Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Blood ; 143(14): 1391-1398, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38153913

RESUMO

ABSTRACT: Distinct diagnostic entities within BCR::ABL1-positive acute lymphoblastic leukemia (ALL) are currently defined by the International Consensus Classification of myeloid neoplasms and acute leukemias (ICC): "lymphoid only", with BCR::ABL1 observed exclusively in lymphatic precursors, vs "multilineage", where BCR::ABL1 is also present in other hematopoietic lineages. Here, we analyzed transcriptomes of 327 BCR::ABL1-positive patients with ALL (age, 2-84 years; median, 46 years) and identified 2 main gene expression clusters reproducible across 4 independent patient cohorts. Fluorescence in situ hybridization analysis of fluorescence-activated cell-sorted hematopoietic compartments showed distinct BCR::ABL1 involvement in myeloid cells for these clusters (n = 18/18 vs n = 3/16 patients; P < .001), indicating that a multilineage or lymphoid BCR::ABL1 subtype can be inferred from gene expression. Further subclusters grouped samples according to cooperating genomic events (multilineage: HBS1L deletion or monosomy 7; lymphoid: IKZF1-/- or CDKN2A/PAX5 deletions/hyperdiploidy). A novel HSB1L transcript was highly specific for BCR::ABL1 multilineage cases independent of HBS1L genomic aberrations. Treatment on current German Multicenter Study Group for Adult ALL (GMALL) protocols resulted in comparable disease-free survival (DFS) for multilineage vs lymphoid cluster patients (3-year DFS: 70% vs 61%; P = .530; n = 91). However, the IKZF1-/- enriched lymphoid subcluster was associated with inferior DFS, whereas hyperdiploid cases showed a superior outcome. Thus, gene expression clusters define underlying developmental trajectories and distinct patterns of cooperating events in BCR::ABL1-positive ALL with prognostic relevance.


Assuntos
Proteínas de Fusão bcr-abl , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Doença Aguda , Deleção Cromossômica , Proteínas de Fusão bcr-abl/genética , Genômica , Hibridização in Situ Fluorescente , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
2.
Hemasphere ; 7(9): e939, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37645423

RESUMO

Current classifications (World Health Organization-HAEM5/ICC) define up to 26 molecular B-cell precursor acute lymphoblastic leukemia (BCP-ALL) disease subtypes by genomic driver aberrations and corresponding gene expression signatures. Identification of driver aberrations by transcriptome sequencing (RNA-Seq) is well established, while systematic approaches for gene expression analysis are less advanced. Therefore, we developed ALLCatchR, a machine learning-based classifier using RNA-Seq gene expression data to allocate BCP-ALL samples to all 21 gene expression-defined molecular subtypes. Trained on n = 1869 transcriptome profiles with established subtype definitions (4 cohorts; 55% pediatric / 45% adult), ALLCatchR allowed subtype allocation in 3 independent hold-out cohorts (n = 1018; 75% pediatric / 25% adult) with 95.7% accuracy (averaged sensitivity across subtypes: 91.1% / specificity: 99.8%). High-confidence predictions were achieved in 83.7% of samples with 98.9% accuracy. Only 1.2% of samples remained unclassified. ALLCatchR outperformed existing tools and identified novel driver candidates in previously unassigned samples. Additional modules provided predictions of samples blast counts, patient's sex, and immunophenotype, allowing the imputation in cases where these information are missing. We established a novel RNA-Seq reference of human B-lymphopoiesis using 7 FACS-sorted progenitor stages from healthy bone marrow donors. Implementation in ALLCatchR enabled projection of BCP-ALL samples to this trajectory. This identified shared proximity patterns of BCP-ALL subtypes to normal lymphopoiesis stages, extending immunophenotypic classifications with a novel framework for developmental comparisons of BCP-ALL. ALLCatchR enables RNA-Seq routine application for BCP-ALL diagnostics with systematic gene expression analysis for accurate subtype allocation and novel insights into underlying developmental trajectories.

3.
Methods Mol Biol ; 2453: 61-77, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35622320

RESUMO

Identification of immunoglobulin (IG) and T-cell receptor (TR) gene rearrangements in acute lymphoblastic leukemia (ALL) patients at initial presentation are crucial for monitoring of minimal residual disease (MRD) during subsequent follow-up and thereby for appropriate risk-group stratification. Here we describe how RNA-Seq data can be generated and subsequently analyzed with ARResT/Interrogate to identify possible MRD markers. In addition to the procedures, possible pitfalls will be discussed. Similar strategies can be employed for other lymphoid malignancies, such as lymphoma and myeloma.


Assuntos
Rearranjo Gênico , Genes Codificadores dos Receptores de Linfócitos T , Imunoglobulinas , Neoplasia Residual , Leucemia-Linfoma Linfoblástico de Células Precursoras , RNA-Seq , Assistência ao Convalescente , Rearranjo Gênico/genética , Genes Codificadores dos Receptores de Linfócitos T/genética , Humanos , Imunoglobulinas/genética , Neoplasia Residual/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , RNA-Seq/métodos , Medição de Risco
4.
Cell Death Differ ; 29(11): 2163-2176, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35459909

RESUMO

The processes leading from disturbed B-cell development to adult B-cell progenitor acute lymphoblastic leukemia (BCP-ALL) remain poorly understood. Here, we describe Irf4-/- mice as prone to developing BCP-ALL with age. Irf4-/- preB-I cells exhibited impaired differentiation but enhanced proliferation in response to IL-7, along with reduced retention in the IL-7 providing bone marrow niche due to decreased CXCL12 responsiveness. Thus selected, preB-I cells acquired Jak3 mutations, probably following irregular AID activity, resulting in malignant transformation. We demonstrate heightened IL-7 sensitivity due to Jak3 mutants, devise a model to explain it, and describe structural and functional similarities to Jak2 mutations often occurring in human Ph-like ALL. Finally, targeting JAK signaling with Ruxolitinib in vivo prolonged survival of mice bearing established Irf4-/- leukemia. Intriguingly, organ infiltration including leukemic meningeosis was selectively reduced without affecting blood blast counts. In this work, we present spontaneous leukemogenesis following IRF4 deficiency with potential implications for high-risk BCP-ALL in adult humans.


Assuntos
Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adulto , Animais , Humanos , Camundongos , Linfócitos B , Linfoma de Burkitt/patologia , Interleucina-7/genética , Janus Quinase 3/genética , Mutação/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA