Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Lipid Res ; 65(3): 100516, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38320654

RESUMO

The gold-standard diagnostic test for peroxisomal disorders (PDs) is plasma concentration analysis of very long-chain fatty acids (VLCFAs). However, this method's time-consuming nature and limitations in cases which present normal VLCFA levels necessitates alternative approaches. The analysis of C26:0-lysophosphatydylcholine (C26:0-LPC) in dried blood spot samples by tandem-mass spectrometry (MS/MS) has successfully been implemented in certain newborn screening programs to diagnose X-linked adrenoleukodystrophy (ALD). However, the diagnostic potential of very long-chain LPCs concentrations in plasma remains poorly understood. This study sought to evaluate the diagnostic performance of C26:0-LPC and other very long-chain LPCs, comparing them to VLCFA analysis in plasma. The study, which included 330 individuals affected by a peroxisomal ß-oxidation deficiency and 407 control individuals, revealed that C26:0- and C24:0-LPC concentrations demonstrated the highest diagnostic accuracy (98.8% and 98.4%, respectively), outperforming VLCFA when C26:0/C22:0 and C24:0/C22:0 ratios were combined (98.1%). Combining C24:0- and C26:0-LPC gave the highest sensitivity (99.7%), with ALD females exhibiting notably higher sensitivity compared with the VLCFA ratio combination (98.7% vs. 93.5%, respectively). In contrast, C22:0-LPC exhibited suboptimal performance, primarily due to its low sensitivity (75%), but we identified a potential use to help distinguish between ALD and Zellweger spectrum disorders. In summary, MS/MS analysis of plasma C24:0- and C26:0-LPC concentrations represents a rapid and straightforward approach to diagnose PDs, demonstrating superior diagnostic accuracy, particularly in ALD females, compared with conventional VLCFA biomarkers. We strongly recommend integrating very-long chain LPC plasma analysis in the diagnostic evaluation of individuals suspected of having a PD.


Assuntos
Adrenoleucodistrofia , Lisofosfatidilcolinas , Recém-Nascido , Feminino , Humanos , Espectrometria de Massas em Tandem , Adrenoleucodistrofia/diagnóstico , Triagem Neonatal/métodos , Biomarcadores , Ácidos Graxos não Esterificados , Ácidos Graxos
2.
Mol Genet Metab ; 142(3): 108511, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38878498

RESUMO

The diagnosis of Mendelian disorders has notably advanced with integration of whole exome and genome sequencing (WES and WGS) in clinical practice. However, challenges in variant interpretation and uncovered variants by WES still leave a substantial percentage of patients undiagnosed. In this context, integrating RNA sequencing (RNA-seq) improves diagnostic workflows, particularly for WES inconclusive cases. Additionally, functional studies are often necessary to elucidate the impact of prioritized variants on gene expression and protein function. Our study focused on three unrelated male patients (P1-P3) with ATP6AP1-CDG (congenital disorder of glycosylation), presenting with intellectual disability and varying degrees of hepatopathy, glycosylation defects, and an initially inconclusive diagnosis through WES. Subsequent RNA-seq was pivotal in identifying the underlying genetic causes in P1 and P2, detecting ATP6AP1 underexpression and aberrant splicing. Molecular studies in fibroblasts confirmed these findings and identified the rare intronic variants c.289-233C > T and c.289-289G > A in P1 and P2, respectively. Trio-WGS also revealed the variant c.289-289G > A in P3, which was a de novo change in both patients. Functional assays expressing the mutant alleles in HAP1 cells demonstrated the pathogenic impact of these variants by reproducing the splicing alterations observed in patients. Our study underscores the role of RNA-seq and WGS in enhancing diagnostic rates for genetic diseases such as CDG, providing new insights into ATP6AP1-CDG molecular bases by identifying the first two deep intronic variants in this X-linked gene. Additionally, our study highlights the need to integrate RNA-seq and WGS, followed by functional validation, in routine diagnostics for a comprehensive evaluation of patients with an unidentified molecular etiology.


Assuntos
Íntrons , RNA Mensageiro , Humanos , Masculino , Íntrons/genética , RNA Mensageiro/genética , ATPases Vacuolares Próton-Translocadoras/genética , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/patologia , Mutação , Sequenciamento Completo do Genoma , Sequenciamento do Exoma , Análise de Sequência de RNA , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/patologia , Criança , Splicing de RNA/genética , Pré-Escolar
3.
Clin Chem Lab Med ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38456798

RESUMO

OBJECTIVES: Early diagnosis of inborn errors of metabolism (IEM) is crucial to ensure early detection of conditions which are treatable. This study reports on targeted metabolomic procedures for the diagnosis of IEM of amino acids, acylcarnitines, creatine/guanidinoacetate, purines/pyrimidines and oligosaccharides, and describes its validation through external quality assessment schemes (EQA). METHODS: Analysis was performed on a Waters ACQUITY UPLC H-class system coupled to a Waters Xevo triple-quadrupole (TQD) mass spectrometer, operating in both positive and negative electrospray ionization mode. Chromatographic separation was performed on a CORTECS C18 column (2.1 × 150, 1.6 µm). Data were collected by multiple reaction monitoring. RESULTS: The internal and EQA results were generally adequate, with a few exceptions. We calculated the relative measurement error (RME) and only a few metabolites displayed a RME higher than 30 % (asparagine and some acylcarnitine species). For oligosaccharides, semi-quantitative analysis of an educational panel clearly identified the 8 different diseases included. CONCLUSIONS: Overall, we have validated our analytical system through an external quality control assessment. This validation will contribute to harmonization between laboratories, thus improving identification and management of patients with IEM.

4.
Clin Chem Lab Med ; 62(3): 493-505, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-37794778

RESUMO

OBJECTIVES: Acylcarnitine and amino acid analyses of dried blood spot (DBS) samples using tandem mass spectrometry in newborn screening (NBS) programmes can generate false positive (FP) results. Therefore, implementation of second-tier tests (2TTs) using DBS samples has become increasingly important to avoid FPs. The most widely used 2TT metabolites include methylmalonic acid, 3-hydroxypropionic acid, methylcitric acid, and homocysteine. METHODS: We simultaneously measured 46 underivatised metabolites, including organic acids, acylglycine and acylcarnitine isomers, homocysteine, and orotic acid, in DBS samples using tandem mass spectrometry. To validate this method, we analysed samples from 147 healthy newborns, 160 patients with genetic disorders diagnosed via NBS, 20 patients with acquired vitamin B12 deficiency, 10 newborns receiving antibiotic treatment, and nine external quality control samples. RESULTS: The validation study revealed that 31 metabolites showed good analytical performance. Furthermore, this method detected key metabolites for all diseases associated with increased levels of the following acylcarnitines: C3, C4, C5, C4DC/C5OH, and C5DC. The sensitivity of this method to detect all diseases was 100 %, and the specificity was 74-99 %, except for glutaric aciduria type 1. This method can also be used to diagnose mitochondrial fatty acid ß-oxidation disorders (FAODs) and urea cycle defects (UCDs). CONCLUSIONS: We have described a 2TT panel of 31 metabolites in DBS samples based on an easy and rapid method without derivatisation. Its implementation allowed us to distinguish between different organic acidurias, some FAODs, and UCDs. This new strategy has increased the efficiency of our NBS programme by reducing FP and false negative results, second sample requests, and the time required for diagnosis.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Encefalopatias Metabólicas , Carnitina/análogos & derivados , Glutaril-CoA Desidrogenase/deficiência , Triagem Neonatal , Espectrometria de Massas em Tandem , Humanos , Recém-Nascido , Espectrometria de Massas em Tandem/métodos , Triagem Neonatal/métodos , Espanha , Cromatografia Líquida/métodos , Homocisteína , Teste em Amostras de Sangue Seco/métodos
5.
J Inherit Metab Dis ; 46(6): 1029-1042, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37718653

RESUMO

The determination of the functional impact of variants of uncertain significance (VUS) is one of the major bottlenecks in the diagnostic workflow of inherited genetic diseases. To face this problem, we set up a CRISPR/Cas9-based strategy for knock-in cellular model generation, focusing on inherited metabolic disorders (IMDs). We selected variants in seven IMD-associated genes, including seven reported disease-causing variants and four benign/likely benign variants. Overall, 11 knock-in cell models were generated via homology-directed repair in HAP1 haploid cells using CRISPR/Cas9. The functional impact of the variants was determined by analyzing the characteristic biochemical alterations of each disorder. Functional studies performed in knock-in cell models showed that our approach accurately distinguished the functional effect of pathogenic from non-pathogenic variants in a reliable manner in a wide range of IMDs. Our study provides a generic approach to assess the functional impact of genetic variants to improve IMD diagnosis and this tool could emerge as a promising alternative to invasive tests, such as muscular or skin biopsies. Although the study has been performed only in IMDs, this strategy is generic and could be applied to other genetic disorders.


Assuntos
Sistemas CRISPR-Cas , Doenças Metabólicas , Humanos , Sistemas CRISPR-Cas/genética , Virulência , Genômica , Doenças Metabólicas/genética
6.
Int J Mol Sci ; 24(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37569695

RESUMO

CCDC186 protein is involved in the maturation of dense-core vesicles (DCVs) in the trans-Golgi network in neurons and endocrine cells. Mutations in genes involved in DCV regulation, other than CCDC186, have been described in patients with neurodevelopmental disorders. To date, only one patient, within a large sequencing study of 1000 cases, and a single case report with variants in CCDC186, had previously been described. However, no functional studies in any of these two cases had been performed. We identified three patients from two gypsy families, unrelated to each other, with mutations in the CCDC186 gene. Clinically, all patients presented with seizures, frontotemporal atrophy, hypomyelination, recurrent infections, and endocrine disturbances such as severe non-ketotic hypoglycemia. Low levels of cortisol, insulin, or growth hormone could only be verified in one patient. All of them had a neonatal onset and died between 7 months and 4 years of age. Whole exome sequencing identified a homozygous variant in the CCDC186 gene (c.2215C>T, p.Arg739Ter) in the index patients of both families. Protein expression studies demonstrated that CCDC186 was almost undetectable in fibroblasts and muscle tissue. These observations correlated with the transcriptomic analysis performed in fibroblasts in one of the patients, which showed a significant reduction of CCDC186 mRNA levels. Our study provides functional evidence that mutations in this gene have a pathogenic effect on the protein and reinforces CCDC186 as a new disease-associated gene. In addition, mutations in CCDC186 could explain the combined endocrine and neurologic alterations detected in our patients.


Assuntos
Doenças do Sistema Endócrino , Transtornos do Neurodesenvolvimento , Recém-Nascido , Humanos , Sistema Nervoso Central , Transtornos do Neurodesenvolvimento/genética , Mutação , Rede trans-Golgi
7.
Int J Mol Sci ; 23(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36293220

RESUMO

Peroxisomal biogenesis disorders (PBDs) are a heterogeneous group of genetic diseases. Multiple peroxisomal pathways are impaired, and very long chain fatty acids (VLCFA) are the first line biomarkers for the diagnosis. The clinical presentation of PBDs may range from severe, lethal multisystemic disorders to milder, late-onset disease. The vast majority of PBDs belong to Zellweger Spectrum Disordes (ZSDs) and represents a continuum of overlapping clinical symptoms, with Zellweger syndrome being the most severe and Heimler syndrome the less severe disease. Mild clinical conditions frequently present normal or slight biochemical alterations, making the diagnosis of these patients challenging. In the present study we used a combined WES and RNA-seq strategy to diagnose a patient presenting with retinal dystrophy as the main clinical symptom. Results showed the patient was compound heterozygous for mutations in PEX1. VLCFA were normal, but retrospective analysis of lysosphosphatidylcholines (LPC) containing C22:0-C26:0 species was altered. This simple test could avoid the diagnostic odyssey of patients with mild phenotype, such as the individual described here, who was diagnosed very late in adult life. We provide functional data in cell line models that may explain the mild phenotype of the patient by demonstrating the hypomorphic nature of a deep intronic variant altering PEX1 mRNA processing.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Síndrome de Zellweger , Humanos , ATPases Associadas a Diversas Atividades Celulares/metabolismo , RNA-Seq , Estudos Retrospectivos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Síndrome de Zellweger/diagnóstico , Síndrome de Zellweger/genética , Perda Auditiva Neurossensorial/genética , Biomarcadores , RNA Mensageiro , Ácidos Graxos
8.
J Inherit Metab Dis ; 44(4): 961-971, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33861472

RESUMO

Acute intermittent porphyria (AIP) is a rare metabolic disease caused by mutations within the hydroxymethylbilane synthase gene. Previous studies have reported increased levels of plasma total homocysteine (tHcy) in symptomatic AIP patients. In this study, we present long-term data for tHcy and related parameters for an AIP patient cohort (n = 37) in different clinical disease-states. In total, 25 patients (68%) presented with hyperhomocysteinemia (HHcy; tHcy > 15 µmol/L) during the observation period. HHcy was more frequent in AIP patients with recurrent disease receiving heme arginate, than in nonrecurrent (median tHcy: 21.6 µmol/L; range: 10-129 vs median tHcy: 14.5 µmol/L; range 6-77). Long-term serial analyses showed a high within-person tHcy variation, especially among the recurrent patients (coefficient of variation: 16.4%-78.8%). HHcy was frequently associated with low blood concentrations of pyridoxal-5'-phosphate and folate, while cobalamin concentration and the allele distribution of the methylene-tetrahydrofolate-reductase gene were normal. Strikingly, 6 out of the 9 recurrent patients who were later included in a regime of givosiran, a small-interfering RNA that effectively reduced recurrent attacks, showed further increased tHcy (median tHcy in 9 patients: 105 µmol/L; range 16-212). Screening of amino acids in plasma by liquid-chromatography showed co-increased levels of methionine (median 71 µmol/L; range 23-616; normal <40), suggestive of acquired deficiency of cystathionine-ß-synthase. The kynunerine/tryptophan ratio in plasma was, however, normal, indicating a regular metabolism of tryptophan by heme-dependent enzymes. In conclusion, even if HHcy was observed in AIP patients receiving heme arginate, givosiran induced an aggravation of the dysregulation, causing a co-increase of tHcy and methionine resembling classic homocystinuria.


Assuntos
Acetilgalactosamina/análogos & derivados , Arginina/deficiência , Heme/deficiência , Hiper-Homocisteinemia/etiologia , Porfiria Aguda Intermitente/tratamento farmacológico , Pirrolidinas/uso terapêutico , Acetilgalactosamina/efeitos adversos , Acetilgalactosamina/uso terapêutico , Adulto , Arginina/uso terapêutico , Cistationina beta-Sintase/genética , Feminino , Ácido Fólico/sangue , Heme/uso terapêutico , Homeostase , Homocisteína/metabolismo , Homocistinúria/complicações , Humanos , Hidroximetilbilano Sintase/sangue , Hidroximetilbilano Sintase/genética , Masculino , Metionina/sangue , Pessoa de Meia-Idade , Porfiria Aguda Intermitente/sangue , Porfiria Aguda Intermitente/complicações , Porfiria Aguda Intermitente/genética , Fosfato de Piridoxal/sangue , Pirrolidinas/efeitos adversos , Adulto Jovem
9.
Mol Genet Metab ; 131(3): 349-357, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33153867

RESUMO

Isolated complex I (CI) deficiency is the most common cause of oxidative phosphorylation (OXPHOS) dysfunction. Whole-exome sequencing identified biallelic mutations in NDUFA8 (c.[293G > T]; [293G > T], encoding for an accessory subunit of CI, in two siblings with a favorable clinical evolution. The individuals reported here are practically asymptomatic, with the exception of slight failure to thrive and some language difficulties at the age of 6 and 9 years, respectively. These observations are remarkable since the vast majority of patients with CI deficiency, including the only NDUFA8 patient reported so far, showed an extremely poor clinical outcome. Western blot studies demonstrated that NDUFA8 protein was strongly reduced in the patients' fibroblasts and muscle extracts. In addition, there was a marked and specific decrease in the steady-state levels of CI subunits. BN-PAGE demonstrated an isolated defect in the assembly and the activity of CI with impaired supercomplexes formation and abnormal accumulation of CI subassemblies. Confocal microscopy analysis in fibroblasts showed rounder mitochondria and diminished branching degree of the mitochondrial network. Functional complementation studies demonstrated disease-causality for the identified mutation as lentiviral transduction with wild-type NDUFA8 cDNA restored the steady-state levels of CI subunits and completely recovered the deficient enzymatic activity in immortalized mutant fibroblasts. In summary, we provide additional evidence of the involvement of NDUFA8 as a mitochondrial disease-causing gene associated with altered mitochondrial morphology, CI deficiency, impaired supercomplexes formation, and very mild progression of the disease.


Assuntos
Predisposição Genética para Doença , Doenças Mitocondriais/genética , NADH Desidrogenase/genética , Fosforilação Oxidativa , Criança , Feminino , Fibroblastos/metabolismo , Humanos , Masculino , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/patologia , Mitocôndrias/genética , Mitocôndrias/patologia , Doenças Mitocondriais/patologia , Irmãos , Sequenciamento do Exoma
10.
Hum Mutat ; 40(10): 1700-1712, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31058414

RESUMO

3-Methylglutaconic aciduria (3-MGA-uria) syndromes comprise a heterogeneous group of diseases associated with mitochondrial membrane defects. Whole-exome sequencing identified compound heterozygous mutations in TIMM50 (c.[341 G>A];[805 G>A]) in a boy with West syndrome, optic atrophy, neutropenia, cardiomyopathy, Leigh syndrome, and persistent 3-MGA-uria. A comprehensive analysis of the mitochondrial function was performed in fibroblasts of the patient to elucidate the molecular basis of the disease. TIMM50 protein was severely reduced in the patient fibroblasts, regardless of the normal mRNA levels, suggesting that the mutated residues might be important for TIMM50 protein stability. Severe morphological defects and ultrastructural abnormalities with aberrant mitochondrial cristae organization in muscle and fibroblasts were found. The levels of fully assembled OXPHOS complexes and supercomplexes were strongly reduced in fibroblasts from this patient. High-resolution respirometry demonstrated a significant reduction of the maximum respiratory capacity. A TIMM50-deficient HEK293T cell line that we generated using CRISPR/Cas9 mimicked the respiratory defect observed in the patient fibroblasts; notably, this defect was rescued by transfection with a plasmid encoding the TIMM50 wild-type protein. In summary, we demonstrated that TIMM50 deficiency causes a severe mitochondrial dysfunction by targeting key aspects of mitochondrial physiology, such as the maintenance of proper mitochondrial morphology, OXPHOS assembly, and mitochondrial respiratory capacity.


Assuntos
Proteínas de Membrana Transportadoras/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , Biomarcadores , Transporte de Elétrons , Metabolismo Energético , Fibroblastos/metabolismo , Expressão Gênica , Predisposição Genética para Doença , Humanos , Lactente , Masculino , Mitocôndrias/ultraestrutura , Doenças Mitocondriais/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestrutura , Fenótipo , Transporte Proteico , Espasmos Infantis/diagnóstico , Espasmos Infantis/genética , Sequenciamento do Exoma
11.
Brain ; 139(Pt 1): 31-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26657515

RESUMO

Thiamine transporter-2 deficiency is caused by mutations in the SLC19A3 gene. As opposed to other causes of Leigh syndrome, early administration of thiamine and biotin has a dramatic and immediate clinical effect. New biochemical markers are needed to aid in early diagnosis and timely therapeutic intervention. Thiamine derivatives were analysed by high performance liquid chromatography in 106 whole blood and 38 cerebrospinal fluid samples from paediatric controls, 16 cerebrospinal fluid samples from patients with Leigh syndrome, six of whom harboured mutations in the SLC19A3 gene, and 49 patients with other neurological disorders. Free-thiamine was remarkably reduced in the cerebrospinal fluid of five SLC19A3 patients before treatment. In contrast, free-thiamine was slightly decreased in 15.2% of patients with other neurological conditions, and above the reference range in one SLC19A3 patient on thiamine supplementation. We also observed a severe deficiency of free-thiamine and low levels of thiamine diphosphate in fibroblasts from SLC19A3 patients. Surprisingly, pyruvate dehydrogenase activity and mitochondrial substrate oxidation rates were within the control range. Thiamine derivatives normalized after the addition of thiamine to the culture medium. In conclusion, we found a profound deficiency of free-thiamine in the CSF and fibroblasts of patients with thiamine transporter-2 deficiency. Thiamine supplementation led to clinical improvement in patients early treated and restored thiamine values in fibroblasts and cerebrospinal fluid.


Assuntos
Doença de Leigh/dietoterapia , Doença de Leigh/metabolismo , Proteínas de Membrana Transportadoras/deficiência , Tiamina/metabolismo , Tiamina/uso terapêutico , Adolescente , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Estudos de Casos e Controles , Células Cultivadas , Criança , Pré-Escolar , Feminino , Fibroblastos/metabolismo , Humanos , Lactente , Recém-Nascido , Doença de Leigh/sangue , Doença de Leigh/líquido cefalorraquidiano , Doença de Leigh/genética , Masculino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Complexo Piruvato Desidrogenase/metabolismo , Tiamina/sangue , Tiamina/líquido cefalorraquidiano , Tiamina Pirofosfato/metabolismo
12.
Hum Mol Genet ; 23(7): 1907-15, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24256811

RESUMO

Cofactor disorders of mitochondrial energy metabolism are a heterogeneous group of diseases with a wide variety of clinical symptoms, particular metabolic profiles and variable enzymatic defects. Mutations in NFU1, BOLA3, LIAS and IBA57 have been identified in patients with deficient lipoic acid-dependent enzymatic activities and defects in the assembly and activity of the mitochondrial respiratory chain complexes. Here, we report a patient with an early onset fatal lactic acidosis presenting a biochemical phenotype compatible with a combined defect of pyruvate dehydrogenase (PDHC) and 2-ketoglutarate dehydrogenase (2-KGDH) activities, which suggested a deficiency in lipoic acid metabolism. Immunostaining analysis showed that lipoylated E2-PDH and E2-KGDH were extremely reduced in this patient. However, the absence of glycine elevation, the normal activity of the glycine cleavage system and the normal lipoylation of the H protein suggested a defect of lipoic acid transfer to particular proteins rather than a general impairment of lipoic acid biosynthesis as the potential cause of the disease. By analogy with yeast metabolism, we postulated LIPT1 as the altered candidate gene causing the disease. Sequence analysis of the human LIPT1 identified two heterozygous missense mutations (c.212C>T and c.292C>G), segregating in different alleles. Functional complementation experiments in patient's fibroblasts demonstrated that these mutations are disease-causing and that LIPT1 protein is required for lipoylation and activation of 2-ketoacid dehydrogenases in humans. These findings expand the spectrum of genetic defects associated with lipoic acid metabolism and provide the first evidence of a lipoic acid transfer defect in humans.


Assuntos
Aciltransferases/genética , Lipoilação/genética , Oxo-Ácido-Liases/genética , Acidose Láctica/genética , Acidose Láctica/mortalidade , Erros Inatos do Metabolismo dos Aminoácidos/genética , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Metabolismo Energético/genética , Feminino , Humanos , Recém-Nascido , Complexo Cetoglutarato Desidrogenase/deficiência , Complexo Cetoglutarato Desidrogenase/genética , Ácidos Cetoglutáricos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação de Sentido Incorreto , Complexo Piruvato Desidrogenase/genética , Ácido Tióctico/metabolismo
13.
J Lipid Res ; 56(10): 1926-35, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26239048

RESUMO

Niemann-Pick type C (NPC) is a progressive neurodegenerative disease characterized by lysosomal/endosomal accumulation of unesterified cholesterol and glycolipids. Recent studies have shown that plasma cholestane-3ß,5α,6ß-triol (CT) and 7-ketocholesterol (7-KC) could be potential biomarkers for the diagnosis of NPC patients. We aimed to know the sensitivity and specificity of these biomarkers for the diagnosis of NPC compared with other diseases that can potentially lead to oxysterol alterations. We studied 107 controls and 122 patients including 16 with NPC, 3 with lysosomal acid lipase (LAL) deficiency, 8 with other lysosomal diseases, 5 with galactosemia, 11 with cerebrotendinous xanthomatosis (CTX), 3 with Smith-Lemli-Opitz, 14 with peroxisomal biogenesis disorders, 19 with unspecific hepatic diseases, 13 with familial hypercholesterolemia, and 30 with neurological involvement and no evidence of an inherited metabolic disease. CT and 7-KC were analyzed by HPLC-ESI-MS/MS as mono-dimethylglycine derivatives. Levels of 7-KC were high in most of the studied diseases, whereas those of CT were only high in NPC, LAL, and CTX patients. Consequently, although CT is a sensitive biomarker of NPC disease, including those cases with doubtful filipin staining, it is not specific. 7-KC is a very unspecific biomarker.


Assuntos
Colestanóis/sangue , Cetocolesteróis/sangue , Doença de Niemann-Pick Tipo C/sangue , Doença de Wolman/sangue , Xantomatose Cerebrotendinosa/sangue , Adolescente , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Espectrometria de Massas por Ionização por Electrospray/métodos , Doença de Wolman/diagnóstico , Xantomatose Cerebrotendinosa/diagnóstico , Doença de Wolman
14.
Am J Hum Genet ; 89(5): 656-67, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-22077971

RESUMO

We report on ten individuals with a fatal infantile encephalopathy and/or pulmonary hypertension, leading to death before the age of 15 months. Hyperglycinemia and lactic acidosis were common findings. Glycine cleavage system and pyruvate dehydrogenase complex (PDHC) activities were low. Homozygosity mapping revealed a perfectly overlapping homozygous region of 1.24 Mb corresponding to chromosome 2 and led to the identification of a homozygous missense mutation (c.622G > T) in NFU1, which encodes a conserved protein suggested to participate in Fe-S cluster biogenesis. Nine individuals were homozygous for this mutation, whereas one was compound heterozygous for this and a splice-site (c.545 + 5G > A) mutation. The biochemical phenotype suggested an impaired activity of the Fe-S enzyme lipoic acid synthase (LAS). Direct measurement of protein-bound lipoic acid in individual tissues indeed showed marked decreases. Upon depletion of NFU1 by RNA interference in human cell culture, LAS and, in turn, PDHC activities were largely diminished. In addition, the amount of succinate dehydrogenase, but no other Fe-S proteins, was decreased. In contrast, depletion of the general Fe-S scaffold protein ISCU severely affected assembly of all tested Fe-S proteins, suggesting that NFU1 performs a specific function in mitochondrial Fe-S cluster maturation. Similar biochemical effects were observed in Saccharomyces cerevisiae upon deletion of NFU1, resulting in lower lipoylation and SDH activity. Importantly, yeast Nfu1 protein carrying the individuals' missense mutation was functionally impaired. We conclude that NFU1 functions as a late-acting maturation factor for a subset of mitochondrial Fe-S proteins.


Assuntos
Proteínas de Transporte , Doenças Mitocondriais/genética , Proteínas Mitocondriais , Mutação de Sentido Incorreto , Proteínas de Saccharomyces cerevisiae , Aminoácido Oxirredutases/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cromossomos Humanos Par 2/genética , Feminino , Células HeLa , Homozigoto , Humanos , Hipertensão/genética , Lactente , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Complexos Multienzimáticos/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Succinato Desidrogenase/metabolismo , Sulfurtransferases/metabolismo , Ácido Tióctico/metabolismo , Transferases/metabolismo
15.
J Inherit Metab Dis ; 37(3): 439-46, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24347096

RESUMO

Coenzyme Q10 (CoQ10) plays a key role in the exchange of electrons in lysosomal membrane, which contributes to protons' translocation into the lumen and to the acidification of intra-lysosomal medium, which is essential for the proteolytic function of hydrolases responsible -when deficient- of a wide range of inherited lysosomal diseases such as Sanfilippo syndromes. Our aim was to evaluate whether treatment with CoQ10 or with an antioxidant cocktail (α-tocopherol, N-acetylcysteine and α-lipoic acid) were able to ameliorate the biochemical phenotype in cultured fibroblasts of Sanfilippo patients. Basal CoQ10 was analyzed in fibroblasts and Sanfilippo A patients showed decreased basal levels. However, no dysfunction in the CoQ10 biosynthesis pathways was found, revealing for the first time a secondary CoQ10 deficiency in Sanfilippo A fibroblasts. Cultured fibroblasts from five patients affected by Sanfilippo A and B diseases were treated with CoQ10 and an antioxidant cocktail. Upon CoQ10 treatment, none of the Sanfilippo A fibroblasts increased their residual enzymatic activity, but the two Sanfilippo B cell lines showed a statistically significant increase of their residual activity. The antioxidant treatment had no effect on the residual activity in all tested cell lines. Moreover, one Sanfilippo A and two Sanfilippo B fibroblasts showed a statistically significant reduction of glycosaminoglycans accumulation both, after 50 µmol/L CoQ10 and antioxidant treatment. Fibroblasts responsive to treatment enhanced their exocytosis levels. Our results are encouraging as some cellular alterations observed in Sanfilippo syndrome can be partially restored by CoQ10 or other antioxidant treatment in some patients.


Assuntos
Antioxidantes/uso terapêutico , Fibroblastos/efeitos dos fármacos , Mucopolissacaridose III/tratamento farmacológico , Ubiquinona/análogos & derivados , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Exocitose , Glicosaminoglicanos/metabolismo , Humanos , Lisossomos/metabolismo , Mucopolissacaridose III/metabolismo , Mucopolissacaridose III/patologia , Ubiquinona/uso terapêutico
16.
J Inherit Metab Dis ; 37(1): 53-62, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23774949

RESUMO

Primary coenzyme Q10 (CoQ10) deficiencies are associated with mutations in genes encoding enzymes important for its biosynthesis and patients are responsive to CoQ10 supplementation. Early treatment allows better prognosis of the disease and therefore, early diagnosis is desirable. The complex phenotype and genotype and the frequent secondary CoQ10 deficiencies make it difficult to achieve a definitive diagnosis by direct quantification of CoQ10. We developed a non-radioactive methodology for the quantification of CoQ10 biosynthesis in fibroblasts that allows the identification of primary deficiencies. Fibroblasts were incubated 72 h with 28 µmol/L (2)H3-mevalonate or 1.65 mmol/L (13)C6-p-hydroxybenzoate. The newly synthesized (2)H3- and (13)C6- labelled CoQ10 were analysed by high performance liquid chromatography-tandem mass spectrometry. The mean and the reference range for (13)C6-CoQ10 and (2)H3-CoQ10 biosynthesis were 0.97 (0.83-1.1) and 0.13 (0.09-0.17) nmol/Unit of citrate synthase, respectively. We validated the methodology through the study of one patient with COQ2 mutations and six patients with CoQ10 deficiency secondary to other inborn errors of metabolism. Afterwards we investigated 16 patients' fibroblasts and nine showed decreased CoQ10 biosynthesis. Therefore, the next step is to study the COQ genes in order to reach a definitive diagnosis in these nine patients. In the patients with normal rates the deficiency is probably secondary. In conclusion, we have developed a non-invasive non-radioactive method suitable for the detection of defects in CoQ10 biosynthesis, which offers a good tool for the stratification of patients with these treatable mitochondrial diseases.


Assuntos
Ataxia/diagnóstico , Ataxia/metabolismo , Fibroblastos/metabolismo , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/metabolismo , Debilidade Muscular/diagnóstico , Debilidade Muscular/metabolismo , Mutação , Ubiquinona/análogos & derivados , Ubiquinona/deficiência , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Citrato (si)-Sintase/metabolismo , Genótipo , Humanos , Técnicas de Diagnóstico Molecular , Fenótipo , Valores de Referência , Reprodutibilidade dos Testes , Pele/metabolismo , Espectrometria de Massas em Tandem , Fatores de Tempo , Ubiquinona/biossíntese , Ubiquinona/metabolismo
17.
Mol Genet Metab ; 108(2): 119-24, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23313063

RESUMO

Recent investigations have suggested creatine (Cr) as an additional biomarker of mitochondrial diseases. With the aim of corroborating previous findings, we have studied plasma Cr in a cohort of 33 patients with different mitochondrial diseases. Cr was clearly increased in 9 out of 33 patients. Therefore, positive patients represent only 28% of the total number, suggesting that Cr is not a sensitive biomarker of mitochondrial diseases although it does present an acceptable specificity (83%). High plasma Cr, together with other biomarkers, might be useful to reinforce the diagnosis of mitochondrial diseases.


Assuntos
Creatina/sangue , Doenças Mitocondriais/sangue , Doenças Mitocondriais/diagnóstico , Adolescente , Adulto , Biomarcadores/sangue , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Ácido Láctico/sangue , Curva ROC , Adulto Jovem
19.
J Clin Med ; 12(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38068509

RESUMO

Phenylketonuria (PKU) is the most frequent of the congenital errors of amino acid (AA) metabolism worldwide. It leads to the accumulation of the essential AA phenylalanine (Phe) and it is associated with severe neurological defects. The early diagnosis and treatment of this rare disease, achieved through newborn screening and low-Phe diet, has profoundly changed its clinical spectrum, resulting in normal cognitive development. We face the first generation of PKU patients perinatally diagnosed and treated who have reached adulthood, whose special needs must be addressed, including feeding through enteral nutrition (EN). However, recommendations regarding EN in PKU constitute a gap in the literature. Although protein substitutes for patients with PKU are offered in multiple forms (Phe-free L-amino acid or casein glycomacropeptide supplements), none of these commercial formulas ensures the whole provision of daily total energy and protein requirements, including a safe amount of Phe. Consequently, the combination of different products becomes necessary when artificial nutrition via tube feeding is required. Importantly, the composition of these specific formulas may result in physicochemical interactions when they are mixed with standard EN products, leading to enteral feeding tubes clogging, and also gastrointestinal concerns due to hyperosmolality. Herein, we present the first reported case of EN use in an adult patient with PKU, where the separate administration of protein substitutes and the other EN products avoided physicochemical interactions.

20.
J Clin Med ; 12(19)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37835050

RESUMO

Lysinuric protein intolerance (LPI) is a rare inborn error of metabolism (IEM), classified as an inherited aminoaciduria, caused by mutations in the SLC7A7 gene, leading to a defective cationic amino acid transport. The metabolic adaptations to the demands of pregnancy and delivery cause significant physiological stress, so those patients affected by IEM are at greater risk of decompensation. A 28-year-old woman with LPI had experienced 3 early miscarriages. While pregnancy was finally achieved, diverse nutritional and medical challenges emerged (food aversion, intrauterine growth restriction, bleeding risk, and preeclampsia suspicion), which put both the mother and the fetus at risk. Moreover, the patient requested a natural childbirth (epidural-free, delayed cord clamping). Although the existence of multiple safety concerns rejected this approach at first, the application of novel strategies made a successful delivery possible. This case reinforces that the woman's wish for a non-medicated, low-intervention natural birth should not be automatically discouraged because of an underlying complex metabolic condition. Achieving a successful pregnancy is conceivable thanks to the cooperation of interdisciplinary teams, but it is still important to consider the risks beforehand in order to be prepared for possible additional complications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA