Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Org Biomol Chem ; 22(18): 3725-3731, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38647088

RESUMO

For the first time, three acceptor-donor-acceptor (A-D-A)-type boranil fluorescent dyes, CSU-BF-R (R = H, CH3, and OCH3), featuring phenothiazine as the donor, were designed and synthesized. CSU-BF-R exhibited remarkable photophysical characteristics, including large Stokes shifts (>150 nm), high fluorescence quantum yields (up to 40%), long-wavelength emissions, and strong red solid-state fluorescence. Moreover, these CSU-BF-R fluorescent dyes were demonstrated to function as highly selective and sensitive ratiometric fluorescent probes for detecting hypochlorous acid (HClO). The preliminary biological applications of CSU-BF-OCH3 for sensing intracellular HClO in living cells and zebrafish were demonstrated. Therefore, CSU-BF-R possess the potential to further explore the physiological and pathological functions associated with HClO and provide valuable insights into the design of high-performance A-D-A-type fluorescent dyes.


Assuntos
Desenho de Fármacos , Corantes Fluorescentes , Ácido Hipocloroso , Peixe-Zebra , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Animais , Ácido Hipocloroso/análise , Ácido Hipocloroso/química , Humanos , Compostos de Anilina/química , Compostos de Anilina/síntese química , Estrutura Molecular , Imagem Óptica
2.
Am J Physiol Lung Cell Mol Physiol ; 324(5): L596-L608, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36880663

RESUMO

Inflammasome activation is of central importance for the process of generation of overwhelming inflammatory response and the pathogenesis of sepsis. The intrinsic molecular mechanism for controlling inflammasome activation is still poorly understood. Here we investigated the role of p120-catenin expression in macrophages in regulating nucleotide-binding oligomerization domain (NOD) and leucine-rich repeat (LRR)- and pyrin domain-containing proteins 3 (NLRP3) inflammasome activation. Depletion of p120-catenin in murine bone marrow-derived macrophages enhanced caspase-1 activation and secretion of active interleukin (IL)-1ß in response to ATP stimulation following LPS priming. Coimmunoprecipitation analysis showed that p120-catenin deletion promoted NLRP3 inflammasome activation by accelerating the assembly of the inflammasome complex comprised of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and pro-caspase-1. Depletion of p120-catenin also increased the production of mitochondrial reactive oxygen species. Pharmacological inhibition of mitochondrial reactive oxygen species nearly completely abolished NLRP3 inflammasome activation, caspase-1 activation, and the production of IL-1ß in p120-catenin-depleted macrophages. Furthermore, p120-catenin ablation significantly disrupted mitochondrial function, evidenced by decreased mitochondrial membrane potential and lower production of intracellular ATP. In alveolar macrophage-depleted mice challenged with cecal ligation and puncture, pulmonary transplantation of p120-catenin-deficient macrophages dramatically enhanced the accumulation of IL-1ß and IL-18 in bronchoalveolar lavage fluid. These results demonstrate that p120-catenin prevents NLRP3 inflammasome activation in macrophages by maintaining mitochondrial homeostasis and reducing the production of mitochondrial reactive oxygen species in response to endotoxin insult. Thus, inhibition of NLRP3 inflammasome activation by stabilization of p120-catenin expression in macrophages may be a novel strategy to prevent an uncontrolled inflammatory response in sepsis.


Assuntos
Inflamassomos , Sepse , Animais , Camundongos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , delta Catenina , Espécies Reativas de Oxigênio/metabolismo , Macrófagos/metabolismo , Caspase 1/metabolismo , Sepse/metabolismo , Trifosfato de Adenosina/metabolismo , Interleucina-1beta/metabolismo
3.
Am J Physiol Lung Cell Mol Physiol ; 321(4): L787-L801, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34405715

RESUMO

Mechanical ventilation is a life-sustaining therapy for patients with respiratory failure but can cause further lung damage known as ventilator-induced lung injury (VILI). However, the intrinsic molecular mechanisms underlying recovery of VILI remain unknown. Phagocytosis of apoptotic cells (also known as efferocytosis) is a key mechanism orchestrating successful resolution of inflammation. Here we show the positive regulation of macrophage Toll-like receptor (TLR) 4 in efferocytosis and resolution of VILI. Mice were depleted of alveolar macrophages and then subjected to injurious ventilation (tidal volume, 20 mL/kg) for 4 h. On day 1 after mechanical ventilation, Tlr4+/+ or Tlr4-/- bone marrow-derived macrophages (BMDMs) were intratracheally administered to alveolar macrophage-depleted mice. We observed that mice depleted of alveolar macrophages exhibited defective resolution of neutrophilic inflammation, exuded protein, lung edema, and lung tissue injury after ventilation, whereas these delayed responses were reversed by administration of Tlr4+/+ BMDMs. Importantly, these proresolving effects by Tlr4+/+ BMDMs were abolished in mice receiving Tlr4-/- BMDMs. The number of macrophages containing apoptotic cells or bodies in bronchoalveolar lavage fluid was much less in mice receiving Tlr4-/- BMDMs than that in those receiving Tlr4+/+ BMDMs. Macrophage TLR4 deletion facilitated a disintegrin and metalloprotease 17 maturation and enhanced Mer cleavage in response to mechanical ventilation. Heat shock protein 70 dramatically increased Mer tyrosine kinase surface expression, phagocytosis of apoptotic neutrophils, and rescued the inflammatory phenotype in alveolar macrophage-depleted mice receiving Tlr4+/+ BMDMs, but not Tlr4-/- BMDMs. Our results suggest that macrophage TLR4 promotes resolution of VILI via modulation of Mer-mediated efferocytosis.


Assuntos
Macrófagos Alveolares/metabolismo , Neutrófilos/imunologia , Fagocitose/fisiologia , Receptor 4 Toll-Like/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia , Proteína ADAM17/metabolismo , Animais , Apoptose/fisiologia , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Contagem de Células , Células Cultivadas , Feminino , Proteínas de Choque Térmico HSP70/metabolismo , Pulmão/patologia , Macrófagos Alveolares/transplante , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Respiração Artificial/efeitos adversos , Transdução de Sinais , c-Mer Tirosina Quinase/metabolismo
4.
Am J Physiol Lung Cell Mol Physiol ; 320(4): L568-L582, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33565367

RESUMO

Ventilator-induced lung injury is associated with an increase in mortality in patients with respiratory dysfunction, although mechanical ventilation is an essential intervention implemented in the intensive care unit. Intrinsic molecular mechanisms for minimizing lung inflammatory injury during mechanical ventilation remain poorly defined. We hypothesize that Yes-associated protein (YAP) expression in endothelial cells protects the lung against ventilator-induced injury. Wild-type and endothelial-specific YAP-deficient mice were subjected to a low (7 mL/kg) or high (21 mL/kg) tidal volume (VT) ventilation for 4 h. Infiltration of inflammatory cells into the lung, vascular permeability, lung histopathology, and the levels of inflammatory cytokines were measured. Here, we showed that mechanical ventilation with high VT upregulated YAP protein expression in pulmonary endothelial cells. Endothelial-specific YAP knockout mice following high VT ventilation exhibited increased neutrophil counts and protein content in bronchoalveolar lavage fluid, Evans blue leakage, and histological lung injury compared with wild-type littermate controls. Deletion of YAP in endothelial cells exaggerated vascular endothelial (VE)-cadherin phosphorylation, downregulation of vascular endothelial protein tyrosine phosphatase (VE-PTP), and dissociation of VE-cadherin and catenins following mechanical ventilation. Importantly, exogenous expression of wild-type VE-PTP in the pulmonary vasculature rescued YAP ablation-induced increases in neutrophil counts and protein content in bronchoalveolar lavage fluid, vascular leakage, and histological lung injury as well as VE-cadherin phosphorylation and dissociation from catenins following ventilation. These data demonstrate that YAP expression in endothelial cells suppresses lung inflammatory response and edema formation by modulating VE-PTP-mediated VE-cadherin phosphorylation and thus plays a protective role in ventilator-induced lung injury.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Permeabilidade Capilar , Endotélio Vascular/metabolismo , Pulmão/metabolismo , Neutrófilos/imunologia , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/imunologia , Feminino , Pulmão/citologia , Pulmão/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/metabolismo , Fosforilação , Lesão Pulmonar Induzida por Ventilação Mecânica/etiologia , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia , Proteínas de Sinalização YAP
5.
J Immunol ; 202(1): 194-206, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30455398

RESUMO

Uncontrolled inflammatory response during sepsis predominantly contributes to the development of multiorgan failure and lethality. However, the cellular and molecular mechanisms for excessive production and release of proinflammatory cytokines are not clearly defined. In this study, we show the crucial role of the GTPase Ras-related protein in brain (Rab)1a in regulating the nucleotide binding domain-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation and lung inflammatory injury. Expression of dominant negative Rab1 N124I plasmid in bone marrow-derived macrophages prevented the release of IL-1ß and IL-18, NLRP3 inflammasome activation, production of pro-IL-1ß and pro-IL-18, and attenuated TLR4 surface expression and NF-кB activation induced by bacterial LPS and ATP compared with control cells. In alveolar macrophage-depleted mice challenged with cecal ligation and puncture, pulmonary transplantation of Rab1a-inactivated macrophages by expression of Rab1 N124I plasmid dramatically reduced the release of IL-1ß and IL-18, neutrophil count in bronchoalveolar lavage fluid, and inflammatory lung injury. Rab1a activity was elevated in alveolar macrophages from septic patients and positively associated with severity of sepsis and respiratory dysfunction. Thus, inhibition of Rab1a activity in macrophages resulting in the suppression of NLRP3 inflammasome activation may be a promising target for the treatment of patients with sepsis.


Assuntos
Inflamassomos/metabolismo , Lesão Pulmonar/imunologia , Macrófagos Alveolares/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pneumonia/imunologia , Sepse/imunologia , Proteínas rab1 de Ligação ao GTP/metabolismo , Animais , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/imunologia , Ativação de Macrófagos/genética , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Neutrófilos/imunologia , Proteínas rab1 de Ligação ao GTP/genética
6.
Am J Pathol ; 189(8): 1664-1679, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31121134

RESUMO

Endothelial barrier dysfunction is a central factor in the pathogenesis of persistent lung inflammation and protein-rich edema formation, the hallmarks of acute respiratory distress syndrome. However, little is known about the molecular mechanisms that are responsible for vascular repair and resolution of inflammatory injury after sepsis challenge. Herein, we show that hypoxia-inducible factor-1α (HIF-1α), expressed in endothelial cells (ECs), is the critical transcriptional factor mediating vascular repair and resolution of inflammatory lung injury. After sepsis challenge, HIF-1α but not HIF-2α expression was rapidly induced in lung vascular ECs, and mice with EC-restricted disruption of Hif1α (Hif1af/f/Tie2Cre+) exhibited defective vascular repair, persistent inflammation, and increased mortality in contrast with the wild-type littermates after polymicrobial sepsis or endotoxemia challenge. Hif1af/f/Tie2Cre+ lungs exhibited marked decrease of EC proliferation during recovery after sepsis challenge, which was associated with inhibited expression of forkhead box protein M1 (Foxm1), a reparative transcription factor. Therapeutic restoration of endothelial Foxm1 expression, via liposomal delivery of Foxm1 plasmid DNA to Hif1af/f/Tie2Cre+ mice, resulted in reactivation of the vascular repair program and improved survival. Together, our studies, for the first time, delineate the essential role of endothelial HIF-1α in driving the vascular repair program. Thus, therapeutic activation of HIF-1α-dependent vascular repair may represent a novel and effective therapy to treat inflammatory vascular diseases, such as sepsis and acute respiratory distress syndrome.


Assuntos
Células Endoteliais/metabolismo , Proteína Forkhead Box M1/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lesão Pulmonar/metabolismo , Pulmão/fisiologia , Regeneração , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Endoteliais/patologia , Feminino , Proteína Forkhead Box M1/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Lesão Pulmonar/etiologia , Lesão Pulmonar/genética , Lesão Pulmonar/patologia , Masculino , Camundongos , Camundongos Transgênicos , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/genética , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia , Sepse/complicações , Sepse/genética , Sepse/metabolismo , Sepse/patologia
7.
Circ Res ; 123(1): 43-56, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29794022

RESUMO

RATIONALE: Microvascular inflammation and endothelial dysfunction secondary to unchecked activation of endothelium play a critical role in the pathophysiology of sepsis and organ failure. The intrinsic signaling mechanisms responsible for dampening excessive activation of endothelial cells are not completely understood. OBJECTIVE: To determine the central role of YAP (Yes-associated protein), the major transcriptional coactivator of the Hippo pathway, in modulating the strength and magnitude of endothelial activation and vascular inflammation. METHODS AND RESULTS: Endothelial-specific YAP knockout mice showed increased basal expression of E-selectin and ICAM (intercellular adhesion molecule)-1 in endothelial cells, a greater number of adherent neutrophils in postcapillary venules and increased neutrophil counts in bronchoalveolar lavage fluid. Lipopolysaccharide challenge of these mice augmented NF-κB (nuclear factor-κB) activation, expression of endothelial adhesion proteins, neutrophil and monocyte adhesion to cremaster muscle venules, transendothelial neutrophil migration, and lung inflammatory injury. Deletion of YAP in endothelial cells also markedly augmented the inflammatory response and cardiovascular dysfunction in a polymicrobial sepsis model induced by cecal ligation and puncture. YAP functioned by interacting with the E3 ubiquitin-protein ligase TLR (Toll-like receptor) signaling adaptor TRAF6 (tumor necrosis factor receptor-associated factor 6) to ubiquitinate TRAF6, and thus promoted TRAF6 degradation and modification resulting in inhibition of NF-κB activation. TRAF6 depletion in endothelial cells rescued the augmented inflammatory phenotype in mice with endothelial cell-specific deletion of YAP. CONCLUSIONS: YAP modulates the activation of endothelial cells and suppresses vascular inflammation through preventing TRAF6-mediated NF-κB activation and is hence essential for limiting the severity of sepsis-induced inflammation and organ failure.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Células Endoteliais/fisiologia , Endotélio Vascular/fisiopatologia , Fosfoproteínas/fisiologia , Fator 6 Associado a Receptor de TNF/metabolismo , Vasculite/etiologia , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Permeabilidade Capilar , Adesão Celular , Proteínas de Ciclo Celular , Selectina E/metabolismo , Células Endoteliais/citologia , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Molécula 1 de Adesão Intercelular/metabolismo , Contagem de Leucócitos , Camundongos , Camundongos Knockout , Microvasos , Monócitos/fisiologia , NF-kappa B/metabolismo , Neutrófilos/citologia , Fosfoproteínas/deficiência , Fosfoproteínas/genética , Sepse/complicações , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Vênulas/citologia , Proteínas de Sinalização YAP
8.
Am J Physiol Cell Physiol ; 316(1): C92-C103, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30427721

RESUMO

Angiogenesis is initiated in response to a variety of external cues, including mechanical and biochemical stimuli; however, the underlying signaling mechanisms remain unclear. Here, we investigated the proangiogenic role of the endothelial mechanosensor Piezo1. Genetic deletion and pharmacological inhibition of Piezo1 reduced endothelial sprouting and lumen formation induced by wall shear stress and proangiogenic mediator sphingosine 1-phosphate, whereas Piezo1 activation by selective Piezo1 activator Yoda1 enhanced sprouting angiogenesis. Similarly to wall shear stress, sphingosine 1-phosphate functioned by activating the Ca2+ gating function of Piezo1, which in turn signaled the activation of the matrix metalloproteinase-2 and membrane type 1 matrix metalloproteinase during sprouting angiogenesis. Studies in mice in which Piezo1 was conditionally deleted in endothelial cells demonstrated the requisite role of sphingosine 1-phosphate-dependent activation of Piezo1 in mediating angiogenesis in vivo. These results taken together suggest that both mechanical and biochemical stimuli trigger Piezo1-mediated Ca2+ influx and thereby activate matrix metalloproteinase-2 and membrane type 1 matrix metalloproteinase and synergistically facilitate sprouting angiogenesis.


Assuntos
Canais Iônicos/deficiência , Metaloproteinase 14 da Matriz/metabolismo , Neovascularização Fisiológica/fisiologia , Transdução de Sinais/fisiologia , Animais , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Canais Iônicos/genética , Metaloproteinase 14 da Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
9.
Anesthesiology ; 131(6): 1301-1315, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31658116

RESUMO

BACKGROUND: Sevoflurane with its antiinflammatory properties has shown to decrease mortality in animal models of sepsis. However, the underlying mechanism of its beneficial effect in this inflammatory scenario remains poorly understood. Macrophages play an important role in the early stage of sepsis as they are tasked with eliminating invading microbes and also attracting other immune cells by the release of proinflammatory cytokines such as interleukin-1ß, interleukin-6, and tumor necrosis factor-α. Thus, the authors hypothesized that sevoflurane mitigates the proinflammatory response of macrophages, while maintaining their bactericidal properties. METHODS: Murine bone marrow-derived macrophages were stimulated in vitro with lipopolysaccharide in the presence and absence of 2% sevoflurane. Expression of cytokines and inducible NO synthase as well as uptake of fluorescently labeled Escherichia coli (E. coli) were measured. The in vivo endotoxemia model consisted of an intraperitoneal lipopolysaccharide injection after anesthesia with either ketamine and xylazine or 4% sevoflurane. Male mice (n = 6 per group) were observed for a total of 20 h. During the last 30 min fluorescently labeled E. coli were intraperitoneally injected. Peritoneal cells were extracted by peritoneal lavage and inducible NO synthase expression as well as E. coli uptake by peritoneal macrophages was determined using flow cytometry. RESULTS: In vitro, sevoflurane enhanced lipopolysaccharide-induced inducible NO synthase expression after 8 h by 466% and increased macrophage uptake of fluorescently labeled E. coli by 70% compared with vehicle-treated controls. Inhibiting inducible NO synthase expression pharmacologically abolished this increase in bacteria uptake. In vivo, inducible NO synthase expression was increased by 669% and phagocytosis of E. coli by 49% compared with the control group. CONCLUSIONS: Sevoflurane enhances phagocytosis of bacteria by lipopolysaccharide-challenged macrophages in vitro and in vivo via an inducible NO synthase-dependent mechanism. Thus, sevoflurane potentiates bactericidal and antiinflammatory host-defense mechanisms in endotoxemia.


Assuntos
Anti-Inflamatórios/farmacologia , Regulação Enzimológica da Expressão Gênica , Macrófagos/enzimologia , Óxido Nítrico Sintase Tipo II/biossíntese , Fagocitose/fisiologia , Sevoflurano/farmacologia , Animais , Atividade Bactericida do Sangue/efeitos dos fármacos , Atividade Bactericida do Sangue/fisiologia , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/genética , Fagocitose/efeitos dos fármacos , Células RAW 264.7
10.
J Immunol ; 198(4): 1660-1672, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28053235

RESUMO

The timely and efficient clearance of apoptotic neutrophils by macrophages (efferocytosis) is required for the resolution of inflammation and tissue repair, but the regulatory mechanisms remain unclear. In this study, we investigated the role of the small GTPase Ras-related protein in brain (Rab)11a in regulating efferocytosis, and on this basis the resolution of inflammatory lung injury. We observed that apoptotic neutrophil feeding induced a rapid loss of Rab11a activity in bone marrow-derived macrophages and found that depletion of Rab11a in macrophages by small interfering RNA dramatically increased the phagocytosis of apoptotic neutrophils compared with control cells. Additionally, overexpression of wild-type Rab11a inhibited macrophage efferocytosis, whereas overexpression of dominant-negative Rab11a (Rab11a S25N) increased the clearance of apoptotic neutrophils. Rab11a knockdown also increased the surface level of CD36 in macrophages, but it reduced cell surface expression of a disintegrin and metalloproteinase (ADAM) 17. Depletion of ADAM17 rescued the decreased surface CD36 expression found in macrophages overexpressing wild-type Rab11a. Also, blockade of CD36 abolished the augmented efferocytosis seen in Rab11a-depleted macrophages. In mice challenged with endotoxin, intratracheal instillation of Rab11a-depleted macrophages reduced neutrophil count in bronchoalveolar lavage fluid, increased the number of macrophages containing apoptotic neutrophils, and prevented inflammatory lung injury. Thus, Rab11a inactivation in macrophages as a result of apoptotic cell binding initiates phagocytosis of apoptotic neutrophils via the modulation of ADAM17-mediated CD36 cell surface expression. Our results raise the possibility that inhibition of Rab11a activity in macrophages is a promising strategy for activating the resolution of inflammatory lung injury.


Assuntos
Apoptose , Macrófagos/enzimologia , Macrófagos/fisiologia , Neutrófilos/imunologia , Fagocitose , Proteínas rab de Ligação ao GTP/metabolismo , Proteína ADAM17/deficiência , Proteína ADAM17/genética , Proteína ADAM17/imunologia , Animais , Líquido da Lavagem Broncoalveolar/citologia , Antígenos CD36/deficiência , Antígenos CD36/genética , Antígenos CD36/imunologia , Células Cultivadas , Inflamação/imunologia , Inflamação/prevenção & controle , Lesão Pulmonar/imunologia , Lesão Pulmonar/prevenção & controle , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/fisiologia , Proteínas rab de Ligação ao GTP/genética
11.
Arterioscler Thromb Vasc Biol ; 36(2): 339-49, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26663395

RESUMO

OBJECTIVE: Vascular endothelial (VE)-cadherin is the predominant component of endothelial adherens junctions essential for cell-cell adhesion and formation of the vascular barrier. Endocytic recycling is an important mechanism for maintaining the expression of cell surface membrane proteins. However, little is known about the molecular mechanism of VE-cadherin recycling and its role in maintenance of vascular integrity. APPROACH AND RESULTS: Using calcium-switch assay, confocal imaging, cell surface biotinylation, and flow cytometry, we showed that VE-cadherin recycling required Ras-related proteins in brain (Rab)11a and Rab11 family-interacting protein 2. Yeast 2-hybrid assay and coimmunoprecipitation demonstrated that direct interaction of VE-cadherin with family-interacting protein 2 (at aa 453-484) formed a ternary complex with Rab11a in human endothelial cells. Silencing of Rab11a or Rab11 family-interacting protein 2 in endothelial cells prevented VE-cadherin recycling and VE-cadherin expression at endothelial plasma membrane. Furthermore, inactivation of Rab11a signaling blocked junctional reannealing after vascular inflammation. Selective knockdown of Rab11a in pulmonary microvessels markedly increased vascular leakage in mice challenged with lipopolysaccharide or polymicrobial sepsis. CONCLUSIONS: Rab11a/Rab11 family-interacting protein 2-mediated VE-cadherin recycling is required for formation of adherens junctions and restoration of VE barrier integrity and hence a potential target for clinical intervention in inflammatory disease.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Permeabilidade Capilar , Endocitose , Células Endoteliais/enzimologia , Pulmão/irrigação sanguínea , Edema Pulmonar/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Junções Aderentes/metabolismo , Junções Aderentes/patologia , Animais , Antígenos CD/genética , Caderinas/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Modelos Animais de Doenças , Células Endoteliais/patologia , Endotoxemia/metabolismo , Endotoxemia/microbiologia , Células HEK293 , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Ligação Proteica , Estabilidade Proteica , Transporte Proteico , Edema Pulmonar/microbiologia , Edema Pulmonar/patologia , Interferência de RNA , Sepse/metabolismo , Sepse/microbiologia , Transdução de Sinais , Fatores de Tempo , Transfecção , Proteínas rab de Ligação ao GTP/genética
12.
J Immunol ; 193(4): 1931-41, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25015829

RESUMO

Activation of TLR signaling through recognition of pathogen-associated molecular patterns is essential for the innate immune response against bacterial and viral infections. We have shown that p120-catenin (p120) suppresses TLR4-mediated NF-кB signaling in LPS-challenged endothelial cells. In this article, we report that p120 differentially regulates LPS/TLR4 signaling in mouse bone marrow-derived macrophages. We observed that p120 inhibited MyD88-dependent NF-κB activation and release of TNF-α and IL-6, but enhanced TIR domain-containing adapter-inducing IFN-ß-dependent IFN regulatory factor 3 activation and release of IFN-ß upon LPS exposure. p120 silencing diminished LPS-induced TLR4 internalization, whereas genetic and pharmacological inhibition of RhoA GTPase rescued the decrease in endocytosis of TLR4 and TLR4-MyD88 signaling, and reversed the increase in TLR4-TIR domain-containing adapter-inducing IFN-ß signaling induced by p120 depletion. Furthermore, we demonstrated that altered p120 expression in macrophages regulates the inflammatory phenotype of LPS-induced acute lung injury. These results indicate that p120 functions as a differential regulator of TLR4 signaling pathways by facilitating TLR4 endocytic trafficking in macrophages, and support a novel role for p120 in influencing the macrophages in the lung inflammatory response to endotoxin.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/imunologia , Cateninas/genética , Macrófagos Alveolares/imunologia , Receptor 4 Toll-Like/imunologia , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Lesão Pulmonar Aguda/imunologia , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Cateninas/biossíntese , Células Cultivadas , Endocitose/imunologia , Fator Regulador 3 de Interferon/imunologia , Interferon beta/imunologia , Interferon beta/metabolismo , Interleucina-6/metabolismo , Contagem de Leucócitos , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/imunologia , NF-kappa B/imunologia , Neutrófilos/imunologia , Transporte Proteico/imunologia , Interferência de RNA , Transdução de Sinais/imunologia , Receptor 2 Toll-Like/imunologia , Receptor 3 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo , delta Catenina
13.
J Immunol ; 190(7): 3590-9, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23436933

RESUMO

Mechanical ventilation of lungs is capable of activating the innate immune system and inducing sterile inflammatory response. The proinflammatory cytokine IL-1ß is among the definitive markers for accurately identifying ventilator-induced lung inflammation. However, mechanisms of IL-1ß release during mechanical ventilation are unknown. In this study, we show that cyclic stretch activates the nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasomes and induces the release of IL-1ß in mouse alveolar macrophages via caspase-1- and TLR4-dependent mechanisms. We also observed that NADPH oxidase subunit gp91(phox) was dispensable for stretch-induced cytokine production, whereas mitochondrial generation of reactive oxygen species was required for stretch-induced NLRP3 inflammasome activation and IL-1ß release. Further, mechanical ventilation activated the NLRP3 inflammasomes in mouse alveolar macrophages and increased the production of IL-1ß in vivo. IL-1ß neutralization significantly reduced mechanical ventilation-induced inflammatory lung injury. These findings suggest that the alveolar macrophage NLRP3 inflammasome may sense lung alveolar stretch to induce the release of IL-1ß and hence may contribute to the mechanism of lung inflammatory injury during mechanical ventilation.


Assuntos
Proteínas de Transporte/metabolismo , Inflamassomos/metabolismo , Macrófagos Alveolares/metabolismo , Pneumonia/etiologia , Animais , Caspase 1/metabolismo , Modelos Animais de Doenças , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Macrófagos Alveolares/imunologia , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Pneumonia/imunologia , Pneumonia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Ácido Úrico/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/imunologia , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo
14.
J Immunol ; 191(12): 6191-9, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24244013

RESUMO

Activation of TLR4 by the endotoxin LPS is a critical event in the pathogenesis of Gram-negative sepsis. Caveolin-1, the signaling protein associated with caveolae, is implicated in regulating the lung inflammatory response to LPS; however, the mechanism is not understood. In this study, we investigated the role of caveolin-1 in regulating TLR4 signaling in endothelial cells. We observed that LPS interaction with CD14 in endothelial cells induced Src-dependent caveolin-1 phosphorylation at Tyr(14). Using a TLR4-MD2-CD14-transfected HEK-293 cell line and caveolin-1-deficient (cav-1(-/-)) mouse lung microvascular endothelial cells, we demonstrated that caveolin-1 phosphorylation at Tyr(14) following LPS exposure induced caveolin-1 and TLR4 interaction and, thereby, TLR4 activation of MyD88, leading to NF-κB activation and generation of proinflammatory cytokines. Exogenous expression of phosphorylation-deficient Y14F caveolin-1 mutant in cav-1(-/-) mouse pulmonary vasculature rendered the mice resistant to LPS compared with reintroduction of wild-type caveolin-1. Thus, caveolin-1 Y14 phosphorylation was required for the interaction with TLR4 and activation of TLR4-MyD88 signaling and sepsis-induced lung inflammation. Inhibiting caveolin-1 Tyr(14) phosphorylation and resultant inactivation of TLR4 signaling in pulmonary vascular endothelial cells represent a novel strategy for preventing sepsis-induced lung inflammation and injury.


Assuntos
Caveolina 1/metabolismo , Células Endoteliais/metabolismo , Fosfotirosina/fisiologia , Receptor 4 Toll-Like/fisiologia , Substituição de Aminoácidos , Animais , Caveolina 1/química , Caveolina 1/genética , Células Cultivadas , Endotélio Vascular/citologia , Endotoxemia/patologia , Humanos , Proteínas I-kappa B/metabolismo , Inflamação , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Interleucina-6/biossíntese , Interleucina-6/genética , Lipopolissacarídeos/toxicidade , Pulmão/irrigação sanguínea , Pulmão/patologia , Camundongos , Microvasos/citologia , Mutação de Sentido Incorreto , Fator 88 de Diferenciação Mieloide/fisiologia , Inibidor de NF-kappaB alfa , Fosforilação , Fosfotirosina/biossíntese , Mutação Puntual , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão/metabolismo , Transfecção , Fator de Necrose Tumoral alfa/genética , Quinases da Família src/metabolismo
15.
Am J Physiol Lung Cell Mol Physiol ; 307(2): L173-85, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24838752

RESUMO

The inflammatory response is a primary mechanism in the pathogenesis of ventilator-induced lung injury. Autophagy is an essential, homeostatic process by which cells break down their own components. We explored the role of autophagy in the mechanisms of mechanical ventilation-induced lung inflammatory injury. Mice were subjected to low (7 ml/kg) or high (28 ml/kg) tidal volume ventilation for 2 h. Bone marrow-derived macrophages transfected with a scrambled or autophagy-related protein 5 small interfering RNA were administered to alveolar macrophage-depleted mice via a jugular venous cannula 30 min before the start of the ventilation protocol. In some experiments, mice were ventilated in the absence and presence of autophagy inhibitors 3-methyladenine (15 mg/kg ip) or trichostatin A (1 mg/kg ip). Mechanical ventilation with a high tidal volume caused rapid (within minutes) activation of autophagy in the lung. Conventional transmission electron microscopic examination of lung sections showed that mechanical ventilation-induced autophagy activation mainly occurred in lung macrophages. Autophagy activation in the lungs during mechanical ventilation was dramatically attenuated in alveolar macrophage-depleted mice. Selective silencing of autophagy-related protein 5 in lung macrophages abolished mechanical ventilation-induced nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome activation and lung inflammatory injury. Pharmacological inhibition of autophagy also significantly attenuated the inflammatory responses caused by lung hyperinflation. The activation of autophagy in macrophages mediates early lung inflammation during mechanical ventilation via NLRP3 inflammasome signaling. Inhibition of autophagy activation in lung macrophages may therefore provide a novel and promising strategy for the prevention and treatment of ventilator-induced lung injury.


Assuntos
Autofagia/fisiologia , Proteínas de Transporte/metabolismo , Inflamassomos/fisiologia , Macrófagos Alveolares/fisiologia , Lesão Pulmonar Induzida por Ventilação Mecânica/fisiopatologia , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Autofagia/efeitos dos fármacos , Proteína 5 Relacionada à Autofagia , Ácidos Hidroxâmicos/farmacologia , Macrófagos/fisiologia , Macrófagos Alveolares/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/deficiência , Proteína 3 que Contém Domínio de Pirina da Família NLR , Pneumonia/patologia , Pneumonia/prevenção & controle , Espécies Reativas de Oxigênio/metabolismo , Respiração Artificial/efeitos adversos , Transdução de Sinais , Estresse Mecânico
16.
BMC Anesthesiol ; 14: 57, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25097454

RESUMO

BACKGROUND: Acute lung injury (ALI) is associated with high mortality due to the lack of effective therapeutic strategies. Mechanical ventilation itself can cause ventilator-induced lung injury. Pulmonary vascular barrier function, regulated in part by Src kinase-dependent phosphorylation of caveolin-1 and intercellular adhesion molecule-1 (ICAM-1), plays a crucial role in the development of protein-/neutrophil-rich pulmonary edema, the hallmark of ALI. Amide-linked local anesthetics, such as ropivacaine, have anti-inflammatory properties in experimental ALI. We hypothesized ropivacaine may attenuate inflammation in a "double-hit" model of ALI triggered by bacterial endotoxin plus hyperinflation via inhibition of Src-dependent signaling. METHODS: C57BL/6 (WT) and ICAM-1 (-/-) mice were exposed to either nebulized normal saline (NS) or lipopolysaccharide (LPS, 10 mg) for 1 hour. An intravenous bolus of 0.33 mg/kg ropivacaine or vehicle was followed by mechanical ventilation with normal (7 ml/kg, NTV) or high tidal volume (28 ml/kg, HTV) for 2 hours. Measures of ALI (excess lung water (ELW), extravascular plasma equivalents, permeability index, myeloperoxidase activity) were assessed and lungs were homogenized for Western blot analysis of phosphorylated and total Src, ICAM-1 and caveolin-1. Additional experiments evaluated effects of ropivacaine on LPS-induced phosphorylation/expression of Src, ICAM-1 and caveolin-1 in human lung microvascular endothelial cells (HLMVEC). RESULTS: WT mice treated with LPS alone showed a 49% increase in ELW compared to control animals (p = 0.001), which was attenuated by ropivacaine (p = 0.001). HTV ventilation alone increased measures of ALI even more than LPS, an effect which was not altered by ropivacaine. LPS plus hyperinflation ("double-hit") increased all ALI parameters (ELW, EVPE, permeability index, MPO activity) by 3-4 fold compared to control, which were again decreased by ropivacaine. Western blot analyses of lung homogenates as well as HLMVEC treated in culture with LPS alone showed a reduction in Src activation/expression, as well as ICAM-1 expression and caveolin-1 phosphorylation. In ICAM-1 (-/-) mice, neither addition of LPS to HTV ventilation alone nor ropivacaine had an effect on the development of ALI. CONCLUSIONS: Ropivacaine may be a promising therapeutic agent for treating the cause of pulmonary edema by blocking inflammatory Src signaling, ICAM-1 expression, leukocyte infiltration, and vascular hyperpermeability.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Amidas/farmacologia , Anestésicos Locais/farmacologia , Quinases da Família src/antagonistas & inibidores , Lesão Pulmonar Aguda/etiologia , Animais , Caveolina 1/genética , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/patologia , Molécula 1 de Adesão Intercelular/genética , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Edema Pulmonar/prevenção & controle , Ropivacaina , Transdução de Sinais/efeitos dos fármacos , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Quinases da Família src/metabolismo
17.
Anesthesiology ; 119(4): 901-6, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23867232

RESUMO

BACKGROUND: Sepsis remains a leading cause of death in intensive care units. There is growing evidence that volatile anesthetics have beneficial immunomodulatory effects on complex inflammation-mediated conditions. The authors investigated the effect of volatile anesthetics on the overall survival of mice in a sepsis model of cecal ligation and puncture (CLP). METHODS: Mice (N = 12 per treatment group) were exposed to anesthetic concentrations of desflurane, isoflurane, and sevoflurane either during induction of sepsis or when the mice showed pronounced symptoms of inflammation. Overall survival, as well as organ function and inflammation was compared with the CLP group without intervention. RESULTS: With desflurane and sevoflurane conditioning (1.2 minimal alveolar concentration for 2 h immediately after induction of CLP) overall survival was improved to 58% and 83%, respectively, compared with 17% in the untreated CLP group. Isoflurane did not significantly affect outcome. Application of sevoflurane 24 h after sepsis induction significantly improved overall survival to 66%. CONCLUSIONS: Administration of the volatile anesthetics desflurane and sevoflurane reduced CLP-induced mortality. Anesthesia may be a critical confounder when comparing study data where different anesthesia protocols were used.


Assuntos
Anestésicos Inalatórios/farmacologia , Ceco/lesões , Sepse/mortalidade , Anestésicos Inalatórios/metabolismo , Animais , Desflurano , Modelos Animais de Doenças , Inflamação/complicações , Inflamação/metabolismo , Isoflurano/análogos & derivados , Isoflurano/metabolismo , Isoflurano/farmacologia , Ligadura , Masculino , Éteres Metílicos/metabolismo , Éteres Metílicos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Sepse/complicações , Sepse/metabolismo , Sevoflurano , Ferimentos Perfurantes
18.
Crit Rev Immunol ; 32(2): 127-38, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23216611

RESUMO

p120-Catenin is the prototypic member of a subfamily of armadillo repeat domain proteins. Like its structural homologues, ß- and γ-catenin, p120-catenin is an essential component of adherens junctions in endothelial cells and other polarized adherent cells. p120-Catenin binds directly to the cytoplasmic domain of cadherin and contributes to the regulation of cell-cell junctional integrity. Studies have demonstrated that p120-catenin plays important roles in cell-cell adhesion, embryonic development, cell proliferation and polarity, tumor cell migration, and cancer progression. However, recent insights have generated an entirely new perspective, suggesting that p120-catenin is implicated in the anti-inflammatory responses in the absence and presence of infection. This review summarizes the present knowledge and recent progress toward elucidating the novel role of p120-catenin in the regulation of innate immunity and inflammation.


Assuntos
Proteínas do Domínio Armadillo/metabolismo , Cateninas/metabolismo , Células Endoteliais/metabolismo , Imunidade Inata , Inflamação/metabolismo , Junções Aderentes , Animais , Proteínas do Domínio Armadillo/imunologia , Adesão Celular , Caderinas de Desmossomos/metabolismo , Células Endoteliais/imunologia , Humanos , Imunomodulação , delta Catenina
19.
J Immunol ; 186(5): 3180-3187, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21278343

RESUMO

Sepsis-induced acute lung injury is a common clinical disorder in critically ill patients that is associated with high mortality. In this study, we investigated the role of p120-catenin (p120), a constituent of endothelial adherens junctions, in regulating the innate immune function of lungs. In mice in which acute lung injury was induced by i.p. administration of LPS, we observed a rapid decrease in the expression of p120 in lungs. The p120 protein expression was correlated inversely with severity of inflammation. Suppression of p120 expression in lung endothelial cells in mice using small interfering RNA resulted in high sensitivity to endotoxin and greatly increased the mortality compared with controls. Knockdown of p120 also increased the expression of ICAM-1, neutrophil recruitment, production of cytokines TNF-α and IL-6, pulmonary transvascular protein permeability, and lung water content in response to LPS. We demonstrated that endothelial p120 modulates lung innate immune function by interfering with the association of TLR4 with its adaptor MyD88 to block TLR4 signaling and NF-κB activation in endothelial cells. In conclusion, these studies have uncovered a novel innate immune function of endothelial p120 in downregulating the lung inflammatory response to endotoxin through the suppression of TLR4 signaling.


Assuntos
Lesão Pulmonar Aguda/imunologia , Junções Aderentes/imunologia , Cateninas/fisiologia , Endotélio Vascular/imunologia , Imunidade Inata , Lipopolissacarídeos/toxicidade , Proteína p120 Ativadora de GTPase/fisiologia , Lesão Pulmonar Aguda/enzimologia , Lesão Pulmonar Aguda/patologia , Junções Aderentes/enzimologia , Junções Aderentes/patologia , Animais , Células Cultivadas , Regulação para Baixo/imunologia , Endotélio Vascular/enzimologia , Endotélio Vascular/patologia , Mediadores da Inflamação/fisiologia , Mediadores da Inflamação/toxicidade , Lipopolissacarídeos/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/fisiologia , Ratos , Choque Séptico/imunologia , Choque Séptico/metabolismo , Choque Séptico/patologia , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/fisiologia , Proteína p120 Ativadora de GTPase/antagonistas & inibidores , Proteína p120 Ativadora de GTPase/metabolismo , delta Catenina
20.
Sci Total Environ ; 905: 166991, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37709079

RESUMO

Drying-induced cracks and precipitation-induced erosion negatively impact the performance of soils in the context of extreme weather events. This study introduces two effective and sustainable materials, microbial biopolymer (MB) and palm fibers (PF), for cracking and erosion control in the sand-clay mixtures. A series of desiccation cracking tests, erosion tests, and SEM tests were conducted to evaluate the effectiveness of the treatment. The results showed that MB could significantly improve the resistance of the soil to cracking and scouring, and the improvement increased with increasing MB content. The optimum MB content was 0.15 % to achieve the maximum cracking and erosion resistance. For samples with varying sand contents, 0.15 % MB addition reduced the crack ratio, total crack length, and accumulative erosion ratio by 19.55 %-96.91 %, 4.22 %-99.58 %, and 57.88 %-89.53 %, respectively. In addition, PF positively affected the anti-crack and anti-erosion properties of the soil, and the application of 0.60 % PF had the best performance for both improvements. The cracks in the soils were mostly fine and shallow with the addition of 0.60 % PF, and therefore, the accumulative erosion ratio decreased by 44.18 %-62.76 % for samples with varying sand contents. Compared to the untreated soil, the degree of cracking and erosion was less due to the formation of a structure with more macropores and a sand skeleton in the treated samples with higher sand content. MB addition provides strong inter-particle bonding connections and a hydrophilic crust structure to improve the soils' resistance to cracking and erosion, while the fiber reinforcement effect benefits from interfacial friction and spatial restriction effects. This study provides mechanistic interpretations of desiccation cracking and erosion behavior in sand-clay mixtures under different treatments. It may guide the design of low-carbon technologies for geotechnical engineering applications.


Assuntos
Areia , Solo , Argila , Solo/química , Biopolímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA