Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Chem Biol ; 15(2): 115-122, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30531965

RESUMO

Cellular signal transduction is predominantly based on protein interactions and their post-translational modifications, which enable a fast response to input signals. Owing to difficulties in designing new unique protein-protein interactions, designed cellular logic has focused on transcriptional regulation; however, that process has a substantially slower response, because it requires transcription and translation. Here, we present de novo design of modular, scalable signaling pathways based on proteolysis and designed coiled coils (CC) and implemented in mammalian cells. A set of split proteases with highly specific orthogonal cleavage motifs was constructed and combined with strategically positioned cleavage sites and designed orthogonal CC dimerizing domains with tunable affinity for competitive displacement after proteolytic cleavage. This framework enabled the implementation of Boolean logic functions and signaling cascades in mammalian cells. The designed split-protease-cleavable orthogonal-CC-based (SPOC) logic circuits enable response to chemical or biological signals within minutes rather than hours and should be useful for diverse medical and nonmedical applications.


Assuntos
Engenharia de Proteínas/métodos , Mapeamento de Interação de Proteínas/métodos , Animais , Endopeptidases , Regulação da Expressão Gênica/genética , Humanos , Lógica , Mamíferos , Domínios Proteicos/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Proteólise , Transdução de Sinais , Biologia Sintética/métodos
2.
Methods Mol Biol ; 2774: 31-41, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38441756

RESUMO

Protein interactions play a crucial role in a variety of biological processes. Therefore, regulation of these interactions has received considerable attention in terms of synthetic biology tool development. Of those, a toolbox of small peptides known as coiled coils (CCs) represents a unique effective tool for mediating protein-protein interactions because their binding specificity and affinity can be designed and controlled. CC peptides have been used as a building module for designing synthetic regulatory circuits in mammalian cells, construction of fast response to a signal, amplification of the response, and localization and regulation of function of diverse proteins. In this chapter, we describe a designed set of CCs used for mammalian cell engineering and provide a protocol for the construction of CC-mediated logic circuits in mammalian cells. Ultimately, these tools could be used for diverse biotechnological and therapeutic applications.


Assuntos
Biotecnologia , Engenharia Celular , Animais , Domínios Proteicos , Biologia Sintética , Peptídeos , Mamíferos
3.
Cell Discov ; 10(1): 8, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228615

RESUMO

The regulation of protein function by external or internal signals is one of the key features of living organisms. The ability to directly control the function of a selected protein would represent a valuable tool for regulating biological processes. Here, we present a generally applicable regulation of proteins called INSRTR, based on inserting a peptide into a loop of a target protein that retains its function. We demonstrate the versatility and robustness of coiled-coil-mediated regulation, which enables designs for either inactivation or activation of selected protein functions, and implementation of two-input logic functions with rapid response in mammalian cells. The selection of insertion positions in tested proteins was facilitated by using a predictive machine learning model. We showcase the robustness of the INSRTR strategy on proteins with diverse folds and biological functions, including enzymes, signaling mediators, DNA binders, transcriptional regulators, reporters, and antibody domains implemented as chimeric antigen receptors in T cells. Our findings highlight the potential of INSRTR as a powerful tool for precise control of protein function, advancing our understanding of biological processes and developing biotechnological and therapeutic interventions.

4.
Curr Opin Chem Biol ; 68: 102146, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35430555

RESUMO

Regulated proteolysis is a pivotal regulatory mechanism in all living organisms from bacteria to mammalian cells and viruses. The ability to design proteases to sense, transmit, or trigger a signal opens up the possibility of construction of sophisticated proteolysis-regulated signaling networks. Cleavage of the polypeptide chain can either activate or inactivate the selected protein or process, often with a fast response. Most designs are based on sequence-selective proteases that can be implemented for transcriptional, translational, and ultimately post-translational control, aiming to engineer complex circuits that can dynamically control cellular functions and enable novel biotechnological and biomedical applications.


Assuntos
Desenho de Fármacos , Peptídeo Hidrolases , Proteólise , Transdução de Sinais , Desenho de Fármacos/métodos , Endopeptidases/metabolismo , Endopeptidases/farmacologia , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/farmacologia , Processamento de Proteína Pós-Traducional
5.
Nat Commun ; 13(1): 1323, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35260576

RESUMO

Secreted proteins, such as hormones or cytokines, are key mediators in multicellular organisms. Response of protein secretion based on transcriptional control is rather slow, as it requires transcription, translation and transport from the endoplasmic reticulum (ER) to the plasma membrane via the conventional protein secretion (CPS) pathway. An alternative regulation to provide faster response would be valuable. Here we present two genetically encoded orthogonal regulatory secretion systems, which rely on the retention of pre-synthesized proteins on the ER membrane (membER, released by a cytosolic protease) or inside the ER lumen (lumER, released by an ER-luminal protease), respectively, and their release by the chemical signal-regulated proteolytic removal of an ER-retention signal, without triggering ER stress due to protein aggregates. Design of orthogonal chemically-regulated split proteases enables the combination of signals into logic functions. Its application was demonstrated on a chemically regulated therapeutic protein secretion and regulated membrane translocation of a chimeric antigen receptor (CAR) targeting cancer antigen. Regulation of the ER escape represents a platform for the design of fast-responsive and tightly-controlled modular and scalable protein secretion system for mammalian cells.


Assuntos
Estresse do Retículo Endoplasmático , Retículo Endoplasmático , Animais , Endopeptidases/metabolismo , Retículo Endoplasmático/metabolismo , Mamíferos/metabolismo , Peptídeo Hidrolases/metabolismo , Transporte Proteico , Proteólise
6.
Vaccines (Basel) ; 9(5)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925446

RESUMO

The response of the adaptive immune system is augmented by multimeric presentation of a specific antigen, resembling viral particles. Several vaccines have been designed based on natural or designed protein scaffolds, which exhibited a potent adaptive immune response to antigens; however, antibodies are also generated against the scaffold, which may impair subsequent vaccination. In order to compare polypeptide scaffolds of different size and oligomerization state with respect to their efficiency, including anti-scaffold immunity, we compared several strategies of presentation of the RBD domain of the SARS-CoV-2 spike protein, an antigen aiming to generate neutralizing antibodies. A comparison of several genetic fusions of RBD to different nanoscaffolding domains (foldon, ferritin, lumazine synthase, and ß-annulus peptide) delivered as DNA plasmids demonstrated a strongly augmented immune response, with high titers of neutralizing antibodies and a robust T-cell response in mice. Antibody titers and virus neutralization were most potently enhanced by fusion to the small ß-annulus peptide scaffold, which itself triggered a minimal response in contrast to larger scaffolds. The ß-annulus fused RBD protein increased residence in lymph nodes and triggered the most potent viral neutralization in immunization by a recombinant protein. Results of the study support the use of a nanoscaffolding platform using the ß-annulus peptide for vaccine design.

7.
AMB Express ; 10(1): 97, 2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32448937

RESUMO

The clustering of biosynthetic enzymes is used in nature to channel reaction products and increase the yield of compounds produced by multiple reaction steps. The coupling of multiple enzymes has been shown to increase the biosynthetic product yield. Different clustering strategies have particular advantages as the spatial organization of multiple enzymes creates biocatalytic cascades with a higher efficiency of biochemical reaction. However, there are also some drawbacks, such as misfolding and the variable stability of interaction domains, which may differ between particular biosynthetic reactions and the host organism. Here, we compared different protein-based clustering strategies, including direct fusion, fusion mediated by intein, and noncovalent interactions mediated through small coiled-coil dimer-forming domains. The clustering of enzymes through orthogonally designed coiled-coil interaction domains increased the production of resveratrol in Escherichia coli more than the intein-mediated fusion of biosynthetic enzymes. The improvement of resveratrol production correlated with the stability of the coiled-coil dimers. The coiled-coil fusion-based approach also increased mevalonate production in Saccharomyces cerevisiae, thus demonstrating the wider applicability of this strategy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA