Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 23(4): 1522-1529, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36722976

RESUMO

Antiferroelectrics characterized by voltage-driven reversible transitions between antiparallel and parallel polarity are promising for cutting-edge electronic and electrical power applications. Wide-ranging explorations revealing the macroscopic performances and microstructural characteristics of typical antiferroelectric systems have been conducted. However, the underlying mechanism has not yet been fully unraveled, which depends largely on the atomistic processes. Herein, based on atomic-resolution transmission electron microscopy, the deterministic phase transition pathway along with the underlying lattice-by-lattice details in lead zirconate thin films was elucidated. Specifically, we identified a new type of ferrielectric-like dipole configuration with both angular and amplitude modulations, which plays the role of a precursor for a subsequent antiferroelectric to ferroelectric transformation. With the participation of the ferrielectric-like phase, the phase transition pathways driven by the phase boundary have been revealed. We provide new insights into the consecutive phase transformation in low-dimensional lead zirconate, which thus would promote potential antiferroelectric-based multifunctional devices.

2.
Nano Lett ; 22(22): 8892-8899, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36331549

RESUMO

Polar topologies have received extensive attention due to their exotic configurations and functionalities. Understanding their responsive behaviors to external stimuli, especially thermal excitation, is highly desirable to extend their applications to high temperature, which is still unclear. Here, combining in situ transmission electron microscopy and phase-field simulations, the thermal dynamics of the flux-closure domains were illuminated in PbTiO3/SrTiO3 multilayers. In-depth analyses suggested that the topological transition processes from a/c domains to flux-closure quadrants were influenced by the boundary conditions of PbTiO3 layers. The symmetrical boundary condition stabilized the flux-closure domains at higher temperature than in the asymmetrical case. Furthermore, the reversible thermal responsive behaviors of the flux-closure domains displayed superior thermal stability, which maintained robust up to 450 °C (near the Curie temperature). This work provides new insights into the dynamics of polar topologies under thermal excitation and facilitates their applications as nanoelectronics under extreme conditions.

3.
Nano Lett ; 21(22): 9601-9608, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34766784

RESUMO

Flexoelectricity is an effective tool in modulating the crystallographic structures and properties of oxides for multifunctional applications. However, engineering the nonuniform strain to obtain tunable flexoelectric behaviors at the atomic scale remains an ongoing challenge in conventional substrate-imposed ferroelectric films. Here, the regulatable flexoelectric behaviors are demonstrated at atomic scale in [110]-oriented BiFeO3 thin films, which are triggered by the strain-field coupling of high-density interfacial dislocations. Using aberration-corrected scanning transmission electron microscopy, the asymmetric polarization rotation around the single dislocation is revealed, which is induced by the gradient strain fields of the single dislocation. These strain fields are highly correlated to generate huge strain gradients between neighboring dislocations, and thereby, serial flexoelectric responses are engineered as a function of dislocation spacings in thicker BiFeO3 films. This work opens a pathway for the modulation of flexoelectric responses in ferroelectrics, which could be extended to other functional materials to create exotic phenomena.

4.
Nano Lett ; 21(14): 6274-6281, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34252283

RESUMO

SrTiO3 is generally paraelectric with centrosymmetric structure exhibiting unique quantum fluctuation related ferroelectricity. Here we reveal highly polar and periodic polarization waves in SrTiO3 at room temperature, which is stabilized by periodic tensile strains in a sandwiched PbTiO3/SrTiO3/PbTiO3 structure. Scanning transmission electron microscopy reveals that periodic a/c domain structures in PbTiO3 layers exert unique periodic tensile strains in the ultrathin SrTiO3 layer and consequently make the highly polar and periodic states of SrTiO3. The as-received polar SrTiO3 layer features peak polar ion displacement of ∼0.01 nm and peak tetragonality of ∼1.07. These peak values are larger than previous results, which are comparable to that of bulk ferroelectric PbTiO3. Our results suggest that it is possible to integrate large and periodic strain state in oxide films with exotic properties, which in turn could be useful in optical applications and information addressing when used as memory unit.

5.
Nat Commun ; 15(1): 3949, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729934

RESUMO

Topological domain structures have drawn great attention as they have potential applications in future electronic devices. As an important concept linking the quantum and classical magnetism, a magnetic Bloch point, predicted in 1960s but not observed directly so far, is a singular point around which magnetization vectors orient to nearly all directions. Here we show polar Bloch points in tensile-strained ultrathin ferroelectric PbTiO3 films, which are alternatively visualized by phase-field simulations and aberration-corrected scanning transmission electron microscopic imaging. The phase-field simulations indicate local steady-state negative capacitance around the Bloch points. The observation of polar Bloch points and their emergent properties consequently implies novel applications in future integrated circuits and low power electronic devices.

6.
ACS Appl Mater Interfaces ; 15(2): 3163-3171, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36621962

RESUMO

Materials with multiple order parameters, typically, in which ferroelectricity and magnetism are coupled, are illuminative for next-generation multifunctional electronics. However, searching for such single-phase multiferroics is challenging owing to antagonistic orbital occupancy and chemical bonding requirements for polarity and magnetism. Appropriate multiferroic candidates have been proposed, but their practical implementation is impeded by the low working temperature, weak coupling between ferroic orders, or antiparallel spin alignment in magnetic sublattices. Here, we report a family of single-phase multiferroic materials in which high-temperature magnetism and voltage-switchable ferroelectricity are coupled. Using pulsed laser deposition, we have fabricated single-crystalline thin films incorporating a uniformly percolated open-shell dn framework, which are composed of Fe cations with B-site occupancy and exhibit long-range spin ordering into the displacive ferroelectric PbTiO3 lattice, as demonstrated by atomically resolved chemical analysis. The tetragonal polar Pb(Ti1-x,Fex)O3 (PFT(x), x ≤ 0.10) family exhibits a switchable ferroelectric nature and magnetic interaction with a moderate coercive field of around 300 Oe at room temperature. Notably, the magnetic order even persists above 500 K, which is higher than already reported potential multiferroic candidates until now. Our strategy of merging a spin-ordered sublattice into inherent ferroelectrics via atomic occupancy engineering provides an available pathway for highly thermally stable multiferroic and spintronic applications.

7.
Adv Mater ; 34(32): e2106396, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35730916

RESUMO

Manipulating ferroic orders and realizing their coupling in multiferroics at room temperature are promising for designing future multifunctional devices. Single external stimulation has been extensively proved to demonstrate the ability of ferroelastic switching in multiferroic oxides, which is crucial to bridge the ferroelectricity and magnetism. However, it is still challenging to directly realize multi-field-driven magnetoelectric coupling in multiferroic oxides as potential multifunctional electrical devices. Here, novel magneto-electric-optical coupling in multiferroic BiFeO3 -based thin films at room temperature mediated by deterministic ferroelastic switching using piezoresponse/magnetic force microscopy and aberration-corrected transmission electron microscopy are shown. Reversible photoinduced ferroelastic switching exhibiting magnetoelectric responses is confirmed in BiFeO3 -based films, which works at flexible strain states. This work directly demonstrates room-temperature magneto-electric-optical coupling in multiferroic films, which provides a framework for designing potential multi-field-driven magnetoelectric devices such as energy conservation memories.

8.
ACS Appl Mater Interfaces ; 14(42): 48052-48060, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36226575

RESUMO

High magnetic order temperature, sustainable polar insulating state, and tolerance to device integrations are substantial advantages for applications in next-generation spintronics. However, engineering such functionality in a single-phase system remains a challenge owing to the contradicted chemical and electronic requirements for polar nature and magnetism, especially with an ordering state highly above room temperature. Perovskite-related oxides with unique flexibility allow electron-unpaired subsystems to merge into the polar lattice to induce magnetic interactions, combined with their inherent asymmetry, thereby promising polar magnet design. Herein, by atomic-level composition assembly, a family of Ti/Fe co-occupied perovskite oxide films Pb(Ti1-x,Fex)O3 (PFT(x)) with a Ruddlesden-Popper superstructure are successfully synthesized on several different substrates, demonstrating exceptional adaptability to different integration conditions. Furthermore, second-harmonic generation measurements convince the symmetry-breaking polar character. Notably, a ferromagnetic ground state up to 600 K and a steady insulating state far beyond room temperature were achieved simultaneously in these films. This strategy of constructing layered modular superlattices in perovskite oxides could be extended to other strongly correlated systems for triggering nontrivial quantum physical phenomena.

9.
Sci Adv ; 7(28)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34244147

RESUMO

A dipole wave is composed of head-to-tail connected electric dipoles in the form of sine function. Potential applications in information carrying, transporting, and processing are expected, and logic circuits based on nonlinear wave interaction are promising for dipole waves. Although similar spin waves are well known in ferromagnetic materials for their roles in some physical essence, electric dipole wave behavior and even its existence in ferroelectric materials are still elusive. Here, we observe the atomic morphology of large-scale dipole waves in PbTiO3/SrTiO3 superlattice mediated by tensile epitaxial strains on scandate substrates. The dipole waves can be expressed in the formula of y = Asin (2πx/L) + y 0, where the wave amplitude (A) and wavelength (L) correspond to 1.5 and 6.6 nm, respectively. This study suggests that by engineering strain at the nanoscale, it should be possible to fabricate unknown polar textures, which could facilitate the development of nanoscale ferroelectric devices.

10.
Nanoscale ; 12(17): 9810-9816, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32329477

RESUMO

Multiferroic materials with multifunctional characteristics play a critical role in the field of microelectronics. In a perovskite oxide, ferroelectric polarization and ferromagnetism usually cannot coexist in a single-phase material at the same time. In this work, we design a superlattice structure composed of alternating BiFeO3 and BiMnO3 layers and illustrate how tuning the supercell size of epitaxial BiFeO3/BiMnO3 superlattices facilitates ferroelectric polarization while maintaining relatively strong ferromagnetism. A comprehensive investigation reveals that the enhanced ferroelectric polarization of BiMnO3 layers originates from the induction effect induced by a strong polarization field generated by the adjacent ferroelectric BiFeO3 layers. For the magnetic behavior, we consider the existence of interfacial antiferromagnetic superexchange interaction of Fe-O-Mn between BiFeO3 and BiMnO3 layers in our superlattices. This modulation effect of artificial superlattices provides a platform to accurately control the multiple order parameters in a multiferroic oxide system.

11.
RSC Adv ; 9(25): 13981-13990, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35519315

RESUMO

Controlling domain width, orientation, and patterns in oxide ferroelectrics are not only important for fundamental research but also for potential electronic application. Here, a series of PbTiO3 thin films under various cooling rates were deposited on (110)-oriented NdScO3 substrates by pulsed laser deposition and investigated by using conventional transmission electron microscopy, Cs-corrected scanning TEM and piezoresponse force microscopy. Contrast analysis and electron diffraction revealed that PbTiO3 films are a1/a2 domain patterns under large tensile strains with different cooling rates. The a1/a2 domains distribute periodically and the domain width increases with decrease in the cooling rates. Upon increasing the cooling rate, the domain density increases and the domain configurations become complicated. There are special square frame-like domain patterns with charged domain walls found in the PTO films with the fast cooling rate. PFM measurement shows that the PTO films with high cooling rate exhibit enhanced piezoresponse behavior which is ascribed to the high density domain/domain walls and special domain configurations. The formation mechanism of the different domain configurations is discussed in terms of the effect of cooling rates, defects and thermal kinetics. These results are expected to provide useful information for domain/domain wall control and thus facilitate further modulation of the properties for potential applications.

12.
ACS Nano ; 12(11): 11098-11105, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30352155

RESUMO

Strongly correlated oxides exhibit multiple degrees of freedoms, which can potentially mediate exotic phases with exciting physical properties, such as the polar vortex recently found in ferroelectric oxide films. A polar vortex is stabilized by competition between charge, lattice, and/or orbital degrees of freedom, which displays vortex-ferroelectric phase transitions and emergent chirality, making it a potential candidate for designing information storage and processing devices. Here, by a combination of controlled film growth and aberration-corrected scanning transmission electron microscopy, we obtain nanoscale vortex arrays in [110]-oriented BiFeO3 films. These vortex arrays are stabilized in ultrathin BiFeO3 layers sandwiched by two coherently grown orthorhombic scandate layers, exhibiting a ferroelectric morphotropic phase boundary constituted by a mixed-phase structure of polar orthorhombic BiFeO3 and rhombohedral BiFeO3. Clear polarization switching and piezoelectric signals were observed in these multilayers as revealed by piezoresponse force microscopy. This work presents a feature of a polar vortex in BiFeO3 films showing morphotropic phase boundary character, which offers a potential degree of manipulating phase components and properties of ferroelectric topological structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA