Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 21(11): 1470, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32939095

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Nat Immunol ; 21(5): 546-554, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32231300

RESUMO

High-dose radiation activates caspases in tumor cells to produce abundant DNA fragments for DNA sensing in antigen-presenting cells, but the intrinsic DNA sensing in tumor cells after radiation is rather limited. Here we demonstrate that irradiated tumor cells hijack caspase 9 signaling to suppress intrinsic DNA sensing. Instead of apoptotic genomic DNA, tumor-derived mitochondrial DNA triggers intrinsic DNA sensing. Specifically, loss of mitochondrial DNA sensing in Casp9-/- tumors abolishes the enhanced therapeutic effect of radiation. We demonstrated that combining emricasan, a pan-caspase inhibitor, with radiation generates synergistic therapeutic effects. Moreover, loss of CASP9 signaling in tumor cells led to adaptive resistance by upregulating programmed death-ligand 1 (PD-L1) and resulted in tumor relapse. Additional anti-PD-L1 blockade can further overcome this acquired immune resistance. Therefore, combining radiation with a caspase inhibitor and anti-PD-L1 can effectively control tumors by sequentially blocking both intrinsic and extrinsic inhibitory signaling.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Caspase 9/metabolismo , Inibidores de Caspase/uso terapêutico , Quimiorradioterapia/métodos , Neoplasias Colorretais/terapia , Ácidos Pentanoicos/uso terapêutico , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Caspase 9/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transplante de Neoplasias , Transdução de Sinais , Regulação para Cima
3.
Planta ; 259(3): 59, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38311641

RESUMO

MAIN CONCLUSION: The composition, diversity and co-occurrence patterns of the rhizosphere microbiota of E. ulmoides were significantly influenced by environmental factors, and which were potentially associated with the contents of pharmacological active ingredients. Eucommia ulmoides is an important perennial medicinal plant. However, little is known about the interactions among microbiota, environmental factors (EFs), and pharmacological active ingredients (PAIs) of E. ulmoides. Herein, we analyzed the interactions among rhizosphere microbiota-EFs-PAIs of E. ulmoides by amplicon sequencing and multi-analytical approach. Our results revealed variations in the dominant genera, diversity, and co-occurrence networks of the rhizosphere microbiota of E. ulmoides across different geographical locations. Notably, available nitrogen exerted the strongest influence on fungal dominant genera, while pH significantly impacted bacterial dominant genera. Rainfall and relative humidity exhibited pronounced effects on the α-diversity of fungal groups, whereas available phosphorus influenced the number of nodes in fungal co-occurrence networks. Altitude and total phosphorus had substantial effects on the average degree and nodes in bacterial co-occurrence networks. Furthermore, the dominant genera, diversity and co-occurrence network of rhizosphere microbiota of E. ulmoides were significantly correlated with the content of PAIs. Specifically, the abundance of rhizosphere dominant genera Filobasidium, Hannaella and Nitrospira were significantly correlated with the content of pinoresinol diglucoside (PD). Similarly, the abundance of Vishniacozyma and Bradyrhizobium correlated significantly with the content of geniposidic acid (GC), while the abundance of Gemmatimonas was significantly correlated with the content of aucubin. Moreover, the bacterial co-occurrence network parameters including average degree, density, and edge, were significantly correlated with the content of GC and aucubin. The α-diversity index Chao1 also displayed a significant correlation with the content of PD. These findings contribute to a more comprehensive understanding of the interactions between medicinal plants and microbes.


Assuntos
Eucommiaceae , Glucosídeos Iridoides , Lignanas , Microbiota , Plantas Medicinais , Rizosfera , Eucommiaceae/química , Bactérias/genética , Fósforo , Microbiologia do Solo , Solo
4.
Eur J Neurosci ; 58(4): 3132-3149, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37501373

RESUMO

Cerebrospinal fluid (CSF) phosphorylated tau231 (P-tau231) is associated with neuropathological outcomes of Alzheimer's disease (AD). The invasive access of cerebrospinal fluid has greatly stimulated interest in the identification of blood-based P-tau231, and the recent advent of single-molecule array assay for the quantification of plasma P-tau231 may provide a turning point to evaluate the usefulness of P-tau231 as an AD-related biomarker. Yet, in the plasma P-tau231 literature, findings with regard to its diagnostic utility have been inconsistent, and thus, we aimed to statistically investigate the potential of plasma P-tau231 in the context of AD via meta-analysis. Publications on plasma P-tau231 were systematically retrieved from PubMed, EMBASE, the Cochrane library and Web of Science databases. A total of 10 studies covering 2007 participants were included, and we conducted random-effect or fixed-effect meta-analysis, sensitivity analysis and publication bias analysis using the STATA SE 14.0 software. According to our quantitative integration, plasma P-tau231 increased from cognitively unimpaired (CU) populations to mild cognitive impairment to AD and showed significant changes in pairwise comparisons of AD, mild cognitive impairment and CU. Plasma P-tau231 level was significantly higher in CU controls with positive amyloid-ß (Aß) status compared with Aß-negative CU group. Additionally, the excellent diagnostic accuracy of plasma P-tau231 for asymptomatic Aß pathology was verified by the pooled value of area under the receiver operating characteristic curves (standard mean difference [95% confidence interval]: .75 [.69, .81], P < 0.00001). Overall, the increased plasma P-tau231 concentrations were found in relation to the early development and progression of AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico , Biomarcadores
5.
Curr Microbiol ; 80(9): 309, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37535152

RESUMO

The process of urbanization is one of the most important human-driven activities that reshape the natural distribution of soil microorganisms. However, it is still unclear about the effects of urbanization on the different taxonomic soil bacterial community dynamics. In this study, we collected soil samples from highly urbanized the regions of Yangtze River Delta, Beijing-Tianjin-Hebei in China, to explore the bio-geographic patterns, assembly processes, and symbiotic patterns of abundant, moderate, and rare bacterial communities. We found that the number of moderate and rare taxa species were lower than that of abundant taxa, but their α-diversity index was higher than abundant taxa. Proteobacteria, Acidobacteria, Actinobacteria, Bacterioidetes, and Chloroflexi were the dominant phylum across all three sub-communities. And the ß-diversity value of rare taxa was significantly higher than those of moderate and abundant taxa. Abundant, moderate, and rare sub-communities showed a weak distance-decay relationship, and the moderate taxa had the highest turnover rate of microbial geography in the context of urbanization. Diffusion limitation was the dominant process of soil bacterial community assembly. The co-occurrence networks of abundant, moderate, and rare taxa were dominated by positive correlations. The network of moderate taxa had the highest modularity, followed by abundant taxa. The main functions of the abundant, moderate, and rare taxa were related to Chemoheterotrophy and N transformations. Redundancy analysis showed that the dispersal limitation, climate, and soil properties were the main factors dominating bio-geographic differences in soil bacterial community diversity. We conclude that human-dominated urbanization processes have generated more uncertain survival pressures on soil bacteria, which resulted in a stronger linkage but weak bio-geographic variation for soil bacteria. In the future urban planning process, we suggest that such maintenance of native vegetation and soil types should be considered to maintain the long-term stability of local microbial ecosystem functions.


Assuntos
Ecossistema , Solo , Humanos , Parques Recreativos , Microbiologia do Solo , Bactérias/genética
6.
Indian J Microbiol ; 63(3): 324-336, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37781006

RESUMO

Members of the plant mycobiota are all associated to varying degrees with the development of plant diseases. Although many reports on the plant mycobiota are well documented, the relationships between mycobiota of Rosa roxburghii and plant diseases are poorly understood. Mutual interactions and extent of the roles of microbial communities associated with R. roxburghii and the source of pathogens are still unclear, and more research is needed on the health benefits of this ecologically important population. Using high-throughput sequencing, we analyzed the mycobiota composition and ecological guilds of the rhizosphere, root, and phyllosphere of healthy and diseased R. roxburghii from the Tianfu R. roxburghii Industrial Park in Panzhou city, Guizhou province. Analysis of community composition showed that the relative abundance of pathogens of leaf spot, including Alternaria, Pestalotiopsis and Neofusicoccum in the phyllosphere of diseased plant (LD), were 1.15%, 0.15% and 0.06%, and the relative abundance of Alternaria and Pestalotiopsis were 0.96% and 0.58% in healthy plant (LH). The alpha diversity indices indicated that fungal diversity was higher in healthy plants compared to diseased plants in each compartment. The alpha diversity index of fungi in the phyllosphere (LH) of healthy R. roxburghii, including Shannon, Chao-1, and Faith-pd indices, was 1.02, 81.50 and 10.42 higher than that of the diseased (LD), respectively. The fungi in the rhizosphere of healthy was 1.03, 59.00 and 5.56 higher than the diseased, respectively. The Shannon index of fungi in the root of healthy was 0.29 higher than that of diseased. Principal Coordinate analysis and ANOSIM results showed that there were significant differences in mycobiota composition between healthy and diseased phyllospheres (P < 0.05), as well as rhizosphere fungal community, while there was no significant difference between healthy and diseased roots (P > 0.05). Linear discriminant analysis effect size revealed that, at different taxonomic levels, there were significantly different taxa between the healthy and diseased plants in each compartment. The ecological guilds differed between healthy and diseased plants according to the FUNGuild analysis. For example, of healthy compared to diseased plants, the percentages of "lichenized-undefined saprotroph" were increased by 2.34%, 0.44%, and 1.54% in the phyllosphere, root, and rhizosphere, respectively. In addition, the plant pathogens existed in each compartment of R. roxburghii, but the percentages of "plant pathogen" were increased by 1.16% in the phyllosphere of diseased compared to healthy plants. Together, the ecological guild and co-occurrence network indicated that the potential pathogens of leaf spot were mainly found in the phyllosphere. This study explained one of pathogen origin of leaf spots of R. roxburghii by the microbial community ecology, which will provide the new insights for identification of plant pathogens.

7.
Neurol Sci ; 43(11): 6433-6440, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35971044

RESUMO

Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is a rare autosomal dominant disorder caused by mutations in the colony-stimulating factor 1 receptor (CSF1R) gene. As of 2022, more than 100 different CSF1R mutations were reported in patients with CSF1R-related leukoencephalopathy. In this case report, we describe ALSP in a previously healthy 46-year-old woman who presented with memory impairment, poor interpersonal behavior, and decreased verbal fluency. Brain magnetic resonance imaging (MRI) showed confluent white matter changes and atrophy of the corpus callosum. Whole-exome sequencing identified a novel splice-site mutation (C.1858 + 5G > A) in intron 13 of the CSF1R gene, resulting in an intron 12 retention and an exon 13 deletion of CSF1R mRNA.


Assuntos
Leucoencefalopatias , Feminino , Humanos , Pessoa de Meia-Idade , Encéfalo/diagnóstico por imagem , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/genética , Imageamento por Ressonância Magnética , Mutação/genética , Neuroglia , Idade de Início
8.
Curr Microbiol ; 79(12): 377, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329318

RESUMO

Hospital grassplot soil is an important repository of pathogenic fungi exposed to the hospital environment, and the diffusion of these fungi-containing soil particles in the air increases the risk of nosocomial fungal infections. In this study, from the perspective of soil microbes-plant holobiont, four medicinal plants Mirabilis jalapa, Artemisia argyi, Viola philippica, and Plantago depressa were used as materials, based on ITS high-throughput amplicon sequencing and simulated pot experiments to explore the effect of medicinal plants on the fungal community in hospital grassplot soil, in order to provide a new exploration for hospital grassplot soil remediation. The results showed that the fungal community ecological guilds in primary test soil was mainly pathogen, and the abundance of animal pathogen with potential threats to human reached 61.36%. After planting medicinal plants, the composition and function of soil fungal community changed significantly. Although this change varied with plant species and growth stages, all samples collected in the pot experiment showed that the pathogen abundance decreased and the saprotroph abundance increased. In addition, 45 of the 46 core fungal genera defined in all potted samples were present in primary test soil, and many of them were human potential pathogens. These findings imply that the idea of enhancing soil quality in hospital grassplot soil by planting specific plants is feasible. However, the initial fungal community of the hospital grassplot soil has a certain stability, and it is difficult to completely eliminate the threat of pathogenic fungi by planting medicinal plants.


Assuntos
Mirabilis , Micobioma , Plantas Medicinais , Animais , Humanos , Solo , Microbiologia do Solo , Fungos/genética , Hospitais
9.
Angew Chem Int Ed Engl ; 60(50): 26320-26326, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34661332

RESUMO

Herein, we report that genetically programmable fusion cellular vesicles (Fus-CVs) displaying high-affinity SIRPα variants and PD-1 can activate potent antitumor immunity through both innate and adaptive immune effectors. Dual-blockade of CD47 and PD-L1 with Fus-CVs significantly increases the phagocytosis of cancer cells by macrophages, promotes antigen presentation, and activates antitumor T-cell immunity. Moreover, the bispecific targeting design of Fus-CVs ensures better targeting on tumor cells, but less on other cells, which reduces systemic side effects and enhances therapeutic efficacies. In malignant melanoma and mammary carcinoma models, we demonstrate that Fus-CVs significantly improve overall survival of model animals by inhibiting post-surgery tumor recurrence and metastasis. The Fus-CVs are suitable for protein display by genetic engineering. These advantages, integrated with other unique properties inherited from source cells, make Fus-CVs an attractive platform for multi-targeting immune checkpoint blockade therapy.


Assuntos
Inibidores de Checkpoint Imunológico/imunologia , Imunoterapia , Neoplasias/terapia , Proteínas Recombinantes de Fusão/imunologia , Animais , Antígeno B7-H1/imunologia , Antígeno CD47/imunologia , Linhagem Celular Tumoral , Feminino , Camundongos , Neoplasias/imunologia , Proteínas Recombinantes de Fusão/genética
10.
Curr Microbiol ; 77(11): 3623-3632, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32767065

RESUMO

The study aimed to explore the bacterial community composition and the functions of core microbiota in Eucommia ulmoides bark. The bark samples of E. ulmoides were collected from Wangcang Sichuan Province, Cili Hunan Province, and Zunyi Guizhou Province, in China, respectively. Through the high-throughput sequencing methods and techniques, the community composition, core microbiota, and function of the bacteria were studied. The bacterial community of E. ulmoides bark consisted of 9 phyla, 11 classes, 22 orders, 28 families, 31 genera, and 37 OTUs. At the genus level, the dominant genus was the unclassified bacteria of Cyanobacteria, with a relative abundance of 97.01%. The bacterial communities of E. ulmoides bark from different areas have their unique units except for the common microbiota. The core microbiota of bacteria included an unclassified genus of Cyanobacteria, an unclassified genus of Mitochondria, Pseudomonas, Sphingobium, Rhizobium, Novosphingobium, Enterobacter, Rhodococcus, Curtobacterium, and Ralstonia. FAPROTAX function prediction suggested that the core microbiota has a substantial potential for photoautotrophy, phototrophy, aerobic chemoheterotrophy, chemoheterotrophy. Ten taxa composed the core microbiota, and the majority of them were related to the pharmacologically active ingredients of E. ulmoides bark. The research provides a scientific basis for the biological marker of genuineness and microbial technology for improving the content of medicinal ingredients of E. ulmoides.


Assuntos
Eucommiaceae , Microbiota , Bactérias/genética , China , Humanos , Casca de Planta
11.
Zhongguo Zhong Yao Za Zhi ; 44(6): 1126-1134, 2019 Mar.
Artigo em Zh | MEDLINE | ID: mdl-30989974

RESUMO

Based on high-throughput sequencing and metagenomic technology,the community composition and ecological functions of endophytic fungi in the bark of Eucommia ulmoides from three producing areas,Fengxiang town in Zunyi county of Guizhou province,Lingyang town of Cili county of Hunan province and Mumen town of Wangcang county of Sichuan province,were analyzed. A total of110 865 effective sequences of endophytic fungi were obtained in the study. The corresponding fungal group of OTUs after clustering belonged to 3 phyla( Ascomycota,Basidiomycota,Zygomycota),10 classes,25 orders,41 families,57 genera and 74 species. Among them,the dominant genera of Sichuan Wangcang Bark of E. ulmoides( EWP) was an unclassified genus in the Nectriaceae of the Crimsonaceae,with a relative abundance of 54. 79%; The dominant species of Hunan Cili Bark of E. ulmoides( ECP) was the unclassified genus of Ascomycota,with a relative abundance of 39. 97% and the dominant species of Guizhou Zunyi bark( EZP) was Lophiostoma,and its relative abundance was 47. 07%. The analysis of α diversity indicated that the shannon diversity index of endophytic fungi from different places was as follows: ECP: 1. 340 2>EZP: 1. 380 4 > EWP: 1. 168 3. The simpson diversity index was: EWP( 0. 427 3) >EZP( 0. 332 5) > ECP( 0. 313 6). FUNGuild software platform analysis displayed that endophytic fungi of E. ulmoides bark from three producing areas contained the following 14 functional groups: plant pathogen,animal pathogen and endophyte et al.,the number of functional groups in the 3 samples of E. ulmoides reached up 8 genera and exceeded one half of the total number. Correlation analysis of Canonical correspondence analysis( CCA) between endophytic fungal community diversity and four active compounds of E. ulmoides were analyzed,the results showed that the contents of pinoresinol diglucoside and chlorogenic acid,to a certain extend,had a positive correlation with an unclassified genus of Davidiellaceae,Mortierella,Chaetomium and Pestalotiopsis from the endophytic fungi in EWP sample.


Assuntos
Ascomicetos , Eucommiaceae , Animais , Ácido Clorogênico , Ecossistema , Fungos
12.
Plant Mol Biol ; 95(3): 215-225, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28884266

RESUMO

KEY MESSAGE: Through high-throughput sequencing, we compared the relative expression levels of miRNA in three full-sib Populus triploid populations with that in their parents and one diploid hybrid population. We found similar numbers of miRNAs differentially expressed between the parents and the four progeny hybrid populations. In addition, unbalanced parental expression level dominance of miRNAs were found in the three allotriploid and interspecific hybrid populations, which may reprogram gene expression networks and contribute to the growth of Populus hybrids. These results indicated that hybridization has a great impact on the miRNA expression variation in the newly synthesized Populus triploid and diploid hybrid populations. However, we also found no significant differences in miRNA expression among one diploid and three triploid hybrid populations, hinting that miRNA abundances do not increase with the genome content. No dosage effect of miRNA expression could lead to dosage-dependent negative effects on target genes and their downstream pathway in polyploids. We speculate that polyploids may gain advantages from the slight decrease in miRNA regulation, suggesting an important molecular mechanism of polyploid advantage. Hybridization with three types of induced 2n gametes transmitted different parental heterozygosities has been proven as an efficient method for Populus triploid production. Several researches have shown that miRNA could be non-additively expressed in allopolyploids. However, it is still unclear whether the non-additively expressed miRNAs result from the effect of hybridization or polyploidization, and whether a dose response to the additional genomic content exists for the expression of miRNA. Toward this end, through high-throughput sequencing, we compared the expression levels of miRNA in three full-sib Populus triploid populations with that in their parents and one interspecific hybrid population. We found similar numbers of miRNAs differentially expressed between the parents and the four progeny hybrid populations. Unbalanced parental expression level dominance of miRNAs were found in the three triploid and diploid hybrid populations, which may reprogram gene expression networks and affect the growth of Populus hybrids. These results indicated that hybridization has a great impact on the miRNA expression variation in the newly synthesized Populus triploid and diploid hybrid populations. However, we also found no significant differences in miRNA expression among the three triploid populations and the diploid hybrid population. No dosage effect of miRNA expression could lead to dosage-dependent negative effects on target genes and their downstream pathway in polyploids. We speculate that polyploids may gain advantages from the decrease in miRNA negative regulation, suggesting an important molecular mechanism of polyploid advantage.


Assuntos
Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Populus/genética , RNA de Plantas/genética , Triploidia , Cruzamentos Genéticos , Diploide , Perfilação da Expressão Gênica/métodos , Variação Genética , Genética Populacional , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Hibridização Genética , Poliploidia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Plant J ; 80(2): 282-91, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25073546

RESUMO

Heteroduplex DNA (hDNA) generated during homologous recombination (HR) is an important component that shapes genetic diversity in sexually reproducing organisms. However, studies of this process in higher plants are limited. This is because hDNAs are difficult to capture in higher plants as their reproductive developmental model only produces normal gametes and does not preserve the mitotic products of the post-meiotic segregation (PMS) process which is crucial for studying hDNAs. In this study, using the model system for tree and woody perennial plant biology (Populus), we propose a strategy for characterizing hDNAs in higher plants. We captured hDNAs by constructing triploid hybrids originating from a cross between unreduced 2n eggs (containing hDNA information as a result of inhibition chromosome segregation at the PMS stage) with normal male gametes. These triploid hybrids allowed us to detect the frequency and location of persistent hDNAs resulting from HR at the molecular level. We found that the frequency of persistent hDNAs, which ranged from 5.3 to 76.6%, was related to locations of the simple sequence repeat markers at the chromosomes, such as the locus-centromere distance, the surrounding DNA sequence and epigenetic information, and the richness of protein-coding transcripts at these loci. In summary, this study provides a method for characterizing persistent hDNAs in higher plants. When high-throughput sequencing techniques can be incorporated, genome-wide persistent hDNA assays for higher plants can be easily carried out using the strategy presented in this study.


Assuntos
DNA de Plantas/genética , Ácidos Nucleicos Heteroduplexes , Plantas/genética , Recombinação Homóloga
14.
Rev Neurosci ; 25(5): 653-62, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24867281

RESUMO

Multiple system atrophy (MSA) is a neurodegenerative disease that presents as an autonomic dysfunction in combination with varying degrees of parkinsonism and cerebellar ataxia. It comprises a pathologically widespread neuronal loss accompanied by gliosis in the basal ganglia, cerebellum, pons, inferior olivary nuclei, and spinal cord. As a rapidly progressive disorder, MSA develops with autonomic dysfunction and mobility problems in several years. These autonomic and motor function impairments severely disrupt the patients' daily lives. Currently, the therapeutic management of this disease is only symptomatic. An early and accurate diagnosis is helpful not only in the clinical field but also in the research for new therapies. The biomarkers in cerebrospinal fluid (CSF) and serum facilitate the differential diagnosis of MSA when the disease is difficult to recognize based on the clinical features or even presymptomatic. This review will summarize the biomarkers present in CSF that are potential candidates to accurately differentiate MSA from other similar neurodegenerative disorders.


Assuntos
Atrofia de Múltiplos Sistemas/diagnóstico , Proteínas do Tecido Nervoso/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Barreira Hematoencefálica/metabolismo , Humanos , Atrofia de Múltiplos Sistemas/líquido cefalorraquidiano , Atrofia de Múltiplos Sistemas/metabolismo , Proteínas do Tecido Nervoso/metabolismo
15.
Microbiol Res ; 286: 127798, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38964073

RESUMO

Phyllosphere microbiota play a crucial role in plant productivity and adaptation, and the abundant and rare microbial taxa often possess distinct characteristics and ecological functions. However, it is unclear whether the different subcommunities of phyllosphere microbiota respond variably to the factors that influence their formation, which limits the understanding of community assembly. The effects of two phytohormones, namely, indole-3-acetic acid (IAA) and N6-(delta 2-isopentenyl)-adenine (IP), on the phyllosphere microbial subcommunities of Eucommia ulmoides were investigated using potted experiments. The results demonstrated that the phytohormones induced significant variations in the composition, diversity, and function of the abundant microbial subcommunity in the phyllosphere of E. ulmoides, however, their effects on the rare subcommunity were negligible, and their effects on the moderate subcommunity were between those of the abundant and rare taxa. The phytohormones also induced significant alterations in the phenotypic and physiological properties of E. ulmoides, which indirectly affected the phyllosphere microbial community. Leaf thickness and average leaf area were the main phenotypic variables that affected the composition of the phyllosphere microbial community. The total alkaloid content and activity of superoxide dismutase (SOD) were the main physiological variables that affected the composition of the phyllosphere microbial community. The phenotypic and physiological indices of E. ulmoides explained the variations in the phyllosphere microbial subcommunities in descending order: abundant > moderate > rare taxa. These variables explained a significant proportion of the variations in the abundant taxa, and an insignificant proportion of the variations in the rare taxa. This study improves our understanding of the assembly of the phyllosphere microbiota, which provides important theoretical knowledge for future sustainable agriculture and forestry management based on the precise regulation of phyllosphere microbiota.

16.
MycoKeys ; 102: 301-315, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495535

RESUMO

Rich and diverse fungal species occur in different habitats on the earth. Many new taxa are being reported and described in increasing numbers with the advent of molecular phylogenetics. However, there are still a number of unknown fungi that have not yet been discovered and described. During a survey of fungal diversity in different habitats in China, we identified and proposed two new species, based on the morphology and multi-gene phylogenetic analyses. Herein, we report the descriptions, illustrations and molecular phylogeny of the two new species, Bisifusariumkeratinophilumsp. nov. and Ovatosporasinensissp. nov.

17.
Rev Neurosci ; 34(6): 695-718, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37076953

RESUMO

Alzheimer's disease (AD) is the most common type of dementia in the elderly and causes neurodegeneration, leading to memory loss, behavioral disorder, and psychiatric impairment. One potential mechanism contributing to the pathogenesis of AD may be the imbalance in gut microbiota, local and systemic inflammation, and dysregulation of the microbiota-gut-brain axis (MGBA). Most of the AD drugs approved for clinical use today are symptomatic treatments that do not improve AD pathologic changes. As a result, researchers are exploring novel therapeutic modalities. Treatments involving the MGBA include antibiotics, probiotics, transplantation of fecal microbiota, botanical products, and others. However, single-treatment modalities are not as effective as expected, and a combination therapy is gaining momentum. The purpose of this review is to summarize recent advances in MGBA-related pathological mechanisms and treatment modalities in AD and to propose a new concept of combination therapy. "MGBA-based multitherapy" is an emerging view of treatment in which classic symptomatic treatments and MGBA-based therapeutic modalities are used in combination. Donepezil and memantine are two commonly used drugs in AD treatment. On the basis of the single/combined use of these two drugs, two/more additional drugs and treatment modalities that target the MGBA are chosen based on the characteristics of the patient's condition as an adjuvant treatment, as well as the maintenance of good lifestyle habits. "MGBA-based multitherapy" offers new insights for the treatment of cognitive impairment in AD patients and is expected to show good therapeutic results.


Assuntos
Doença de Alzheimer , Humanos , Idoso , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Eixo Encéfalo-Intestino , Encéfalo , Inflamação/tratamento farmacológico
18.
Front Neurosci ; 17: 1130730, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37179559

RESUMO

Being isolated from the peripheral system by the blood-brain barrier, the brain has long been considered a completely impervious tissue. However, recent findings show that the gut microbiome (GM) influences gastrointestinal and brain disorders such as Alzheimer's disease (AD). Despite several hypotheses, such as neuroinflammation, tau hyperphosphorylation, amyloid plaques, neurofibrillary tangles, and oxidative stress, being proposed to explain the origin and progression of AD, the pathogenesis remains incompletely understood. Epigenetic, molecular, and pathological studies suggest that GM influences AD development and have endeavored to find predictive, sensitive, non-invasive, and accurate biomarkers for early disease diagnosis and monitoring of progression. Given the growing interest in the involvement of GM in AD, current research endeavors to identify prospective gut biomarkers for both preclinical and clinical diagnoses, as well as targeted therapy techniques. Here, we discuss the most recent findings on gut changes in AD, microbiome-based biomarkers, prospective clinical diagnostic uses, and targeted therapy approaches. Furthermore, we addressed herbal components, which could provide a new venue for AD diagnostic and therapy research.

19.
Front Microbiol ; 14: 1074468, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36876069

RESUMO

Cantharellus cibarius, an ectomycorrhizal fungus belonging to the Basidiomycetes, has significant medicinal and edible value, economic importance, and ecological benefits. However, C. cibarius remains incapable of artificial cultivation, which is thought to be due to the presence of bacteria. Therefore, much research has focused on the relationship between C. cibarius and bacteria, but rare bacteria are frequently overlooked, and symbiotic pattern and assembly mechanism of the bacterial community associated with C. cibarius remain unknown. In this study, the assembly mechanism and driving factors of both abundant and rare bacterial communities of C. cibarius were revealed by the null model. The symbiotic pattern of the bacterial community was examined using a co-occurrence network. Metabolic functions and phenotypes of the abundant and rare bacteria were compared using METAGENassist2, and the impacts of abiotic variables on the diversity of abundant and rare bacteria were examined using partial least squares path modeling. In the fruiting body and mycosphere of C. cibarius, there was a higher proportion of specialist bacteria compared with generalist bacteria. Dispersal limitation dominated the assembly of abundant and rare bacterial communities in the fruiting body and mycosphere. However, pH, 1-octen-3-ol, and total phosphorus of the fruiting body were the main driving factors of bacterial community assembly in the fruiting body, while available nitrogen and total phosphorus of the soil affected the assembly process of the bacterial community in the mycosphere. Furthermore, bacterial co-occurrence patterns in the mycosphere may be more complex compared with those in the fruiting body. Unlike the specific potential functions of abundant bacteria, rare bacteria may provide supplementary or unique metabolic pathways (such as sulfite oxidizer and sulfur reducer) to enhance the ecological function of C. cibarius. Notably, while volatile organic compounds can reduce mycosphere bacterial diversity, they can increase fruiting body bacterial diversity. Findings from this study further, our understanding of C. cibarius-associated microbial ecology.

20.
J Fungi (Basel) ; 9(6)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37367581

RESUMO

The genus Acrophialophora belongs to the family Chaetomiaceae. With the addition of new species and transferred species from other genera, the genus Acrophialophora has expanded. In this study, eight new species related to Acrophialophora were isolated from soil samples in China. Using muti-locus phylogenetic (ITS, LSU, tub2 and RPB2) analysis combined with morphological characteristics, eight new species (Acrophialophora curvata, A. fujianensis, A. guangdongensis, A. longicatenata, A. minuta, A. multiforma, A. rhombica, and A. yunnanensis) are described. Descriptions, illustrations, and notes of the new species are also provided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA