Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Korean Med Sci ; 38(17): e135, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37128878

RESUMO

BACKGROUND: In this study, we prepared and evaluated an injectable poloxamer (P407) hydrogel formulation for intratympanic (IT) delivery of dexamethasone (DEX). METHODS: DEX-loaded P407 hydrogels were characterized in terms of thermogelation, drug loading capacities, particle size, and drug release. The in vivo toxicity and drug absorption of the DEX-loaded P407 formulation after IT injection were evaluated using an animal model by performing histopathological analysis and drug concentration measurements. RESULTS: The P407 hydrogel effectively solubilized hydrophobic DEX and demonstrated a sustained release compared to the hydrophilic DEX formulation. The in vivo study showed that the hydrogel formulation delivered considerable drug concentrations to the inner ear and displayed a favorable safety profile without apparent cytotoxicity or inflammation. CONCLUSION: P407 hydrogel can be useful as an injectable inner ear delivery formulation for hydrophobic drugs due to their biocompatibility, drug-solubilizing capacity, thermogelation, and controlled release.


Assuntos
Hidrogéis , Poloxâmero , Animais , Poloxâmero/química , Hidrogéis/química , Liberação Controlada de Fármacos , Dexametasona
2.
Int J Mol Sci ; 22(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801273

RESUMO

The process of evaluating the efficacy and toxicity of drugs is important in the production of new drugs to treat diseases. Testing in humans is the most accurate method, but there are technical and ethical limitations. To overcome these limitations, various models have been developed in which responses to various external stimuli can be observed to help guide future trials. In particular, three-dimensional (3D) cell culture has a great advantage in simulating the physical and biological functions of tissues in the human body. This article reviews the biomaterials currently used to improve cellular functions in 3D culture and the contributions of 3D culture to cancer research, stem cell culture and drug and toxicity screening.


Assuntos
Antineoplásicos/farmacologia , Materiais Biocompatíveis/química , Pesquisa Biomédica , Técnicas de Cultura de Células/métodos , Desenvolvimento de Medicamentos , Neoplasias/tratamento farmacológico , Células-Tronco/efeitos dos fármacos , Animais , Humanos , Neoplasias/patologia , Células-Tronco/citologia
3.
Nano Lett ; 19(12): 8550-8564, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31694378

RESUMO

Nanorobots are safe and exhibit powerful functionalities, including delivery, therapy, and diagnosis. Therefore, they are in high demand for the development of new cancer therapies. Although many studies have contributed to the progressive development of the nanorobot system for anticancer drug delivery, these systems still face some critical limitations, such as potentially toxic materials in the nanorobots, unreasonable sizes for passive targeting, and the lack of several essential functions of the nanorobot for anticancer drug delivery including sensing, active targeting, controlling drug release, and sufficient drug loading capacity. Here, we developed a multifunctional nanorobot system capable of precise magnetic control, sufficient drug loading for chemotherapy, light-triggered controlled drug release, light absorption for photothermal therapy, enhanced magnetic resonance imaging, and tumor sensing. The developed nanorobot system exhibits an in vitro synergetic antitumor effect of photothermal therapy and chemotherapy and outstanding tumor-targeting efficiency in both in vitro and in vivo environments. The results of this study encourage further explorations of an efficient active drug delivery system for cancer treatment and the development of nanorobot systems for other biomedical applications.


Assuntos
Sistemas de Liberação de Medicamentos , Hipertermia Induzida , Nanoestruturas , Neoplasias/terapia , Fototerapia , Robótica , Linhagem Celular Tumoral , Humanos , Neoplasias/metabolismo , Neoplasias/patologia
4.
Mol Pharm ; 14(3): 842-855, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28199124

RESUMO

The clinical application of intracellular gene delivery via nanosized carriers is hindered by intracellular multistep barriers that limit high levels of gene expression. To solve these issues, four different intracellular or external stimuli that can efficiently activate a gene carrier, a gene, or a photosensitizer (pheophorbide A [PhA]) were assessed in this study. The designed nanosized polymeric gene complexes were composed of PhA-loaded thiol-degradable polycation (PhA@RPC) and cytomegalovirus (CMV) promoter-equipped pDNA. After cellular internalization of the resulting PhA@RPC/pDNA complexes, the complexes escaped endosomal sequestration, owing to the endosomal pH-induced endosomolytic activity of RPC in PhA@RPC. Subsequently, intracellular thiol-mediated polycation degradation triggered the release of PhA and pDNA from the complexes. Late exposure to light (for example, 12 h post-treatment) activated the released PhA and resulted in the production of reactive oxygen species (ROS). Intracellular ROS successively activated NF-κB, which then reactivated the CMV promoter in the pDNA. These sequential, stimuli-responsive chemical and biological reactions resulted in high gene expression. In particular, the time-point of light exposure was very significant to tune efficient gene expression as well as negligible cytotoxicity: early light treatment induced photochemical internalization but high cytotoxicity, whereas late light treatment influenced the reactivation of silent pDNA via PhA-generated ROS and activation of NF-κB. In conclusion, the quadruple triggers, such as pH, thiol, light, and ROS, successively influenced a gene carrier (RPC), a photosensitizer, and a genetic therapeutic, and the tempo-spatial activation of the designed quadruple stimuli-activatable nanosized gene complexes could be potential in gene delivery applications.


Assuntos
DNA/metabolismo , Expressão Gênica/efeitos dos fármacos , Nanopartículas/administração & dosagem , Polímeros/administração & dosagem , Linhagem Celular Tumoral , Clorofila/administração & dosagem , Clorofila/análogos & derivados , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Técnicas de Transferência de Genes , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , NF-kappa B/metabolismo , Fármacos Fotossensibilizantes/administração & dosagem , Plasmídeos/genética , Poliaminas/administração & dosagem , Polieletrólitos , Espécies Reativas de Oxigênio/metabolismo , Transfecção/métodos
5.
Biomacromolecules ; 18(4): 1172-1179, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28278374

RESUMO

Oral gavage is known as one of most convenient routes for therapeutic administration in comparison with other available routes such as intravenous, intra muscular, suppository, etc. An oral vaccine delivery system has additional potential as it may provide a convenient way to prevent infectious diseases by introducing optimum immunization in mucus. Although oral vaccine delivery has attracted tremendous interest in vaccine delivery research, various limitations have prevented its rate of progress up to the level that was initially expected. However, the major problems of oral vaccine delivery are vaccine instability and lack of absorbability, resulting from degradation of the sophisticated antigens in the acidic medium in the stomach. In order to obtain adequate microfold-cell (M-cell) targeting and uptake, the therapeutic material is required to pass through the stomach and reach the small intestine without degradation. In this project, we have introduced a conjugate of ß-glucan and Glycine-Arginine-Glycine-Aspartic acid-Serine (GRGDS) that is effective for simultaneous protection of the antigen (PR8) and M-cell targeting. According to the experimental results, the cationic ß-glucan-GRGDS conjugate can encapsulate a certain amount of anionic PR8 through electrostatic interaction, which forms nanoparticles with a range of diameter of 200-250 nm. Also, the PR8 incorporated nanoparticles showed high cell viability and stability in diverse environments. Finally, excellent M-cell targeting ability was verified in an in vitro M-cell model. Most importantly, the in vivo test obviously demonstrated the superiority of this system, which significantly increases antibody concentration in serum, intestine, and mucus as measured 21 days after immunization.


Assuntos
Antígenos Virais/imunologia , Portadores de Fármacos/química , Mucosa Intestinal/citologia , Oligopeptídeos/química , beta-Glucanas/química , Administração Oral , Animais , Antígenos Virais/administração & dosagem , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Vírus da Influenza A Subtipo H1N1 , Camundongos , Nanopartículas/química , Oligopeptídeos/imunologia , Distribuição Tecidual , Vacinas/imunologia , Vacinas Conjugadas , beta-Glucanas/imunologia
6.
Biomacromolecules ; 18(4): 1074-1085, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28257184

RESUMO

Bioactivable nanocarrier systems have favorable characteristics such as high cellular uptake, target specificity, and an efficient intracellular release mechanism. In this study, we developed a bioreducible methoxy polyethylene glycol (mPEG)-triphenylphosphonium (TPP) conjugate (i.e., mPEG-(ss-TPP)2 conjugate) as a vehicle for mitochondrial drug delivery. A bioreducible linkage with two disulfide bond-containing end groups was used at one end of the hydrophilic mPEG for conjugation with lipophilic TPP molecules. The amphiphilic mPEG-(ss-TPP)2 self-assembled in aqueous media, which thereby formed core-shell structured nanoparticles (NPs) with good colloidal stability, and efficiently encapsulated the lipophilic anticancer drug doxorubicin (DOX). The DOX-loaded mPEG-(ss-TPP)2 NPs were characterized in terms of their physicochemical and morphological properties, drug-loading and release behaviors, in vitro anticancer effects, and mitochondria-targeting capacity. Our results suggest that bioreducible DOX-loaded mPEG-(ss-TPP)2 NPs can induce fast drug release with enhanced mitochondrial uptake and have a better therapeutic effect than nonbioreducible NPs.


Assuntos
Portadores de Fármacos/química , Mitocôndrias/efeitos dos fármacos , Nanopartículas/química , Polietilenoglicóis/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Células Hep G2 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula
7.
Pharm Res ; 32(7): 2266-79, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25609012

RESUMO

PURPOSE: The safe and functional delivery of progesterone through the vaginal route remains an unmet clinical need. The purpose of this work is to prepare a new progesterone (P4) gel for vaginal application using a thermosensitive mucoadhesive polymer, glycol chitin (GC). METHOD: Thermogelling, mucoadhesive, mechanical, and viscoelastic properties of GC and the new formulation were evaluated using rheometry. In vitro release profile and the bioactivity of P4 were determined using vaginal fluid simulant (VFS) pH 4.2, and PR-reporter gene assay, respectively. In vitro safety of the formulations was tested using (VK2/E6E7) vaginal epithelial cell line and Lactobacillus Crispatus. Finally, in vivo safety and the efficacy of this formulation were evaluated using an endometrial hypoplasia mouse model. RESULTS: Results shows the aqueous solution of 5%; (w/v) GC loaded with 0.1%; (w/v) P4 prepared in pH 4.2, (GC-P4), forms a thermosensitive mucoadhesive hydrogel and can maintain stable physical properties at 37 °C. GC-P4 gel release 50% of P4 in 4 h after exposure to VFS, and no significant decrease in % viability of VK2/E6E7 or Lactobacillus was found after exposure to 5% GC or GC-P4. GC-P4 does not exhibit obvious toxicities to vaginal tissue in vivo even after repeated application. Efficacy studies indicated that GC-P4 was capable of preventing the progression of simple endometrial hyperplasia (SEH) to complex atypical endometrial hyperplasia (CAEH) in vivo. CONCLUSIONS: Results indicates that GC-P4 retains many characteristics for an effective vaginal delivery system for P4. Therefore we believe that GC-P4 formulation is a promising alternative to current vaginal P4 formulation.


Assuntos
Quitina/análogos & derivados , Portadores de Fármacos/química , Hidrogéis/química , Progesterona/administração & dosagem , Administração Intravaginal , Animais , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica , Quitina/química , Quitina/toxicidade , Liberação Controlada de Fármacos , Hiperplasia Endometrial/tratamento farmacológico , Células Epiteliais/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Lactobacillus/efeitos dos fármacos , Camundongos , Transição de Fase , Progesterona/uso terapêutico , Progesterona/toxicidade , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Reologia , Temperatura , Adesivos Teciduais/química , Vagina/efeitos dos fármacos , Vagina/metabolismo , Vagina/microbiologia , Viscosidade
8.
Biomacromolecules ; 15(6): 2224-34, 2014 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-24805286

RESUMO

In the study presented here, we developed a bioreducible biarmed methoxy poly(ethylene glycol)-(pheophorbide a)2 (mPEG-(ss-PhA)2) conjugate for cancer-cell-specific photodynamic therapy (PDT). PhA molecules were chemically conjugated with biarmed linkages at one end of the mPEG molecule via disulfide bonds. Under aqueous conditions, the amphiphilic mPEG-(ss-PhA)2 conjugate self-assembled to form core-shell-structured nanoparticles (NPs) with good colloidal stability. The mPEG-(ss-PhA)2 NPs exhibited intramolecular and intermolecular self-quenching effects that enabled the NPs to remain photoinactive in a physiological buffer. However, the dissociation of the NP structure was effectively induced by the cleavage of the disulfide bonds in response to intracellular reductive conditions, triggering the rapid release of PhA molecules in a photoactive form. In cell-culture systems, in addition to significant phototoxicity and intracellular uptake, we observed that the dequenching processes of PhA in the mPEG-(ss-PhA)2 NPs highly depended on the expression of intracellular thiols and that supplementation with glutathione monoethylester facilitated more rapid PhA release and enhanced the PhA phototoxicity. These findings suggest that the bioreducible activation mechanism of mPEG-(ss-PhA)2 NPs in cancer cells can maximize the cytosolic dose of active photosensitizers to achieve high cytotoxicity, thereby enhancing the treatment efficacy of photodynamic cancer treatment.


Assuntos
Clorofila/análogos & derivados , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Fotoquimioterapia/métodos , Polietilenoglicóis/química , Clorofila/administração & dosagem , Clorofila/química , Portadores de Fármacos/administração & dosagem , Células HeLa , Humanos , Células MCF-7 , Polietilenoglicóis/administração & dosagem
9.
Carbohydr Polym ; 328: 121734, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220328

RESUMO

Cell therapy using chondrocytes has shown promise for cartilage regeneration, but maintaining functional characteristics during in vitro culture and ensuring survival after transplantation are challenges. Three-dimensional (3D) cell culture methods, such as spheroid culture, and hydrogels can improve cell survival and functionality. In this study, a new method of culturing spheroids using hyaluronic acid (HA) microparticles was developed. The spheroids mixed with HA microparticles effectively maintained the functional characteristics of chondrocytes during in vitro culture, resulting in improved cell survival and successful cartilage formation in vivo following transplantation. This new method has the potential to improve cell therapy production for cartilage regeneration.


Assuntos
Cartilagem Articular , Ácido Hialurônico , Ácido Hialurônico/farmacologia , Engenharia Tecidual/métodos , Cartilagem , Condrócitos , Regeneração , Hidrogéis/farmacologia
10.
Macromol Biosci ; 24(7): e2300590, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38488862

RESUMO

Nanoparticle (NP)-based drug delivery systems are conceived to solve poor water-solubility and chemical/physical instability, and their purpose expanded to target specific sites for maximizing therapeutic effects and minimizing unwanted events of payloads. Targeted sites are also narrowed from organs/tissues and cells to cytosol/organelles. Beyond specific site targeting, the particular release of payloads at the target sites is growing in importance. This review overviews various issues and their general strategies during multiple steps, from the preparation of drug-loaded NPs to their drug release at the target cytosol/organelles. In particular, this review focuses on current strategies for "first" delivery and "later" release of drugs to the cytosol or organelles of interest using specific stimuli in the target sites. Recognizing or distinguishing the presence/absence of stimuli or their differences in concentration/level/activity in one place from those in another is applied to stimuli-triggered release via bond cleavage or nanostructural transition. In addition, future directions on understanding the intracellular balance of stimuli and their counter-stimuli are demonstrated to synergize the therapeutic effects of payloads released from stimuli-sensitive NPs.


Assuntos
Citosol , Nanopartículas , Humanos , Citosol/metabolismo , Nanopartículas/química , Organelas/metabolismo , Liberação Controlada de Fármacos , Sistemas de Liberação de Medicamentos/métodos , Animais , Sistemas de Liberação de Fármacos por Nanopartículas/química , Portadores de Fármacos/química
11.
Adv Drug Deliv Rev ; 212: 115386, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971180

RESUMO

To maximize therapeutic effects and minimize unwanted effects, the interest in drug targeting to the endoplasmic reticulum (ER) or Golgi apparatus (GA) has been recently growing because two organelles are distributing hubs of cellular building/signaling components (e.g., proteins, lipids, Ca2+) to other organelles and the plasma membrane. Their structural or functional damages induce organelle stress (i.e., ER or GA stress), and their aggravation is strongly related to diseases (e.g., cancers, liver diseases, brain diseases). Many efforts have been developed to image (patho)physiological functions (e.g., oxidative stress, protein/lipid-related processing) and characteristics (e.g., pH, temperature, biothiols, reactive oxygen species) in the target organelles and to deliver drugs for organelle disruption using organelle-targeting moieties. Therefore, this review will overview the structure, (patho)physiological functions/characteristics, and related diseases of the organelles of interest. Future direction on ER or GA targeting will be discussed by understanding current strategies and investigations on targeting, imaging/sensing, and therapeutic systems.

12.
Biomater Sci ; 12(12): 3045-3067, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38712883

RESUMO

Various strategies at the microscale/nanoscale have been developed to improve oral absorption of therapeutics. Among them, gastrointestinal (GI)-transporter/receptor-mediated nanosized drug delivery systems (NDDSs) have drawn attention due to their many benefits, such as improved water solubility, improved chemical/physical stability, improved oral absorption, and improved targetability of their payloads. Their therapeutic potential in disease animal models (e.g., solid tumors, virus-infected lungs, metastasis, diabetes, and so on) has been investigated, and could be expanded to disease targeting after systemic/lymphatic circulation, although the detailed paths and mechanisms of endocytosis, endosomal escape, intracellular trafficking, and exocytosis through the epithelial cell lining in the GI tract are still unclear. Thus, this review summarizes and discusses potential GI transporters/receptors, their absorption and distribution, in vivo studies, and potential sequential targeting (e.g., oral absorption and disease targeting in organs/tissues).


Assuntos
Nanopartículas , Humanos , Animais , Administração Oral , Nanopartículas/química , Nanopartículas/administração & dosagem , Sistemas de Liberação de Medicamentos , Sistemas de Liberação de Fármacos por Nanopartículas/química
13.
Drug Dev Ind Pharm ; 39(12): 1874-80, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22409199

RESUMO

To improve physical properties and modulate the mucoadhesive hydrogel formulation via cross-linking by radiation, hydrogels were prepared using thermoreversible polymer Pluronic F127 (PF127) and mucoadhesive polymer carbopol 934P (C934P). As a model drug, naproxen was loaded in the hydrogel formulation. Sol-gel transition temperatures of hydrogels were measured by the tube-inversion method. The mucoadhesive potential of each formulation was determined by measuring the force required to detach the formulation from oral mucosal tissue. To strengthen the mechanical properties, the formulations were irradiated using an electronic beam. Drug release from the hydrogels and the cytotoxicity of each formulation were investigated. Sol-gel transition temperatures of the formulations were decreased by the addition of carbopol and were close to body temperature. The mucoadhesive force of the PF127 formulation was increased by addition of carbopol. In vitro release was sustained and the release rate was reduced by the addition of carbopol. After irradiation, the mucoadhesive force was increased about five-fold especially in the case of PF127 23% (9.7 kPa) and in vitro release was not sustained further. In conclusion, the use of a PF127 formulation incorporating a mucoadhesive polymer could effectively and safely improve oral residence time and absorption of naproxen. Irradiated formulations showed permanent cross-linking and improved properties.


Assuntos
Acrilatos/química , Sistemas de Liberação de Medicamentos , Naproxeno/administração & dosagem , Poloxâmero/química , Adesividade , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/farmacocinética , Anti-Inflamatórios não Esteroides/toxicidade , Química Farmacêutica , Composição de Medicamentos , Elétrons , Excipientes/química , Humanos , Hidrogéis , Células KB , Mucosa Bucal/metabolismo , Naproxeno/farmacocinética , Naproxeno/toxicidade , Transição de Fase , Suínos , Temperatura , Testes de Toxicidade
14.
Biomater Sci ; 11(1): 298-306, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36448579

RESUMO

In an immunosuppressive tumor microenvironment, tumor-associated macrophages (TAMs) are the most abundant cells displaying pro-tumorigenic M2-like phenotypes, encouraging tumor growth and influencing the development of resistance against conventional therapies. TAMs are highly malleable. They can be repolarized into tumoricidal M1-like cells. In this study, we report the synthesis of novel co-operative immuno-photodynamic nanoparticles involving TAM self-targeting acrylic acid grafted mannan (a polysaccharide) conjugated with the chlorin e6 (Ce6) photosensitizer and then loaded with resiquimod (R848), a toll-like receptor (TLR7/8) agonist. The mannan conjugated Ce6 loaded with R848 (MCR) as bioconjugate nanoparticles demonstrated selective targeting of anti-inflammatory M2-like cells. Using photodynamic therapy they were repolarized to pro-inflammatory M1-like cells with combined effects of reactive oxygen species (ROS)-triggered intracellular signaling and a small-molecule immunostimulant. The MCR also demonstrated a TAM-directed adaptive immune response, inhibited tumor growth, and prevented metastasis. Our results indicate that these MCR nanoparticles can effectively target TAMs and modulate them for cancer immunotherapy.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Mananas , Macrófagos Associados a Tumor , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/uso terapêutico , Fotoquimioterapia/métodos , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Microambiente Tumoral
15.
ACS Omega ; 7(22): 18471-18480, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35694497

RESUMO

Cell culture technology has evolved into three-dimensional (3D) artificial tissue models for better reproduction of human native tissues. However, there are some unresolved limitations that arise due to the adhesive properties of cells. In this study, we developed a hexanoyl glycol chitosan (HGC) as a non-cell adhesive polymer for scaffold-based and -free 3D culture. The uniform cell distribution in a porous scaffold was well maintained during the long culutre period on the HGC-coated substrate by preventing ectopic adhesion and migration of cells on the substrate. In addition, when culturing many spheroids in one dish, supplementation of the culture medium with HGC prevented the aggregation of spheroids and maintained the shape and size of spheroids for a long culture duration. Collectively, the use of HGC in 3D culture systems is expected to contribute greatly to creating excellent regenerative therapeutics and screening models of bioproducts.

16.
Biomaterials ; 280: 121307, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34894582

RESUMO

Due to increasing safety and intracellular delivery concerns about hydrophilic polymers in amphiphilic polymer-based nanoparticles (NPs), this study investigates small hydrophilic molecule-stabilized NPs for effective intracellular delivery with multiorganelle targetability and dual responsiveness to acidic pH/glutathione (GSH). In the construction of small hydrophilic molecule-stabilized NP (MSPCL-NP), the A-B-A-type amphiphilic polymer (MSPCL-P) is composed of two short hydrophilic carboxylate-capped disulfide derivatives (A) that replace hydrophilic polymers and assist in providing colloidal stability and preventing antibody (e.g., at least anti-PEG antibody)-mediated specific interactions and complement activation in the plasma and a hydrophobic multiple disulfide-containing poly(ε-caprolactone) block (B) that carries hydrophobic drugs. The carboxylates on the surface of MSPCL-NP target the acidic extratumoral/endolysosomal milieu by sensing and buffering acidic pH values, and the hydrophobic carboxylic acids improve adsorptive endocytosis and effective endosomal escape. Multiple disulfide linkages selectively target cytosolic GSH, resulting in rapid drug release from the destroyed MSPCL-NP via the cleavage of disulfide bonds in MSPCL-P. Doxorubicin (DOX)-loaded NP (DOX@MSPCL-NP) exerts strong effects on killing cells in vitro and inhibits tumor growth in HCT116 xenograft tumor-bearing mice. In conclusion, the multifunctionality and multispatial targetability of MSPCL-NP might effectively overcome various sequential drug delivery hurdles, ranging from blood circulation to drug release. Furthermore, the introduction of small hydrophilic molecules represents a potential strategy to make self-assembled NPs without the use of hydrophilic polymers.


Assuntos
Nanopartículas , Polímeros , Animais , Ácidos Carboxílicos , Dissulfetos , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Nanopartículas/química , Polímeros/química
17.
Carbohydr Polym ; 278: 118969, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973784

RESUMO

We prepared a new injectable thermogel to enhance the efficiency of inner ear delivery of dexamethasone (DEX). Hexanoyl glycol chitosan (HGC) was synthesized and evaluated as an amphiphilic thermogel (Tgel ~ 32 °C) for use as a solubilizing agent as well as an injectable carrier for intratympanic delivery of the hydrophilic and hydrophobic forms of DEX. Various thermogel formulations with different drug types and concentrations were prepared, and their physicochemical and thermogelling properties were characterized by 1H NMR, ATR-FTIR, and rheometer. They exhibited versatile release kinetics from several hours to more than 2 weeks, depending on drug type and concentration. Our formulations further showed good residual stability for more than 21 days without any cytotoxicity or inflammation in the middle and inner ear and could deliver a considerably high drug concentration into the inner ear. Therefore, HGC thermogel has great potential as an effective and safe formulation for inner ear drug delivery.


Assuntos
Quitosana/química , Dexametasona/farmacologia , Sistemas de Liberação de Medicamentos , Orelha Interna/efeitos dos fármacos , Temperatura , Animais , Quitosana/administração & dosagem , Quitosana/síntese química , Dexametasona/administração & dosagem , Dexametasona/química , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Composição de Medicamentos , Géis/administração & dosagem , Géis/síntese química , Géis/química , Cobaias , Masculino , Estrutura Molecular
18.
Carbohydr Polym ; 260: 117808, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33712154

RESUMO

In the present study, a novel synthetic tissue adhesive material capable of sealing wounds without the use of any crosslinking agent was developed by conjugating thermosensitive hexanoyl glycol chitosan (HGC) with gallic acid (GA). The degree of N-gallylation was manipulated to prepare GA-HGCs with different GA contents. GA-HGCs demonstrated thermosensitive sol-gel transition behavior and formed irreversible hydrogels upon natural oxidation of the pyrogallol moieties in GA, possibly leading to GA-HGC crosslinks through intra/intermolecular hydrogen bonding and chemical bonds. The GA-HGC hydrogels exhibited self-healing properties, high compressive strength, strong tissue adhesive strength and biodegradability that were adjustable according to the GA content. GA-HGCs also presented excellent biocompatibility and wound healing effects. The results of in vivo wound healing efficacy studies on GA-HGC hydrogels indicated that they significantly promote wound closure and tissue regeneration by upregulating growth factors and recruiting fibroblasts compared to the untreated control group.


Assuntos
Materiais Biocompatíveis/química , Quitosana/química , Ácido Gálico/química , Animais , Materiais Biocompatíveis/farmacologia , Força Compressiva , Hidrogéis/química , Hidrogéis/farmacologia , Reologia , Suínos , Adesivos Teciduais/química , Cicatrização/efeitos dos fármacos
19.
ACS Appl Mater Interfaces ; 13(4): 4844-4852, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33486952

RESUMO

The combination of photothermal therapy (PTT) and toll-like receptor (TLR)-mediated immunotherapy can elicit antitumor immunity and modulate the immunosuppressive tumor microenvironment (TME). Unlike other TLRs, TLR-5 is a promising target for immune activation, as its expression is well-maintained even during immunosenescence. Here, we developed a unique tumor microenvironment-regulating immunosenescence-independent nanostimulant consisting of TLR-5 adjuvant Vibrio vulnificus flagellin B (FlaB) conjugated onto the surface to an IR 780-loaded hyaluronic acid-stearylamine (HIF) micelles. These HIF micelles induced immune-mediated cell death via PTT when irradiated with a near-infrared laser. In comparison with PTT alone, the combination of in situ-generated tumor-associated antigens produced during PTT and the immune adjuvant FlaB demonstrated enhanced vaccine-like properties and modulated the TME by suppressing immune-suppressive regulatory cells (Tregs) and increasing the fraction of CD103+ migratory dendritic cells, which are responsible for trafficking tumor antigens to draining lymph nodes (DLNs). This combinatorial strategy (i.e., applying a TLR-5 adjuvant targeted to immunosenescence-independent TLR-5 and the in situ photothermal generation of tumor-associated antigens) is a robust system for next-generation immunotherapy and could even be applied in elderly patients, thus broadening the clinical scope of immunotherapy strategies.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Flagelina/uso terapêutico , Imunoterapia , Nanopartículas/uso terapêutico , Neoplasias/terapia , Terapia Fototérmica , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Animais , Linhagem Celular Tumoral , Feminino , Flagelina/administração & dosagem , Flagelina/imunologia , Células HEK293 , Humanos , Imunossenescência/efeitos dos fármacos , Imunossenescência/efeitos da radiação , Imunoterapia/métodos , Raios Infravermelhos/uso terapêutico , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , Neoplasias/imunologia , Neoplasias/patologia , Terapia Fototérmica/métodos , Receptor 5 Toll-Like/antagonistas & inibidores , Receptor 5 Toll-Like/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos da radiação , Vibrio vulnificus/imunologia
20.
Int J Biol Macromol ; 185: 87-97, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34144066

RESUMO

The current 2D culture model systems developed for drug screening are not sufficient to reflect the characteristics of in vivo solid tumors. Therefore, more effective in vitro tumor model systems must be developed for translational studies on therapeutic drug screening and testing. Herein, we report a new ultra-low adhesion (ULA) hydrogel for generating 3D cancer cell spheroids as tumor models in vitro. N-octanoyl glycol chitosan (OGC) was synthesized and coated onto the surface of a typical cell culture dish. Cell spheroids were effectively formed on the OGC-coated surface, and phenotypes of the tumor cells were well maintained during culture. More importantly, U373-MG cells cultured on OGC-coated plates were more resistant to doxorubicin than cells cultured on typical plates. Our OGC-based ULA system may offer a convenient method for 3D cell culture to provide enhanced performance in cancer research, drug screening and toxicology.


Assuntos
1-Octanol/química , Neoplasias Encefálicas/tratamento farmacológico , Quitosana/química , Glioblastoma/tratamento farmacológico , Esferoides Celulares/citologia , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Hidrogéis , Esferoides Celulares/química , Esferoides Celulares/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA