Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Trends Genet ; 35(7): 542-551, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31130395

RESUMO

The cohesin protein complex mediates sister chromatid cohesion to ensure accurate chromosome segregation, and also influences gene transcription in higher eukaryotes. Modest deficits in cohesin function that do not alter chromosome segregation cause significant birth defects. The mechanisms by which cohesin participates in gene regulation have been studied in Drosophila, revealing that it is involved in gene activation by transcriptional enhancers and epigenetic gene silencing mediated by Polycomb group proteins. Recent studies reveal that early DNA replication origins are important for determining which genes associate with cohesin, and suggest that cohesin at replication origins is important for establishing both sister chromatid cohesion and enhancer-promoter communication.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/genética , Transcrição Gênica , Animais , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Regiões Promotoras Genéticas , Origem de Replicação , Troca de Cromátide Irmã , Coesinas
2.
Genome Res ; 29(4): 602-612, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30796039

RESUMO

Cohesin consists of the SMC1-SMC3-Rad21 tripartite ring and the SA protein that interacts with Rad21. The Nipped-B protein loads cohesin topologically around chromosomes to mediate sister chromatid cohesion and facilitate long-range control of gene transcription. It is largely unknown how Nipped-B and cohesin associate specifically with gene promoters and transcriptional enhancers, or how sister chromatid cohesion is established. Here, we use genome-wide chromatin immunoprecipitation in Drosophila cells to show that SA and the Fs(1)h (BRD4) BET domain protein help recruit Nipped-B and cohesin to enhancers and DNA replication origins, whereas the MED30 subunit of the Mediator complex directs Nipped-B and Vtd in Drosophila (also known as Rad21) to promoters. All enhancers and their neighboring promoters are close to DNA replication origins and bind SA with proportional levels of cohesin subunits. Most promoters are far from origins and lack SA but bind Nipped-B and Rad21 with subproportional amounts of SMC1, indicating that they bind cohesin rings only part of the time. Genetic data show that Nipped-B and Rad21 function together with Fs(1)h to facilitate Drosophila development. These findings show that Nipped-B and cohesin are differentially targeted to enhancers and promoters, and suggest models for how SA and DNA replication help establish sister chromatid cohesion and facilitate enhancer-promoter communication. They indicate that SA is not an obligatory cohesin subunit but a factor that controls cohesin location on chromosomes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , Origem de Replicação , Animais , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Ligação Proteica , Coesinas
3.
Am J Med Genet A ; 188(3): 1005-1014, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34877788

RESUMO

Cornelia de Lange syndrome (CdLS) is a spectrum disorder due to variants in genes of the cohesin protein complex. The following abstracts are from the Cornelia de Lange Syndrome Scientific and Educational Symposium held virtually in October 2020. Aspects of behavior, including autistic features, impulsivity, adaptive skills, executive function, and anxiety are described. Applied behavioral analysis is a promising approach for autism, and an N-acetylcysteine trial is proposed. Children below 6 years with CdLS have an increased number of and further travel to medical providers, with insurance type comprising a significant barrier. Speech, language, and feeding abilities fall significantly below expectations for age in CdLS. Augmentative alternative communication can yield potential barriers as well as interesting benefits. Developmentally, studies in animal models further elucidate the mechanisms and roles of cohesin: link with mediator transcriptional complex; facilitation of enhancer-promoter communication; regulation of gene expression; allocation of cells to germ layers; and repair of spontaneous DNA damage in placental cells. Genome and RNA sequencing can help identify the molecular cause in the 20% of individuals with suspected CdLS and negative testing. The phenotypes in individuals with variants in the SMC1A gene are distinct, and that with intractable seizures has been further evaluated. AMA CME credits provided by GBMC, Baltimore, MD. All studies approved by an ethics committee.

4.
Mol Cell ; 56(6): 808-18, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25435138

RESUMO

The structure of broken DNA ends is a critical determinant of the pathway used for DNA double-strand break (DSB) repair. Here, we develop an approach involving the hairpin capture of DNA end structures (HCoDES), which elucidates chromosomal DNA end structures at single-nucleotide resolution. HCoDES defines structures of physiologic DSBs generated by the RAG endonuclease, as well as those generated by nucleases widely used for genome editing. Analysis of G1 phase cells deficient in H2AX or 53BP1 reveals DNA ends that are frequently resected to form long single-stranded overhangs that can be repaired by mutagenic pathways. In addition to 3' overhangs, many of these DNA ends unexpectedly form long 5' single-stranded overhangs. The divergence in DNA end structures resolved by HCoDES suggests that H2AX and 53BP1 may have distinct activities in end protection. Thus, the high-resolution end structures obtained by HCoDES identify features of DNA end processing during DSB repair.


Assuntos
Cromossomos Humanos/genética , Análise de Sequência de DNA/métodos , Sequência de Bases , Células Cultivadas , Quebras de DNA de Cadeia Dupla , Humanos
5.
PLoS Genet ; 14(2): e1007225, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29447171

RESUMO

The cohesin complex topologically encircles chromosomes and mediates sister chromatid cohesion to ensure accurate chromosome segregation upon cell division. Cohesin also participates in DNA repair and gene transcription. The Nipped-B-Mau2 protein complex loads cohesin onto chromosomes and the Pds5-Wapl complex removes cohesin. Pds5 is also essential for sister chromatid cohesion, indicating that it has functions beyond cohesin removal. The Brca2 DNA repair protein interacts with Pds5, but the roles of this complex beyond DNA repair are unknown. Here we show that Brca2 opposes Pds5 function in sister chromatid cohesion by assaying precocious sister chromatid separation in metaphase spreads of cultured cells depleted for these proteins. By genome-wide chromatin immunoprecipitation we find that Pds5 facilitates SA cohesin subunit association with DNA replication origins and that Brca2 inhibits SA binding, mirroring their effects on sister chromatid cohesion. Cohesin binding is maximal at replication origins and extends outward to occupy active genes and regulatory sequences. Pds5 and Wapl, but not Brca2, limit the distance that cohesin extends from origins, thereby determining which active genes, enhancers and silencers bind cohesin. Using RNA-seq we find that Brca2, Pds5 and Wapl influence the expression of most genes sensitive to Nipped-B and cohesin, largely in the same direction. These findings demonstrate that Brca2 regulates sister chromatid cohesion and gene expression in addition to its canonical role in DNA repair and expand the known functions of accessory proteins in cohesin's diverse functions.


Assuntos
Proteína BRCA2/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/fisiologia , Segregação de Cromossomos/genética , Proteínas de Drosophila/fisiologia , Animais , Animais Geneticamente Modificados , Proteína BRCA2/genética , Proteínas de Ciclo Celular/fisiologia , Células Cultivadas , Cromátides/genética , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/genética , Reparo do DNA/genética , Drosophila/embriologia , Drosophila/genética , Proteínas de Drosophila/genética , Embrião não Mamífero , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Humanos , Ligação Proteica , Coesinas
6.
Am J Med Genet A ; 179(6): 1080-1090, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30874362

RESUMO

Cornelia de Lange Syndrome (CdLS), due to mutations in genes of the cohesin protein complex, is described as a disorder of transcriptional regulation. Phenotypes in this expanding field include short stature, microcephaly, intellectual disability, variable facial features and organ involvement, resulting in overlapping presentations, including established syndromes and newly described conditions. Individuals with all forms of CdLS have multifaceted complications, including neurodevelopmental, feeding, craniofacial, and communication. Coping mechanisms and management of challenging behaviors in CdLS, disruption of normal behaviors, and how behavior molds the life of the individual within the family is now better understood. Some psychotropic medications are known to be effective for behavior. Other medications, for example, Indomethacin, are being investigated for effects on gene expression, fetal brain tissue, brain morphology and function in Drosophila, mice, and human fibroblasts containing CdLS-related mutations. Developmental studies have clarified the origin of cardiac defects and role of placenta in CdLS. Chromosome architecture and cohesin complex structure are elucidated, leading to a better understanding of regulatory aspects and controls. As examples, when mutations are present, the formation of loop domains by cohesin, facilitating enhancer-promotor interactions, can be eliminated, and embryologically, the nuclear structure of zygotes is disrupted. Several important genes are now known to interact with cohesin, including Brca2. The following abstracts are from the 8th Cornelia de Lange Syndrome Scientific and Educational Symposium, held in June 2018, Minneapolis, MN, before the CdLS Foundation National Meeting, AMA CME credits provided by GBMC, Baltimore, MD. All studies have been approved by an ethics committee.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Síndrome de Cornélia de Lange/diagnóstico , Síndrome de Cornélia de Lange/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Estudos de Associação Genética/métodos , Humanos , Coesinas
7.
PLoS Genet ; 12(9): e1006331, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27662615

RESUMO

The cohesin protein complex mediates sister chromatid cohesion and participates in transcriptional control of genes that regulate growth and development. Substantial reduction of cohesin activity alters transcription of many genes without disrupting chromosome segregation. Drosophila Nipped-B protein loads cohesin onto chromosomes, and together Nipped-B and cohesin occupy essentially all active transcriptional enhancers and a large fraction of active genes. It is unknown why some active genes bind high levels of cohesin and some do not. Here we show that the TBPH and Lark RNA-binding proteins influence association of Nipped-B and cohesin with genes and gene regulatory sequences. In vitro, TBPH and Lark proteins specifically bind RNAs produced by genes occupied by Nipped-B and cohesin. By genomic chromatin immunoprecipitation these RNA-binding proteins also bind to chromosomes at cohesin-binding genes, enhancers, and Polycomb response elements (PREs). RNAi depletion reveals that TBPH facilitates association of Nipped-B and cohesin with genes and regulatory sequences. Lark reduces binding of Nipped-B and cohesin at many promoters and aids their association with several large enhancers. Conversely, Nipped-B facilitates TBPH and Lark association with genes and regulatory sequences, and interacts with TBPH and Lark in affinity chromatography and immunoprecipitation experiments. Blocking transcription does not ablate binding of Nipped-B and the RNA-binding proteins to chromosomes, indicating transcription is not required to maintain binding once established. These findings demonstrate that RNA-binding proteins help govern association of sister chromatid cohesion proteins with genes and enhancers.

8.
PLoS Genet ; 11(11): e1005655, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26544867

RESUMO

Individuals with Cornelia de Lange Syndrome (CdLS) display diverse developmental deficits, including slow growth, multiple limb and organ abnormalities, and intellectual disabilities. Severely-affected individuals most often have dominant loss-of-function mutations in the Nipped-B-Like (NIPBL) gene, and milder cases often have missense or in-frame deletion mutations in genes encoding subunits of the cohesin complex. Cohesin mediates sister chromatid cohesion to facilitate accurate chromosome segregation, and NIPBL is required for cohesin to bind to chromosomes. Individuals with CdLS, however, do not display overt cohesion or segregation defects. Rather, studies in human cells and model organisms indicate that modest decreases in NIPBL and cohesin activity alter the transcription of many genes that regulate growth and development. Sister chromatid cohesion factors, including the Nipped-B ortholog of NIPBL, are also critical for gene expression and development in Drosophila melanogaster. Here we describe how a modest reduction in Nipped-B activity alters growth and neurological function in Drosophila. These studies reveal that Nipped-B heterozygous mutant Drosophila show reduced growth, learning, and memory, and altered circadian rhythms. Importantly, the growth deficits are not caused by changes in systemic growth controls, but reductions in cell number and size attributable in part to reduced expression of myc (diminutive) and other growth control genes. The learning, memory and circadian deficits are accompanied by morphological abnormalities in brain structure. These studies confirm that Drosophila Nipped-B mutants provide a useful model for understanding CdLS, and provide new insights into the origins of birth defects.


Assuntos
Proteínas de Ligação a DNA/genética , Síndrome de Cornélia de Lange/genética , Proteínas de Drosophila/genética , Drosophila/crescimento & desenvolvimento , Drosophila/fisiologia , Modelos Biológicos , Mutação , Animais , Drosophila/genética , Heterozigoto
9.
Development ; 141(5): 1047-58, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24550112

RESUMO

The formation of the proper number of functional nephrons requires a delicate balance between renal progenitor cell self-renewal and differentiation. The molecular factors that regulate the dramatic expansion of the progenitor cell pool and differentiation of these cells into nephron precursor structures (renal vesicles) are not well understood. Here we show that Sall1, a nuclear transcription factor, is required to maintain the stemness of nephron progenitor cells. Transcriptional profiling of Sall1 mutant cells revealed a striking pattern, marked by the reduction of progenitor genes and amplified expression of renal vesicle differentiation genes. These global changes in gene expression were accompanied by ectopic differentiation at E12.5 and depletion of Six2+Cited1+ cap mesenchyme progenitor cells. These findings highlight a novel role for Sall1 in maintaining the stemness of the progenitor cell pool by restraining their differentiation into renal vesicles.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Animais , Ciclo Celular/genética , Ciclo Celular/fisiologia , Diferenciação Celular/genética , Feminino , Imuno-Histoquímica , Hibridização In Situ , Rim/citologia , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/genética
10.
Am J Med Genet A ; 173(5): 1172-1185, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28190301

RESUMO

Cornelia de Lange Syndrome (CdLS) is due to mutations in the genes for the structural and regulatory proteins that make up the cohesin complex, and is considered a cohesinopathy disorder or, more recently, a transcriptomopathy. New phenotypes have been recognized in this expanding field. There are multiple clinical issues facing individuals with all forms of CdLS, particularly in the neurodevelopmental system, but also gastrointestinal, cardiac, and musculoskeletal. Aspects of developmental and cell biology have found common endpoints in the biology of the cohesin complex, with improved understanding of the mechanisms, easier diagnostic tests, and the possibility of potential therapeutics, all major clinical implications for the individual with CdLS. The following abstracts are the presentations from the 7th Cornelia de Lange Syndrome Scientific and Educational Symposium, June 22-23, 2016, in Orlando, FL, in conjunction with the Cornelia de Lange Syndrome Foundation National Meeting. In addition to the scientific and clinical discussions, there were talks related to practical aspects of behavior including autism, transitions, communication, access to medical care, and databases. At the end of the symposium, a panel was held, which included several parents, affected individuals and genetic counselors, and discussed the greatest challenges in life and how this information can assist in guiding future research. The Research Committee of the CdLS Foundation organizes this meeting, reviews, and accepts abstracts, and subsequently disseminates the information to the families through members of the Clinical Advisory Board and publications. AMA CME credits were provided by Greater Baltimore Medical Center, Baltimore, MD.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Síndrome de Cornélia de Lange/genética , Síndrome de Cornélia de Lange/fisiopatologia , Síndrome de Cornélia de Lange/diagnóstico , Humanos , Fenótipo , Coesinas
11.
Am J Med Genet C Semin Med Genet ; 172(2): 129-37, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27097273

RESUMO

Discovery of genetic alterations that cause human birth defects provide key opportunities to improve the diagnosis, treatment, and family counseling. Frequently, however, these opportunities are limited by the lack of knowledge about the normal functions of the affected genes. In many cases, there is more information about the gene's orthologs in model organisms, including Drosophila melanogaster. Despite almost a billion years of evolutionary divergence, over three-quarters of genes linked to human diseases have Drosophila homologs. With a short generation time, a twenty-fold smaller genome, and unique genetic tools, the conserved functions of genes are often more easily elucidated in Drosophila than in other organisms. Here we present how this applies to Cornelia de Lange syndrome, as a model for how Drosophila can be used to increase understanding of genetic syndromes caused by mutations with broad effects on gene transcription and exploited to develop novel therapies. © 2016 Wiley Periodicals, Inc.


Assuntos
Síndrome de Cornélia de Lange/etiologia , Síndrome de Cornélia de Lange/terapia , Doenças Genéticas Inatas/etiologia , Doenças Genéticas Inatas/terapia , Animais , Modelos Animais de Doenças , Drosophila melanogaster , Predisposição Genética para Doença , Humanos , Mutação
12.
PLoS Genet ; 9(6): e1003560, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23818863

RESUMO

Cohesin is crucial for proper chromosome segregation but also regulates gene transcription and organism development by poorly understood mechanisms. Using genome-wide assays in Drosophila developing wings and cultured cells, we find that cohesin functionally interacts with Polycomb group (PcG) silencing proteins at both silenced and active genes. Cohesin unexpectedly facilitates binding of Polycomb Repressive Complex 1 (PRC1) to many active genes, but their binding is mutually antagonistic at silenced genes. PRC1 depletion decreases phosphorylated RNA polymerase II and mRNA at many active genes but increases them at silenced genes. Depletion of cohesin reduces long-range interactions between Polycomb Response Elements in the invected-engrailed gene complex where it represses transcription. These studies reveal a previously unrecognized role for PRC1 in facilitating productive gene transcription and provide new insights into how cohesin and PRC1 control development.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos/genética , Drosophila melanogaster/genética , Proteínas do Grupo Polycomb/genética , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Complexo Repressor Polycomb 1/genética , Proteínas do Grupo Polycomb/metabolismo , Ligação Proteica , Transcrição Gênica , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo , Coesinas
13.
PLoS Genet ; 9(3): e1003382, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23555293

RESUMO

Cohesin is a well-known mediator of sister chromatid cohesion, but it also influences gene expression and development. These non-canonical roles of cohesin are not well understood, but are vital: gene expression and development are altered by modest changes in cohesin function that do not disrupt chromatid cohesion. To clarify cohesin's roles in transcription, we measured how cohesin controls RNA polymerase II (Pol II) activity by genome-wide chromatin immunoprecipitation and precision global run-on sequencing. On average, cohesin-binding genes have more transcriptionally active Pol II and promoter-proximal Pol II pausing than non-binding genes, and are more efficient, producing higher steady state levels of mRNA per transcribing Pol II complex. Cohesin depletion frequently decreases gene body transcription but increases pausing at cohesin-binding genes, indicating that cohesin often facilitates transition of paused Pol II to elongation. In many cases, this likely reflects a role for cohesin in transcriptional enhancer function. Strikingly, more than 95% of predicted extragenic enhancers bind cohesin, and cohesin depletion can reduce their association with Pol II, indicating that cohesin facilitates enhancer-promoter contact. Cohesin depletion decreases the levels of transcriptionally engaged Pol II at the promoters of most genes that don't bind cohesin, suggesting that cohesin controls expression of one or more broadly acting general transcription factors. The multiple transcriptional roles of cohesin revealed by these studies likely underlie the growth and developmental deficits caused by minor changes in cohesin activity.


Assuntos
Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , Proteínas de Ligação a DNA , Regiões Promotoras Genéticas , RNA Polimerase II , Animais , Técnicas de Cultura de Células , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/microbiologia , Regulação da Expressão Gênica no Desenvolvimento , Genoma de Inseto , Histonas/genética , Histonas/metabolismo , Ligação Proteica , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Coesinas
14.
Development ; 139(22): 4172-9, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23034634

RESUMO

Wapl protein regulates binding of the cohesin complex to chromosomes during interphase and helps remove cohesin from chromosomes at mitosis. We isolated a dominant mutation in wapl (wapl(AG)) in a screen for mutations that counteract silencing mediated by an engrailed Polycomb-group response element. wapl(AG) hemizygotes die as pharate adults and have an extra sex combs phenotype characteristic of males with mutations in Polycomb-group (PcG) genes. The wapl gene encodes two proteins, a long form and a short form. wapl(AG) introduces a stop codon at amino acid 271 of the long form and produces a truncated protein. The expression of a transgene encoding the truncated Wapl-AG protein causes an extra-sex-comb phenotype similar to that seen in the wapl(AG) mutant. Mutations in the cohesin-associated genes Nipped-B and pds5 suppress and enhance wapl(AG) phenotypes, respectively. A Pds5-Wapl complex (releasin) removes cohesin from DNA, while Nipped-B loads cohesin. This suggests that Wapl-AG might exert its effects through changes in cohesin binding. Consistent with this model, Wapl-AG was found to increase the stability of cohesin binding to polytene chromosomes. Our data suggest that increasing cohesin stability interferes with PcG silencing at genes that are co-regulated by cohesin and PcG proteins.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Inativação Gênica , Complexo Repressor Polycomb 1/genética , Cromossomos Politênicos/metabolismo , Animais , Proteínas Cromossômicas não Histona/genética , Códon sem Sentido , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Masculino , Mutação , Fenótipo , Complexo Repressor Polycomb 1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Am J Med Genet A ; 167(6): 1179-92, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25899772

RESUMO

Cornelia de Lange Syndrome (CdLS) is the most common example of disorders of the cohesin complex, or cohesinopathies. There are a myriad of clinical issues facing individuals with CdLS, particularly in the neurodevelopmental system, which also have implications for the parents and caretakers, involved professionals, therapists, and schools. Basic research in developmental and cell biology on cohesin is showing significant progress, with improved understanding of the mechanisms and the possibility of potential therapeutics. The following abstracts are presentations from the 6th Cornelia de Lange Syndrome Scientific and Educational Symposium, which took place on June 25-26, 2014, in conjunction with the Cornelia de Lange Syndrome Foundation National Meeting in Costa Mesa, CA. The Research Committee of the CdLS Foundation organizes the meeting, reviews and accepts abstracts, and subsequently disseminates the information to the families through members of the Clinical Advisory Board. In addition to the scientific and clinical discussions, there were educationally focused talks related to practical aspects of behavior and development. AMA CME credits were provided by Greater Baltimore Medical Center, Baltimore, MD.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Síndrome de Cornélia de Lange/genética , Regulação da Expressão Gênica no Desenvolvimento , Mutação , Adulto , Animais , California , Proteínas de Ciclo Celular/metabolismo , Criança , Proteínas Cromossômicas não Histona/metabolismo , Síndrome de Cornélia de Lange/metabolismo , Síndrome de Cornélia de Lange/patologia , Modelos Animais de Doenças , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Camundongos , Fenótipo , Transdução de Sinais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Coesinas
16.
PLoS Genet ; 8(8): e1002878, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22912596

RESUMO

dMi-2 is a highly conserved ATP-dependent chromatin-remodeling factor that regulates transcription and cell fates by altering the structure or positioning of nucleosomes. Here we report an unanticipated role for dMi-2 in the regulation of higher-order chromatin structure in Drosophila. Loss of dMi-2 function causes salivary gland polytene chromosomes to lose their characteristic banding pattern and appear more condensed than normal. Conversely, increased expression of dMi-2 triggers decondensation of polytene chromosomes accompanied by a significant increase in nuclear volume; this effect is relatively rapid and is dependent on the ATPase activity of dMi-2. Live analysis revealed that dMi-2 disrupts interactions between the aligned chromatids of salivary gland polytene chromosomes. dMi-2 and the cohesin complex are enriched at sites of active transcription; fluorescence-recovery after photobleaching (FRAP) assays showed that dMi-2 decreases stable association of cohesin with polytene chromosomes. These findings demonstrate that dMi-2 is an important regulator of both chromosome condensation and cohesin binding in interphase cells.


Assuntos
Adenosina Trifosfatases/genética , Autoantígenos/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Nucleossomos/genética , Cromossomos Politênicos/genética , Adenosina Trifosfatases/metabolismo , Animais , Autoantígenos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromátides , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Interfase/genética , Ligação Proteica , Glândulas Salivares/citologia , Glândulas Salivares/metabolismo , Coesinas
17.
Am J Med Genet A ; 164A(6): 1384-93, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24504889

RESUMO

Cornelia de Lange syndrome (CdLS) is the prototype for the cohesinopathy disorders that have mutations in genes associated with the cohesin subunit in all cells. Roberts syndrome is the next most common cohesinopathy. In addition to the developmental implications of cohesin biology, there is much translational and basic research, with progress towards potential treatment for these conditions. Clinically, there are many issues in CdLS faced by the individual, parents and caretakers, professionals, and schools. The following abstracts are presentations from the 5th Cornelia de Lange Syndrome Scientific and Educational Symposium on June 20-21, 2012, in conjunction with the Cornelia de Lange Syndrome Foundation National Meeting, Lincolnshire, IL. The research committee of the CdLS Foundation organizes the meeting, reviews and accepts abstracts and subsequently disseminates the information to the families. In addition to the basic science and clinical discussions, there were educationally-focused talks related to practical aspects of management at home and in school. AMA CME credits were provided by Greater Baltimore Medical Center, Baltimore, MD.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Anormalidades Craniofaciais/genética , Síndrome de Cornélia de Lange/genética , Ectromelia/genética , Hipertelorismo/genética , Proteínas/genética , Acetiltransferases/genética , Senilidade Prematura/genética , Animais , Cromatina/genética , Transtornos Cognitivos/genética , Drosophila , Comportamento Alimentar , Haploinsuficiência , Cardiopatias Congênitas/embriologia , Cardiopatias Congênitas/genética , Humanos , Camundongos , Modelos Animais , Proteínas do Grupo Polycomb/genética , Biossíntese de Proteínas/genética , Homeostase do Telômero , Peixe-Zebra , Coesinas
18.
Dev Cell ; 14(2): 156-8, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18267084

RESUMO

The cohesin protein complex holds sister chromatids together to ensure proper chromosome segregation at mitosis in dividing cells. New experiments by two laboratories (reviewed in this issue of Developmental Cell) using different techniques reveal that cohesin also plays critical roles in morphogenesis of nondividing neurons. Other recent studies argue that these roles involve regulation of gene transcription.


Assuntos
Axônios/metabolismo , Cromossomos/metabolismo , Dendritos/metabolismo , Drosophila melanogaster/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Elementos de DNA Transponíveis , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/crescimento & desenvolvimento , Endopeptidases/metabolismo , Proteínas Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Coesinas
19.
Mo Med ; 110(4): 309-13, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24003648

RESUMO

Many times, when a human genetic disease is mapped to mutations in a specific gene, little is known about the biological functions of the affected gene. Development of new therapeutic methods is facilitated by understanding the gene's biological roles. Such information can often be obtained in animal models, such as the fruit fly. Here we describe how understanding a gene's function in fruit flies has illuminated the etiology of Cornelia de Lange syndrome.


Assuntos
Síndrome de Cornélia de Lange/genética , Drosophila/genética , Modelos Animais , Proteínas/genética , Animais , Proteínas de Ciclo Celular , Mapeamento Cromossômico , Pesquisa em Genética/história , História do Século XXI , Humanos , Proteínas/história
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA