed, resulting in free fatty acid and monoglyceride amphiphilic products. These components, together with bile salts, are responsible for the transport of lipids and poorly water-soluble nutrients and xenobiotics from the intestine into the circulatory system of the body. In this study, we show that the self-assembly of digestion products from medium-chain triglycerides (tricaprylin) in combination with bile salt and phospholipid is highly pH-responsive. Individual building blocks of caprylic acid within the mixed colloidal structures are mapped using a combination of small-angle X-ray and neutron scattering combined with both solvent contrast variation and selective deuteration. Modeling of the scattering data shows transitions in the size and shape of the micelles in combination with a transfer of the caprylic acid from the core of the micelles to the shell or into the bulk water upon increasing pH. The results help to understand the process of lipid digestion with a focus on colloidal structure formation and transformation for the delivery of triglyceride lipids and other hydrophobic functional molecules.
Assuntos
Caprilatos/química , Micelas , Concentração de Íons de HidrogênioRESUMO
Infrared (IR) microspectroscopy has the capacity to determine the extent of phase separation in polymer blends. However, a major limitation in the use of this technique has been its reliance on overlapping peaks in the IR spectra to differentiate between polymers of similar chemical compositions in blends. The objective of this study was to evaluate the suitability of deuteration of one mixture component to separate infrared (IR) absorption bands and provide image contrast in phase separated materials. Deuteration of poly(3-hydroxyoctanoate) (PHO) was achieved via microbial biosynthesis using deuterated substrates, and the characteristic C-D stretching vibrations provided distinct signals completely separated from the C-H signals of protonated poly(3-hydroxybutyrate) (PHB). Phase separation was observed in 50:50 (% w/w) blends as domains up to 100 µm through the film cross sections, consistent with earlier reports of phase separation observed by scanning electron microscopy (SEM) of freeze-fractured protonated polymer blends. The presence of deuterated phases throughout the film suggests there is some miscibility at smaller length scales, which increased with increasing PHB content. These investigations indicate that biodeuteration combined with IR microspectroscopy represents a useful tool for mapping the phase behavior of polymer blends.
Assuntos
Polímeros/química , Espectroscopia de Ressonância Magnética , Conformação Molecular , Espectrofotometria InfravermelhoRESUMO
Deuterated arylamines demonstrate great potential for use in optoelectronic devices, but their widespread utility requires a method for large-scale synthesis. The incorporation of these deuterated materials into optoelectronic devices also provides the opportunity for studies of the functioning device using neutron reflectometry based on the difference in the scattering length density between protonated and deuterated compounds. Here we report mild deuteration conditions utilising standard laboratory glassware for the deuteration of: diphenylamine, N-phenylnaphthylamine, N-phenyl-o-phenylenediamine and 1-naphthylamine (via H/D exchange in D2O at 80 °C, catalysed by Pt/C and Pd/C). These conditions were not successful in the deuteration of triphenylamine or N,N-dimethylaniline, suggesting that these mild conditions are not suitable for the deuteration of tertiary arylamines, but are likely to be applicable for the deuteration of other primary and secondary arylamines. The deuterated arylamines can then be used for synthesis of larger organic molecules or polymers with optoelectronic applications.
Assuntos
Deutério/química , Difenilamina/síntese química , Fenilenodiaminas/síntese química , Aminas , Difenilamina/química , Fenilenodiaminas/químicaRESUMO
Metal-organic framework materials (MOFs) have recently been shown in some cases to exhibit strong negative thermal expansion (NTE) behavior, while framework interpenetration has been found to reduce NTE in many materials. Using powder and single-crystal diffraction methods we investigate the thermal expansion behavior of interpenetrated Cu3(btb)2 (MOF-14) and find that it exhibits an anomalously large NTE effect. Temperature-dependent structural analysis shows that, contrary to other interpenetrated materials, in MOF-14 the large positive thermal expansion of weak interactions that hold the interpenetrating networks together results in a low-energy contractive distortion of the overall framework structure, demonstrating a new mechanism for NTE.
RESUMO
Lamellar unit cell reconstruction from neutron and X-ray diffraction data provides information about the disposition and position of molecules and molecular segments with respect to the bilayer. When supplemented with the judicious use of molecular deuteration, the technique probes the molecular interactions and conformations within the bilayer membrane and the water layer which constitute the crystallographic unit cell. The perspective is model independent, and potentially, with a higher degree of resolution than is available with other techniques. In the case of neutron diffraction the measurement consists of carefully normalised diffracted intensity under conditions of contrast variation of the water layer. The subsequent Fourier reconstruction of the unit cell is made using the phase information from variation of peak intensities with contrast. Although the phase problem is not as easily solved for the corresponding X-ray measurements, an intuitive approach can often suffice. Here we discuss the two complimentary techniques as probes of scattering length density profiles of a bilayer, and how such a perspective provides information about the location and orientation of molecules within or between lipid bilayers. Within the basic paradigm of lamellar phases this method has provided, for example, detailed insights into the location and interaction of cryoprotectants and stress proteins, of the mechanisms of actions of viral proteins, antimicrobial compounds and drugs, and the underlying structure of the stratum corneum. In this paper we review these techniques and provide examples of the systems that have been examined. We finish with a future outlook on the use of these techniques to improve our understanding of the interactions of membranes with biomolecules.
RESUMO
Ether-linked surfactants are widely used in formulations such as liquid soaps, but despite their ubiquity, it is unclear how n-ethylene glycol linkers in surfactants, such as sodium lauryl n-(ethylene glycol) sulfate (SLEnS), influence micellar packing in the presence of NaCl. In the present work, we probe the structure and hydration of ether linkers in micelles comprising monodisperse SLEnS surfactants using contrast-variation small-angle neutron scattering (CV-SANS) and small-angle X-ray scattering (SAXS). Using SAXS, changes in micellar structure were observed for SLEnS (n = 1, 2, or 3) arising from the extent of ethoxylation. Scattering profiles indicated a clear transition from elongated cylindrical micelles to shorter ellipsoidal micelles with increasing ethoxylation. With CV-SANS, micellar structure and linker geometries of SLE3S were able to be resolved, indicating that a change in micellar architecture is modulated by dehydration of the tri(ethylene glycol) linker, offering new insights into the role of water and ions in the self-assembly of this key class of surfactants.
RESUMO
π-A isotherms, atomic force microscopy (AFM), and sum frequency generation (SFG) vibrational spectroscopy are employed to investigate the molecular structure and lateral interactions in mixed monolayers of dioctadecyldimethylammonium chloride (DOAC) and stearyl alcohol (SA) at air/water and air/solid interfaces. To avoid possible interference between the two molecules in the SFG spectroscopic measurements, perprotonated DOAC and perdeuterated SA (dSA) were used. The thermodynamic analyses for the π-A isotherms show that DOAC is miscible with dSA. SFG observations reveal that DOAC molecules become conformationally ordered as dSA molecules are introduced into the monolayer. AFM observations demonstrate coexistence of DOAC-rich and dSA-rich domains in the mixed monolayer with ratios different from their initial composition in the subphase. The present study suggests that DOAC molecules in the mixed monolayer are condensed by mixing with dSA in which the repulsive interactions between positively charged head groups of the DOAC molecules are largely reduced along with an increase of van der Waals interactions with dSA.
Assuntos
Álcoois Graxos/química , Compostos de Amônio Quaternário/química , Microscopia de Força Atômica , Estrutura Molecular , Tamanho da Partícula , Propriedades de SuperfícieRESUMO
Oleic acid and its phospholipid derivatives are fundamental to the structure and function of cellular membranes. As a result, there has been increasing interest in the availability of their deuterated forms for many nuclear magnetic resonance, infrared, mass spectroscopy and neutron scattering studies. Here, we present for the first time a straightforward, large-scale (gram quantities) synthesis of highly deuterated [D32 ]oleic acid by using multiple, yet simple and high yielding reactions. The precursors for the synthesis of [D32 ]oleic acid are [D14 ]azelaic acid and [D17 ]nonanoic acid, which were obtained by complete deuteration (>98% D) of their (1) H forms by using metal catalysed hydrothermal H/D exchange reactions. The oleic acid was produced with ca. 94% D isotopic purity and with no contamination by the trans-isomer (elaidic acid). The subsequent synthesis of [D64 ]dioleoyl-sn-glycero-3-phosphocholine from [D32 ]oleic acid is also described.
Assuntos
Deutério/química , Glicerilfosforilcolina/análogos & derivados , Ácido Oleico/química , Ácido Oleico/síntese química , Técnicas de Química Sintética , Ácidos Dicarboxílicos/química , Ácidos Graxos/química , Glicerilfosforilcolina/síntese química , Glicerilfosforilcolina/química , Metilação , FosfatidilcolinasRESUMO
HYPOTHESIS: Unravelling the structural diversity of cellular membranes is a paramount challenge in life sciences. In particular, lipid composition affects the membrane collective behaviour, and its interactions with other biological molecules. EXPERIMENTS: Here, the relationship between membrane composition and resultant structural features was investigated by surface pressure-area isotherms, Brewster angle microscopy and neutron reflectometry on in vitro membrane models of the mammalian plasma and endoplasmic-reticulum-Golgi intermediate compartment membranes in the form of Langmuir monolayers. Natural extracted yeast lipids were used because, unlike synthetic lipids, the acyl chain saturation pattern of yeast and mammalian lipids are similar. FINDINGS: The structure of the model membranes, orthogonal to the plane of the membrane, as well as their lateral packing, were found to depend strongly on their specific composition, with cholesterol having a major influence on the in-plane morphology, yielding a coexistence of liquid-order and liquid-disorder phases.
Assuntos
Microscopia , Saccharomyces cerevisiae , Animais , Membrana Celular/química , Fosfolipídeos/química , MamíferosRESUMO
Arrays of nanoparticle-supported lipid bilayers (nanoSLB) are lipid-coated nanopatterned interfaces that provide a platform to study curved model biological membranes using surface-sensitive techniques. We combined scattering techniques with direct imaging, to gain access to sub-nanometer scale structural information on stable nanoparticle monolayers assembled on silicon crystals in a noncovalent manner using a Langmuir-Schaefer deposition. The structure of supported lipid bilayers formed on the nanoparticle arrays via vesicle fusion was investigated using a combination of grazing incidence X-ray and neutron scattering techniques complemented by fluorescence microscopy imaging. Ordered nanoparticle assemblies were shown to be suitable and stable substrates for the formation of curved and fluid lipid bilayers that retained lateral mobility, as shown by fluorescence recovery after photobleaching and quartz crystal microbalance measurements. Neutron reflectometry revealed the formation of high-coverage lipid bilayers around the spherical particles together with a flat lipid bilayer on the substrate below the nanoparticles. The presence of coexisting flat and curved supported lipid bilayers on the same substrate, combined with the sub-nanometer accuracy and isotopic sensitivity of grazing incidence neutron scattering, provides a promising novel approach to investigate curvature-dependent membrane phenomena on supported lipid bilayers.
Assuntos
Bicamadas Lipídicas , Nanopartículas , Bicamadas Lipídicas/química , Raios X , Incidência , NêutronsRESUMO
Sum frequency generation (SFG) vibrational spectroscopy is employed to investigate the reversible, photoinduced spiroâmerocyanine isomerization of a self-assembled monolayer, the result of attachment of nitrospiropyran to a gold surface using a dithiolane anchoring group. The attachment of these molecular "alligator clips" to spiropyran molecules provide an easily accessible method to self-assemble a robust monolayer of spiropyran on a gold surface, which allows photoswitching of the spiropyran units. Probing the symmetric and antisymmetric stretching modes of the nitro group allows the determination of the structural orientation of the charged moiety with respect to the surface normal as well as the isomerization rates under photoinduced switching conditions. The photoisomerization of the spiropyran SAM on the gold surface is much faster than the rates of switching spiropyrans in a solid crystalline form, and the rate of thermal relaxation of the opened to closed form in this study is found to be on the same time scale as the relaxation of spiropyran when present in solutions with polar solvents.
Assuntos
Benzopiranos/química , Indóis/química , Nitrocompostos/química , Benzopiranos/síntese química , Ouro/química , Indóis/síntese química , Estrutura Molecular , Nitrocompostos/síntese química , Processos Fotoquímicos , Análise Espectral , Propriedades de SuperfícieRESUMO
Magnesium doped Amorphous Calcium Carbonate was synthesised from precursor solutions containing varying amounts of calcium, magnesium, H2O and D2O. The Mg/Ca ratio in the resultant Amorphous Calcium Carbonate was found to vary linearly with the Mg/Ca ratio in the precursor solution. All samples crystallised as aragonite. No Mg was found in the final aragonite crystals. Changes in the Mg to Ca ratio were found to only marginally effect nucleation rates but strongly effect crystal growth rates. These results are consistent with a dissolution-reprecipitation model for aragonite formation via an Amorphous Calcium Carbonate intermediate.