Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38999031

RESUMO

Tomatoes are well known for their impressive nutritional value among vegetables. However, the industrial processing of tomatoes generates a significant amount of waste. Specifically, 10% to 18% of the raw materials used in tomato processing become waste. This waste can seriously affect ecosystems, such as freshwater bodies, wetlands, rivers, and other natural environments, if not properly managed. Interestingly, tomato waste, specifically the skin, contains lycopene, a potent antioxidant and antimutagenic that offers a range of health benefits. This makes it a valuable ingredient in industries such as food and cosmetics. In addition, researchers are exploring the potential of lycopene in the treatment of various types of cancer. This systematic review, guided by the PRISMA 2020 methodology, examined studies exploring the possibility of tomato peel as a source of lycopene and carotenoids for cancer treatment. The findings suggest that tomato peel extracts exhibit promising anticancer properties, underscoring the need for further investigation of possible therapeutic applications. The compiled literature reveals significant potential for using tomato peel to create new cancer treatments, which could potentially revolutionize the field of oncology. This underscores the importance of continued research and exploration, emphasizing the urgency and importance of the scientific community's contribution to this promising area of study.


Assuntos
Licopeno , Neoplasias , Solanum lycopersicum , Solanum lycopersicum/química , Licopeno/química , Licopeno/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Carotenoides/uso terapêutico , Carotenoides/química , Carotenoides/farmacologia , Animais
2.
Molecules ; 29(14)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39064841

RESUMO

Bone tissue engineering is a promising alternative to repair wounds caused by cellular or physical accidents that humans face daily. In this sense, the search for new graphene oxide (GO) nanofillers related to their degree of oxidation is born as an alternative bioactive component in forming new scaffolds. In the present study, three different GOs were synthesized with varying degrees of oxidation and studied chemically and tissue-wise. The oxidation degree was determined through infrared (FTIR), X-ray diffraction (XRD), X-ray photoelectron (XPS), and Raman spectroscopy (RS). The morphology of the samples was analyzed using scanning electron microscopy (SEM). The oxygen content was deeply described using the deconvolution of RS and XPS techniques. The latter represents the oxidation degree for each of the samples and the formation of new bonds promoted by the graphitization of the material. In the RS, two characteristic bands were observed according to the degree of oxidation and the degree of graphitization of the material represented in bands D and G with different relative intensities, suggesting that the samples have different crystallite sizes. This size was described using the Tuinstra-Koenig model, ranging between 18.7 and 25.1 nm. Finally, the bone neoformation observed in the cranial defects of critical size indicates that the F1 and F2 samples, besides being compatible and resorbable, acted as a bridge for bone healing through regeneration. This promoted healing by restoring bone and tissue structure without triggering a strong immune response.


Assuntos
Regeneração Óssea , Grafite , Engenharia Tecidual , Alicerces Teciduais , Grafite/química , Regeneração Óssea/efeitos dos fármacos , Engenharia Tecidual/métodos , Animais , Alicerces Teciduais/química , Nanoestruturas/química , Osso e Ossos/efeitos dos fármacos , Análise Espectral Raman , Oxirredução , Difração de Raios X , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Molecules ; 29(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38257194

RESUMO

Cancer stands as one of the deadliest diseases in human history, marked by an inferior prognosis. While traditional therapeutic methods like surgery, chemotherapy, and radiation have demonstrated success in inhibiting tumor cell growth, their side effects often limit overall benefits and patient acceptance. In this regard, three different graphene oxides (GO) with variations in their degrees of oxidation were studied chemically and tissue-wise. The accuracy of the synthesis of the different GO was verified by robust techniques using X-ray photoelectron spectroscopy (XPS), as well as conventional techniques such as infrared spectroscopy (FTIR), RAMAN spectroscopy, and X-ray diffraction (XRD). The presence of oxygenated groups was of great importance. It affected the physicochemical properties of each of the different graphene oxides demonstrated in the presence of new vibrational modes related to the formation of new bonds promoted by the graphitization of the materials. The toxicity analysis in the Hep-2 cell line of graphene oxide formulations at 250 µg/mL on the viability and proliferation of these tumor cells showed low activity. GO formulations did not show high antibacterial activity against Staphylococcus aureus and Escherichia coli strains. However, the different graphene oxides showed biocompatibility in the subdermal implantation model for 30, 60, and 90 days in the biomodels. This allowed healing by restoring hair and tissue architecture without triggering an aggressive immune response.


Assuntos
Grafite , Neoplasias do Colo do Útero , Humanos , Feminino , Grafite/farmacologia , Antibacterianos/farmacologia , Escherichia coli , Óxidos/farmacologia
4.
Molecules ; 28(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36838907

RESUMO

Cardiovascular diseases (CVD), such as myocardial infarction (MI), constitute one of the world's leading causes of annual deaths. This cardiomyopathy generates a tissue scar with poor anatomical properties and cell necrosis that can lead to heart failure. Necrotic tissue repair is required through pharmaceutical or surgical treatments to avoid such loss, which has associated adverse collateral effects. However, to recover the infarcted myocardial tissue, biopolymer-based scaffolds are used as safer alternative treatments with fewer side effects due to their biocompatibility, chemical adaptability and biodegradability. For this reason, a systematic review of the literature from the last five years on the production and application of chitosan scaffolds for the reconstructive engineering of myocardial tissue was carried out. Seventy-five records were included for review using the "preferred reporting items for systematic reviews and meta-analyses" data collection strategy. It was observed that the chitosan scaffolds have a remarkable capacity for restoring the essential functions of the heart through the mimicry of its physiological environment and with a controlled porosity that allows for the exchange of nutrients, the improvement of the electrical conductivity and the stimulation of cell differentiation of the stem cells. In addition, the chitosan scaffolds can significantly improve angiogenesis in the infarcted tissue by stimulating the production of the glycoprotein receptors of the vascular endothelial growth factor (VEGF) family. Therefore, the possible mechanisms of action of the chitosan scaffolds on cardiomyocytes and stem cells were analyzed. For all the advantages observed, it is considered that the treatment of MI with the chitosan scaffolds is promising, showing multiple advantages within the regenerative therapies of CVD.


Assuntos
Quitosana , Infarto do Miocárdio , Humanos , Quitosana/química , Alicerces Teciduais/química , Fator A de Crescimento do Endotélio Vascular , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Engenharia Tecidual
5.
Molecules ; 27(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36144483

RESUMO

Autologous bone is the gold standard in regeneration processes. However, there is an endless search for alternative materials in bone regeneration. Xenografts can act as bone substitutes given the difficulty of obtaining bone tissue from patients and before the limitations in the availability of homologous tissue donors. Bone neoformation was studied in critical-size defects created in the parietal bone of 40 adult male Wistar rats, implanted with xenografts composed of particulate bovine hydroxyapatite (HA) and with blocks of bovine hydroxyapatite (HA) and Collagen, which introduces crystallinity to the materials. The Fourier-transform infrared spectroscopy (FTIR) analysis demonstrated the carbonate and phosphate groups of the hydroxyapatite and the amide groups of the collagen structure, while the thermal transitions for HA and HA/collagen composites established mainly dehydration endothermal processes, which increased (from 79 °C to 83 °C) for F2 due to the collagen presence. The xenograft's X-ray powder diffraction (XRD) analysis also revealed the bovine HA crystalline structure, with a prominent peak centered at 32°. We observed macroporosity and mesoporosity in the xenografts from the morphology studies with heterogeneous distribution. The two xenografts induced neoformation in defects of critical size. Histological, histochemical, and scanning electron microscopy (SEM) analyses were performed 30, 60, and 90 days after implantation. The empty defects showed signs of neoformation lower than 30% in the three periods, while the defects implanted with the material showed partial regeneration. InterOss Collagen material temporarily induced osteon formation during the healing process. The results presented here are promising for bone regeneration, demonstrating a beneficial impact in the biomedical field.


Assuntos
Substitutos Ósseos , Amidas , Animais , Regeneração Óssea , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Bovinos , Colágeno/química , Durapatita/química , Durapatita/farmacologia , Xenoenxertos , Humanos , Masculino , Ratos , Ratos Wistar
6.
Molecules ; 27(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35408663

RESUMO

The indiscriminate use of plastic in food packaging contributes significantly to environmental pollution, promoting the search for more eco-friendly alternatives for the food industry. This work studied five formulations (T1-T5) of biodegradable cassava starch/gelatin films. The results showed the presence of the starch/gelatin functional groups by FT-IR spectroscopy. Differential scanning calorimetry (DSC) showed a thermal reinforcement after increasing the amount of gelatin in the formulations, which increased the crystallization temperature (Tc) from 190 °C for the starch-only film (T1) to 206 °C for the film with 50/50 starch/gelatin (T3). It also exhibited a homogeneous surface morphology, as evidenced by scanning electron microscopy (SEM). However, an excess of gelatin showed low compatibility with starch in the 25/75 starch/gelatin film (T4), evidenced by the low Tc definition and very rough and fractured surface morphology. Increasing gelatin ratio also significantly increased the strain (from 2.9 ± 0.5% for T1 to 285.1 ± 10.0% for T5) while decreasing the tensile strength (from 14.6 ± 0.5 MPa for T1 to 1.5 ± 0.3 MPa for T5). Water vapor permeability (WVP) increased, and water solubility (WS) also decreased with gelatin mass rising in the composites. On the other hand, opacity did not vary significantly due to the films' cassava starch and gelatin ratio. Finally, optimizing the mechanical and water barrier properties resulted in a mass ratio of 53/47 cassava starch/gelatin as the most appropriate for their application in food packaging, indicating their usefulness in the food-packaging industry.


Assuntos
Embalagem de Alimentos , Amido , Animais , Galinhas , Gelatina/química , Permeabilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Amido/química , Resistência à Tração
7.
Molecules ; 27(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35684575

RESUMO

Scaffolds based on biopolymers and nanomaterials with appropriate mechanical properties and high biocompatibility are desirable in tissue engineering. Therefore, polylactic acid (PLA) nanocomposites were prepared with ceramic nanobioglass (PLA/n-BGs) at 5 and 10 wt.%. Bioglass nanoparticles (n-BGs) were prepared using a sol-gel methodology with a size of ca. 24.87 ± 6.26 nm. In addition, they showed the ability to inhibit bacteria such as Escherichia coli (ATCC 11775), Vibrio parahaemolyticus (ATCC 17802), Staphylococcus aureus subsp. aureus (ATCC 55804), and Bacillus cereus (ATCC 13061) at concentrations of 20 w/v%. The analysis of the nanocomposite microstructures exhibited a heterogeneous sponge-like morphology. The mechanical properties showed that the addition of 5 wt.% n-BG increased the elastic modulus of PLA by ca. 91.3% (from 1.49 ± 0.44 to 2.85 ± 0.99 MPa) and influenced the resorption capacity, as shown by histological analyses in biomodels. The incorporation of n-BGs decreased the PLA crystallinity (from 7.1% to 4.98%) and increased the glass transition temperature (Tg) from 53 °C to 63 °C. In addition, the n-BGs increased the thermal stability due to the nanoparticle's intercalation between the polymeric chains and the reduction in their movement. The histological implantation of the nanocomposites and the cell viability with HeLa cells higher than 80% demonstrated their biocompatibility character with a greater resorption capacity than PLA. These results show the potential of PLA/n-BGs nanocomposites for biomedical applications, especially for long healing processes such as bone tissue repair and avoiding microbial contamination.


Assuntos
Nanocompostos , Poliésteres , Escherichia coli , Células HeLa , Humanos , Nanocompostos/química , Poliésteres/química , Poliésteres/farmacologia , Engenharia Tecidual
8.
Molecules ; 26(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478152

RESUMO

The food sector includes several large industries such as canned food, pasta, flour, frozen products, and beverages. Those industries transform agricultural raw materials into added-value products. The fruit and vegetable industry is the largest and fastest-growing segment of the world agricultural production market, which commercialize various products such as juices, jams, and dehydrated products, followed by the cereal industry products such as chocolate, beer, and vegetable oils are produced. Similarly, the root and tuber industry produces flours and starches essential for the daily diet due to their high carbohydrate content. However, the processing of these foods generates a large amount of waste several times improperly disposed of in landfills. Due to the increase in the world's population, the indiscriminate use of natural resources generates waste and food supply limitations due to the scarcity of resources, increasing hunger worldwide. The circular economy offers various tools for raising awareness for the recovery of waste, one of the best alternatives to mitigate the excessive consumption of raw materials and reduce waste. The loss and waste of food as a raw material offers bioactive compounds, enzymes, and nutrients that add value to the food cosmetic and pharmaceutical industries. This paper systematically reviewed literature with different food loss and waste by-products as animal feed, cosmetic, and pharmaceutical products that strongly contribute to the paradigm shift to a circular economy. Additionally, this review compiles studies related to the integral recovery of by-products from the processing of fruits, vegetables, tubers, cereals, and legumes from the food industry, with the potential in SARS-CoV-2 disease and bacterial diseases treatment.


Assuntos
Agricultura/métodos , Indústria Farmacêutica , Indústria Alimentícia , Resíduos/economia , Agricultura/economia , Cosméticos/economia , Grão Comestível , Indústria de Processamento de Alimentos/economia , Indústria de Processamento de Alimentos/métodos , Frutas , Raízes de Plantas , Tubérculos , Verduras
9.
Molecules ; 26(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34500714

RESUMO

Banana is a fruit grown mainly in tropical countries of the world. After harvest, almost 60% of banana biomass is left as waste. Worldwide, about 114.08 million metric tons of banana waste-loss are produced, leading to environmental problems such as the excessive emission of greenhouse gases. These wastes contain a high content of paramount industrial importance, such as cellulose, hemicellulose and natural fibers that various processes can modify, such as bacterial fermentation and anaerobic degradation, to obtain bioplastics, organic fertilizers and biofuels such as ethanol, biogas, hydrogen and biodiesel. In addition, they can be used in wastewater treatment methods by producing low-cost biofilters and obtaining activated carbon from rachis and banana peel. Furthermore, nanometric fibers commonly used in nanotechnology applications and silver nanoparticles useful in therapeutic cancer treatments, can be produced from banana pseudostems. The review aims to demonstrate the contribution of the recovery of banana production waste-loss towards a circular economy that would boost the economy of Latin America and many other countries of emerging economies.


Assuntos
Nanopartículas Metálicas/química , Musa/metabolismo , Prata/química , Biocombustíveis , Nanotecnologia/métodos
10.
Molecules ; 26(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34443341

RESUMO

In recent decades, the number of patients requiring biocompatible and resistant implants that differ from conventional alternatives dramatically increased. Among the most promising are the nanocomposites of biopolymers and nanomaterials, which pretend to combine the biocompatibility of biopolymers with the resistance of nanomaterials. However, few studies have focused on the in vivo study of the biocompatibility of these materials. The electrospinning process is a technique that produces continuous fibers through the action of an electric field imposed on a polymer solution. However, to date, there are no reports of chitosan (CS) and polyvinyl alcohol (PVA) electrospinning with carbon nano-onions (CNO) for in vivo implantations, which could generate a resistant and biocompatible material. In this work, we describe the synthesis by the electrospinning method of four different nanofibrous membranes of chitosan (CS)/(PVA)/oxidized carbon nano-onions (ox-CNO) and the subdermal implantations after 90 days in Wistar rats. The results of the morphology studies demonstrated that the electrospun nanofibers were continuous with narrow diameters (between 102.1 nm ± 12.9 nm and 147.8 nm ± 29.4 nm). The CS amount added was critical for the diameters used and the successful electrospinning procedure, while the ox-CNO amount did not affect the process. The crystallinity index was increased with the ox-CNO introduction (from 0.85% to 12.5%), demonstrating the reinforcing effect of the nanomaterial. Thermal degradation analysis also exhibited reinforcement effects according to the DSC and TGA analysis, with the higher ox-CNO content. The biocompatibility of the nanofibers was comparable with the porcine collagen, as evidenced by the subdermal implantations in biological models. In summary, all the nanofibers were reabsorbed without a severe immune response, indicating the usefulness of the electrospun nanocomposites in biomedical applications.


Assuntos
Carbono/química , Quitosana/química , Eletricidade , Teste de Materiais , Membranas Artificiais , Nanocompostos/química , Álcool de Polivinil/química , Animais , Nanocompostos/toxicidade , Oxirredução , Ratos
11.
Molecules ; 26(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573272

RESUMO

Pears (Pyrus communis L.) cv. Packham's Triumph are very traditional for human consumption, but pear is a highly perishable climacteric fruit with a short shelf-life affected by several diseases with a microbial origin. In this study, a protective effect on the quality properties of pears was evidenced after the surface application of chitosan-Ruta graveolens essential oil coatings (CS + RGEO) in four different concentrations (0, 0.5, 1.0 and 1.5 %, v/v) during 21 days of storage under 18 °C. After 21 days of treatment, a weight loss reduction of 10% (from 40.2 ± 5.3 to 20.3 ± 3.9) compared to the uncoated pears was evident with CS + RGEO 0.5%. All the fruits' physical-chemical properties evidenced a protective effect of the coatings. The maturity index increased for all the treatments. However, the pears with CS + RGEO 1.5% were lower (70.21) than the uncoated fruits (98.96). The loss of firmness for the uncoated samples was higher compared to the coated samples. The pears' most excellent mechanical resistance was obtained with CS + RGEO 0.5% after 21 days of storage, both for compression resistance (7.42 kPa) and force (22.7 N). Microbiological studies demonstrated the protective power of the coatings. Aerobic mesophilic bacteria and molds were significantly reduced (in 3 Log CFU/g compared to control) using 15 µL/mL of RGEO, without affecting consumer perception. The results presented in this study showed that CS + RGEO coatings are promising in the post-harvest treatment of pears.


Assuntos
Quitosana/química , Conservação de Alimentos/métodos , Óleos Voláteis/farmacologia , Pyrus/química , Quitosana/farmacologia , Resposta ao Choque Frio/efeitos dos fármacos , Frutas/química , Fungos/efeitos dos fármacos , Humanos , Óleos Voláteis/química , Óleos de Plantas/química , Pyrus/efeitos dos fármacos , Pyrus/microbiologia , Ruta/química , Temperatura
12.
Molecules ; 25(10)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32423061

RESUMO

Scaffold development for cell regeneration has increased in recent years due to the high demand for more efficient and biocompatible materials. Nanomaterials have become a critical alternative for mechanical, thermal, and antimicrobial property reinforcement in several biopolymers. In this work, four different chitosan (CS) bead formulations crosslinked with glutaraldehyde (GLA), including titanium dioxide nanoparticles (TiO2), and graphene oxide (GO) nanosheets, were prepared with potential biomedical applications in mind. The characterization of by FTIR spectroscopy, X-ray photoelectron spectroscopy (XRD), thermogravimetric analysis (TGA), energy-dispersive spectroscopy (EDS) and scanning electron microscopy (SEM), demonstrated an efficient preparation of nanocomposites, with nanoparticles well-dispersed in the polymer matrix. In vivo, subdermal implantation of the beads in Wistar rat's tissue for 90 days showed a proper and complete healing process without any allergenic response to any of the formulations. Masson's trichrome staining of the histological implanted tissues demonstrated the presence of a group of macrophage/histiocyte compatible cells, which indicates a high degree of biocompatibility of the beads. The materials were very stable under body conditions as the morphometry studies showed, but with low resorption percentages. These high stability beads could be used as biocompatible, resistant materials for long-term applications. The results presented in this study show the enormous potential of these chitosan nanocomposites in cell regeneration and biomedical applications.


Assuntos
Quitosana/química , Grafite/química , Nanocompostos/química , Nanopartículas/química , Alicerces Teciduais , Titânio/química , Animais , Materiais Biocompatíveis , Sobrevivência Celular/efeitos dos fármacos , Quitosana/farmacologia , Grafite/farmacologia , Histiócitos/citologia , Histiócitos/efeitos dos fármacos , Histiócitos/fisiologia , Masculino , Nanocompostos/ultraestrutura , Nanopartículas/ultraestrutura , Ratos , Ratos Wistar , Pele/citologia , Pele/efeitos dos fármacos , Engenharia Tecidual/métodos , Titânio/farmacologia
13.
Molecules ; 25(7)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272702

RESUMO

The development of new biocompatible materials for application in the replacement of deteriorated tissues (due to accidents and diseases) has gained a lot of attention due to the high demand around the world. Tissue engineering offers multiple options from biocompatible materials with easy resorption. Chitosan (CS) is a biopolymer derived from chitin, the second most abundant polysaccharide in nature, which has been highly used for cell regeneration applications. In this work, CS films and Ruta graveolens essential oil (RGEO) were incorporated to obtain porous and resorbable materials, which did not generate allergic reactions. An oil-free formulation (F1: CS) and three different formulations containing R. graveolens essential oil were prepared (F2: CS-RGEO 0.5%; F3: CS+RGEO 1.0%; and F4: CS+RGEO 1.5%) to evaluate the effect of the RGEO incorporation in the mechanical and thermal stability of the films. Infrared spectroscopy (FTIR) analyses demonstrated the presence of RGEO. In contrast, X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analysis showed that the crystalline structure and percentage of CS were slightly affected by the RGEO incorporation. Interesting saturation phenomena were observed for mechanical and water permeability tests when RGEO was incorporated at higher than 0.5% (v/v). The results of subdermal implantation after 30 days in Wistar rats showed that increasing the amount of RGEO resulted in greater resorption of the material, but also more significant inflammation of the tissue surrounding the materials. On the other hand, the thermal analysis showed that the RGEO incorporation almost did not affect thermal degradation. However, mechanical properties demonstrated an understandable loss of tensile strength and Young's modulus for F3 and F4. However, given the volatility of the RGEO, it was possible to generate a slightly porous structure, as can be seen in the microstructure analysis of the surface and the cross-section of the films. The cytotoxicity analysis of the CS+RGEO compositions by the hemolysis technique agreed with in vivo results of the low toxicity observed. All these results demonstrate that films including crude essential oil have great application potential in the biomedical field.


Assuntos
Quitosana/química , Óleos Voláteis/química , Ruta/química , Adulto , Animais , Materiais Biocompatíveis/química , Varredura Diferencial de Calorimetria/métodos , Módulo de Elasticidade , Humanos , Masculino , Permeabilidade , Porosidade , Ratos , Ratos Wistar , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Resistência à Tração , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Difração de Raios X/métodos , Adulto Jovem
14.
Molecules ; 25(5)2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-32155970

RESUMO

The design of scaffolding from biocompatible and resistant materials such as carbon nanomaterials and biopolymers has become very important, given the high rate of injured patients. Graphene and carbon nanotubes, for example, have been used to improve the physical, mechanical, and biological properties of different materials and devices. In this work, we report the grafting of carbon nano-onions with chitosan (CS-g-CNO) through an amide-type bond. These compounds were blended with chitosan and polyvinyl alcohol composites to produce films for subdermal implantation in Wistar rats. Films with physical mixture between chitosan, polyvinyl alcohol, and carbon nano-onions were also prepared for comparison purposes. Film characterization was performed with Fourier Transformation Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Tensile strength, X-ray Diffraction Spectroscopy (XRD), and Scanning Electron Microscopy (SEM). The degradation of films into simulated body fluid (SBF) showed losses between 14% and 16% of the initial weight after 25 days of treatment. Still, a faster degradation (weight loss and pH changes) was obtained with composites of CS-g-CNO due to a higher SBF interaction by hydrogen bonding. On the other hand, in vivo evaluation of nanocomposites during 30 days in Wistar rats, subdermal tissue demonstrated normal resorption of the materials with lower inflammation processes as compared with the physical blends of ox-CNO formulations. SBF hydrolytic results agreed with the in vivo degradation for all samples, demonstrating that with a higher ox-CNO content increased the stability of the material and decreased its degradation capacity; however, we observed greater reabsorption with the formulations including CS-g-CNO. With this research, we demonstrated the future impact of CS/PVA/CS-g-CNO nanocomposite films for biomedical applications.


Assuntos
Nanocompostos/química , Próteses e Implantes , Animais , Materiais Biocompatíveis/química , Varredura Diferencial de Calorimetria , Carbono , Quitosana/química , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Nanocompostos/administração & dosagem , Nanocompostos/uso terapêutico , Álcool de Polivinil/química , Ratos Wistar , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Resistência à Tração , Termogravimetria , Difração de Raios X
15.
Int J Mol Sci ; 20(7)2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30934823

RESUMO

In the last few years, graphene oxide (GO) has gained considerable importance in scaffold preparation for tissue engineering due to the presence of functional groups that allow the interaction between the extracellular matrix and the components of the cellular membrane. The interaction between GO and chitosan (CS) can not only improve the biomechanical properties of the scaffold but also generate a synergistic effect, facilitating tissue recovery. In vivo studies on GO are scarce; therefore, biocompatibility tests on CS-GO scaffolds and bone regeneration experiments on critical size defects were carried out on Wistar rats. Scaffolds made of CS, CS-GO 0.5%, and CS-GO 1% were prepared and implanted on Wistar rats cranial bones for three months. Scaffold samples were analyzed through histochemistry and scanning electron microscopy. The analysis performed showed reabsorption of the material by phagocytic activity and new bone formation. The CS-GO 0.5% formulation gave the best performance in bone regeneration, with excellent biocompatibility. These results show the potential of this compound for tissue regeneration opening and medical applications.


Assuntos
Materiais Biocompatíveis/farmacologia , Quitosana/farmacologia , Grafite/farmacologia , Animais , Processamento de Imagem Assistida por Computador , Masculino , Osso Parietal/diagnóstico por imagem , Osso Parietal/ultraestrutura , Ratos Wistar , Alicerces Teciduais/química
16.
Int J Mol Sci ; 20(12)2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31208091

RESUMO

Acrylic bone cements (ABCs) have played a key role in orthopedic surgery mainly in arthroplasties, but their use is increasingly extending to other applications, such as remodeling of cancerous bones, cranioplasties, and vertebroplasties. However, these materials present some limitations related to their inert behavior and the risk of infection after implantation, which leads to a lack of attachment and makes necessary new surgical interventions. In this research, the physicochemical, thermal, mechanical, and biological properties of ABCs modified with chitosan (CS) and graphene oxide (GO) were studied. Fourier transform infrared (FTIR) spectroscopy, proton nuclear magnetic resonance (1H-NMR) scanning electron microscopy (SEM), Raman mapping, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), compression resistance, mechanical dynamic analysis (DMA), hydrolytic degradation, cell viability, alkaline phosphatase (ALP) activity with human osteoblasts (HOb), and antibacterial activity against Gram-negative bacteria Escherichia coli were used to characterize the ABCs. The results revealed good dispersion of GO nanosheets in the ABCs. GO provided an increase in antibacterial activity, roughness, and flexural behavior, while CS generated porosity, increased the rate of degradation, and decreased compression properties. All ABCs were not cytotoxic and support good cell viability of HOb. The novel formulation of ABCs containing GO and CS simultaneously, increased the thermal stability, flexural modulus, antibacterial behavior, and osteogenic activity, which gives it a high potential for its uses in orthopedic applications.


Assuntos
Antibacterianos , Materiais Biocompatíveis , Cimentos Ósseos , Quitosana , Grafite , Nanocompostos , Antibacterianos/química , Antibacterianos/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Sobrevivência Celular , Quitosana/química , Grafite/química , Humanos , Fenômenos Mecânicos , Microscopia de Força Atômica , Nanocompostos/química , Nanocompostos/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Difração de Raios X
17.
Int J Mol Sci ; 20(12)2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31248075

RESUMO

Tissue engineering is gaining attention rapidly to replace and repair defective tissues in the human body after illnesses and accidents in different organs. Electrospun nanofiber scaffolds have emerged as a potential alternative for cell regeneration and organ replacement. In this paper, porous membranes, based on nanofibrous chitosan (CS), polyvinyl alcohol (PVA), and graphene oxide (GO), were obtained via electrospinning methodology. Three different formulations were obtained varying GO content, being characterized by Fourier Transform Infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). In vitro tests were carried out, consisting of hydrolytic degradation inside simulated biological fluid (SBF), and in vivo tests were carried out, where the material was implanted in Wistar rats' subcutaneous tissue to determine its biocompatibility. The antibacterial activity was tested against Gram-positive bacteria Bacillus cereus and Staphylococcus aureus, and against Gram-negative Salmonella enterica and Escherichia coli, by contact of the electrospun nanofiber scaffolds above inoculum bacterial in Müeller Hinton agar with good inhibition only for scaffolds with the higher GO content (1.0%). The results confirmed good biocompatibility of the nanofibrous scaffolds after in vivo tests in Wistar rats, which evidences its high potential in applications of tissue regeneration.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Quitosana/química , Grafite/química , Nanocompostos/química , Álcool de Polivinil/química , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Humanos , Membranas Artificiais , Testes de Sensibilidade Microbiana , Nanocompostos/ultraestrutura , Nanofibras/química , Nanofibras/ultraestrutura , Ratos , Análise Espectral , Alicerces Teciduais , Cicatrização
18.
Molecules ; 23(9)2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30200387

RESUMO

In this work, we synthesized chitosan grafted-polyacrylic acid (CS-g-PA) through surface-initiated atom transfer radical polymerization (SI-ATRP). We also studied the adsorption process of copper and lead ions onto the CS-g-PA surface. Adsorption equilibrium studies indicated that pH 4.0 was the best pH for the adsorption process and the maximum adsorption capacity over CS-g-PA for Pb2+ ions was 98 mg·g-1 and for Cu2+ it was 164 mg·g-1, while for chitosan alone (CS), the Pb2+ adsorption capacity was only 14.8 mg·g-1 and for Cu2+ it was 140 mg·g-1. Furthermore, the adsorption studies indicated that Langmuir model describes all the experimental data and besides, pseudo-second-order model was suitable to describe kinetic results for the adsorption process, demonstrating a larger kinetic constant of the process was larger for Pb2+ than Cu2+. Compared to other adsorbents reported, CS-g-PA had comparable or even superior adsorbent capacity and besides, all these results suggest that the new CS-g-PA polymers had potential as an adsorbent for hazardous and toxic metal ions produced by different industries.


Assuntos
Resinas Acrílicas/química , Quitosana/química , Cobre/isolamento & purificação , Chumbo/isolamento & purificação , Polimerização , Resinas Acrílicas/síntese química , Adsorção , Quitosana/síntese química , Concentração de Íons de Hidrogênio , Íons , Cinética , Modelos Teóricos , Espectroscopia Fotoeletrônica , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Temperatura , Água/química
19.
Molecules ; 23(10)2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30332775

RESUMO

Several biomaterials, including natural polymers, are used to increase cellular interactions as an effective way to treat bone injuries. Chitosan (CS) is one of the most studied biocompatible natural polymers. Graphene oxide (GO) is a carbon-based nanomaterial capable of imparting desired properties to the scaffolds. In the present study, CS and GO were used for scaffold preparation. CS was extracted from the mycelium of the fungus Aspergillus niger. On the other hand, GO was synthesized using an improved Hummers-Offemann method and was characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, atomic force microscopy (AFM), X-ray diffraction (XRD), and dynamic light scattering (DLS). Subsequently, three formulations (GO 0%, 0.5%, and 1%) were used to prepare the scaffolds by the freeze-drying technique. The scaffolds were characterized by FTIR, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM), to determine their thermal stability and pore size, demonstrating that their stability increased with the increase of GO amount. Finally, the scaffolds were implanted, recollected 30 days later, and studied with an optical microscope, which evidenced the recovery of the tissue architecture and excellent biocompatibility. Hence, these results strongly suggested the inherent nature of chitosan/graphene oxide (CS/GO) scaffolds for their application in bone tissue regeneration.


Assuntos
Materiais Biocompatíveis/síntese química , Quitosana/química , Grafite/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Aspergillus niger/química , Materiais Biocompatíveis/química , Quitosana/isolamento & purificação , Liofilização , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Teste de Materiais , Microscopia Eletrônica de Varredura , Porosidade , Estabilidade Proteica , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Termogravimetria
20.
J Food Sci Technol ; 55(10): 4256-4265, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30228424

RESUMO

Chitosan-based coatings and films have been widely studied, demonstrating to be an efficient and eco-friendly approach to extend the shelf life of food products. The effect of incorporating Thymus capitatus essential oil (TCEO) at different concentrations (0.5, 1.0, and 1.5% w/w) on physical, mechanical and antimicrobial properties of chitosan films was studied. The antimicrobial activity of the films was evaluated by agar diffusion method, against 23 spoiling microorganisms isolated from tuna and swordfish (ten Shewanella baltica, one S. morhuae, one S. putrefaciens, two Pseudomonas fluorescens, two P. fragi, five Serratia spp., one Aeromonas molluscorum, and one Acinetobacter radioresistens) and Shewanella putrefaciens ATCC 49138. The films exerted antimicrobial activity against all the tested strain, although not proportional to increasing TCEO concentration. In particular, S. baltica was the most sensitive species and the inhibition was stable after 72 h. In general, TCEO incorporation in chitosan films, significantly (p < 0.05) decreased the water permeability (from 0.577 ± 0.060 gmm/kPahm2 at 61% R.U. for chitosan to 0.487 ± 0.037 gmm/kPahm2 for the film with 1.5% TCEO), the elongation at brake (from 27.322 ± 2.35% for chitosan to 14.695 ± 3.99% for the film with 1.5% TCEO) and increased the tensile strength (from 1.697 ± 0.16% for chitosan to 19.480 ± 2.86% for the film with 1.5% TCEO). Moisture content and water contact angle of the films also showed a similar trend with TCEO introduction, because of crosslinking reaction among the polymer chains and TCEO components. Scanning electron microscopy confirmed structure-properties relationships. These results suggest chitosan films incorporated with TCEO as an alternative treatment to inhibit the growth of degradative bacteria with potential application in the fish industry. The importance of testing more than one strain of the same bacteria species to evaluate the effectiveness of chitosan-essential oils coatings was also demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA