Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
1.
Mol Cancer ; 23(1): 77, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627681

RESUMO

Emerging tumor immunotherapy methods encompass bispecific antibodies (BSABs), immune checkpoint inhibitors (ICIs), and adoptive cell immunotherapy. BSABs belong to the antibody family that can specifically recognize two different antigens or epitopes on the same antigen. These antibodies demonstrate superior clinical efficacy than monoclonal antibodies, indicating their role as a promising tumor immunotherapy option. Immune checkpoints are also important in tumor immunotherapy. Programmed cell death protein-1 (PD-1) is a widely acknowledged immune checkpoint target with effective anti-tumor activity. PD-1 inhibitors have demonstrated notable therapeutic efficacy in treating hematological and solid tumors; however, more than 50% of patients undergoing this treatment exhibit a poor response. However, ICI-based combination therapies (ICI combination therapies) have been demonstrated to synergistically increase anti-tumor effects and immune response rates. In this review, we compare the clinical efficacy and side effects of BSABs and ICI combination therapies in real-world tumor immunotherapy, aiming to provide evidence-based approaches for clinical research and personalized tumor diagnosis and treatment.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Humanos , Anticorpos Biespecíficos/efeitos adversos , Inibidores de Checkpoint Imunológico/efeitos adversos , Neoplasias/tratamento farmacológico , Anticorpos Monoclonais/uso terapêutico , Imunoterapia/efeitos adversos , Imunoterapia/métodos
2.
Cancer Sci ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655660

RESUMO

Although microwave ablation (MWA) is an important curative therapy in colorectal cancer liver metastasis, recurrence still occurs clinically. Our previous studies have shown that the expression of programmed cell death 1 ligand 1 (PD-L1) is upregulated following MWA, suggesting that MWA combined with anti-PD-L1 treatment can serve as a promising clinical therapeutic strategy against cancer. Using MWA-treated preclinical mice models, MWA combined with αPD-L1 treatment decreased tumor growth and prolonged overall survival (OS). Furthermore, through flow cytometry and single-cell RNA sequencing analysis, we determined that the MWA plus αPD-L1 therapy significantly suppressed CD8+ T cell exhaustion and enhanced their effector function. A significant increase in γ-interferon (IFN-γ) stimulated transcription factors, specifically Irf8, was observed. This enhancement facilitated the polarization of tumor-associated macrophages (TAM1s and TAM2s) through the nuclear factor-κB/JAK-STAT1 signaling pathway. Furthermore, the combination therapy stimulated the production of CXC motif chemokine ligand (CXCL9) by TAM1s and tumor cells, potentially increasing the chemotaxis of CD8 T cells and Th1 cells. Knocking out Cxcl9 in MC38 tumor cells or using CXCL9 blockade enhanced tumor growth of untreated tumors and shortened OS. Taken together, our study showed that blocking the IFN-γ-Cxcl9-CD8+ T axis promoted tumor progression and discovered a potential involvement of IRF8-regulated TAMs in preventing T cell exhaustion. Collectively, we identified that the combination of MWA with anti-PD-L1 treatment holds promise as a therapeutic strategy to rejuvenate the immune response against tumors. This merits further exploration in clinical studies.

3.
Cancer Immunol Immunother ; 73(8): 138, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833177

RESUMO

Despite the success of immune checkpoint inhibitors (ICIs) in treating solid tumors, lots of patients remain unresponsive to this therapy. Microwave ablation (MWA) stimulates systemic adaptive immunity against tumor cells by releasing tumor antigens. Additionally, IL-21 has demonstrated importance in stimulating T-cell effector function. The combination of these three therapies-MWA, IL-21, and anti-PD-1 monoclonal antibodies (mAbs)-has yet to be explored in the context of cancer treatment.In this study, we explored the impact of thermal ablation on IL-21R expression in tumor-infiltrating lymphocytes (TILs). Subsequently, we assessed alterations in the tumor microenvironment (TME) and peripheral lymphoid organs. Additionally, we conducted a thorough examination of tumor-infiltrating CD45+ immune cells across various treatment groups using single-cell RNA sequencing (scRNA-seq). Moreover, we determined the potential anti-tumor effects of the triple combination involving MWA, IL-21, and anti-PD-1 mAbs.Our findings revealed that MWA upregulated the expression of IL-21R on various immune cells in the untreated tumors. The combination of MWA with IL-21 exhibited a robust abscopal anti-tumor effect, enhancing the effector function of CD8+ T cells and facilitating dendritic cells' maturation and antigen presentation in the untreated tumor. Notably, the observed abscopal anti-tumor effect resulting from the combination is contingent upon T-cell recirculation, indicating the reliance of systemic adaptive immunity for this treatment regimen. Additionally, the combination of MWA, IL-21, and PD-1 mAbs demonstrated profound abscopal anti-tumor efficacy. Our findings provide support for further clinical investigation into a triple combination therapy involving MWA, IL-21, and ICIs for the treatment of metastatic cancer.


Assuntos
Inibidores de Checkpoint Imunológico , Interleucinas , Receptor de Morte Celular Programada 1 , Microambiente Tumoral , Interleucinas/metabolismo , Animais , Camundongos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Humanos , Microambiente Tumoral/imunologia , Terapia Combinada , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Feminino , Neoplasias/imunologia , Neoplasias/terapia , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral
4.
J Virol ; 97(10): e0078623, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37796126

RESUMO

IMPORTANCE: EV71 poses a significant health threat to children aged 5 and below. The process of EV71 infection and replication is predominantly influenced by ubiquitination modifications. Our previous findings indicate that EV71 prompts the activation of host deubiquitinating enzymes, thereby impeding the host interferon signaling pathway as a means of evading the immune response. Nevertheless, the precise mechanisms by which the host employs ubiquitination modifications to hinder EV71 infection remain unclear. The present study demonstrated that the nonstructural protein 2Apro, which is encoded by EV71, exhibits ubiquitination and degradation mediated by the host E3 ubiquitin ligase SPOP. In addition, it is the first report, to our knowledge, that SPOP is involved in the host antiviral response.


Assuntos
Cisteína Endopeptidases , Enterovirus Humano A , Infecções por Enterovirus , Interações entre Hospedeiro e Microrganismos , Ubiquitina-Proteína Ligases , Ubiquitina , Ubiquitinação , Proteínas Virais , Criança , Humanos , Enterovirus Humano A/enzimologia , Enterovirus Humano A/fisiologia , Infecções por Enterovirus/metabolismo , Infecções por Enterovirus/virologia , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismo , Cisteína Endopeptidases/metabolismo
5.
J Transl Med ; 22(1): 510, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802900

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD) is a highly lethal form of lung cancer. Despite advancements in treatments, managing LUAD is still challenging due to its aggressive behavior. Recent studies indicate that various molecular pathways, including the dysregulation of ferredoxin 1 (FDX1), play roles in LUAD progression. FDX1, a crucial protein in cellular redox reactions and energy metabolism, has been linked to several cancers. However, its exact role in the development of LUAD is not yet fully understood. METHODS: We investigated the role of ferredoxin 1 (FDX1) in LUAD progression through analysis of its expression in LUAD tissues and its impact on patient survival. Functional assays were performed to assess the effects of FDX1 overexpression on LUAD cell proliferation, migration, and invasion. A xenograft model was employed to evaluate the tumorigenesis potential of LUAD cells with FDX1 overexpression. Mechanistic insights into FDX1 regulation were gained through depletion experiments targeting the G protein-regulated inducer of neurite outgrowth 2 (GPRIN2)/PI3K signaling pathway. RESULTS: FDX1 expression was down-regulated in LUAD tissues, correlating with shorter patient survival. Overexpression of FDX1 suppressed LUAD cell proliferation, migration, and invasion in vitro, and inhibited tumorigenesis in vivo. Mechanistically, the GPRIN2/PI3K signaling pathway was implicated in FDX1 regulation, as depletion of GPRIN2 reversed the effects of FDX1 overexpression on cellular functions. CONCLUSIONS: Our findings highlight FDX1 as a potential tumor suppressor in LUAD, acting through modulation of the GPRIN2/PI3K signaling pathway. These results suggest FDX1 as a promising therapeutic target for LUAD treatment, warranting further investigation into its clinical relevance.


Assuntos
Adenocarcinoma de Pulmão , Movimento Celular , Proliferação de Células , Progressão da Doença , Neoplasias Pulmonares , Receptores Acoplados a Proteínas G , Transdução de Sinais , Animais , Feminino , Humanos , Masculino , Camundongos , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/genética , Carcinogênese/patologia , Carcinogênese/genética , Linhagem Celular Tumoral , Ferredoxinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética
6.
J Transl Med ; 22(1): 283, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491378

RESUMO

The activation of glycolysis, particularly in the context of reprogrammed energy metabolism, is increasingly recognized as a significant characteristic of cancer. However, the precise mechanisms by which glycolysis is promoted in metastatic gastric cancer cells under normal oxygen conditions remain poorly understood. MicroRNAs (miRNAs) play a crucial role in the development of malignant phenotypes in gastric cancer. Nevertheless, our understanding of the specific involvement of miRNAs in hypoxia-induced metabolic shifting and the subsequent metastatic processes is limited. Hypoxia-induced downregulation of miR-598-3p mechanistically leads to the upregulation of RMP and IGF1r, thereby promoting glycolysis. Either overexpression of miR-598-3p or R406 treatment effectively suppresses the metastasis of gastric cancer cells both in vitro and in vivo. Collectively, the depletion of miR-598-3p alters glucose metabolism from oxidative phosphorylation to glycolysis, thereby exacerbating the malignancy of gastric cancer cells. The present findings indicate a potential target for the development of therapeutics against gastric cancers with increased miR-598-3p expression.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Hipóxia/genética , Glicólise/genética , Proliferação de Células/genética , Linhagem Celular Tumoral
7.
Mol Cell Biochem ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38261238

RESUMO

The alteration of inflammatory phenotype by macrophage polarization plays an important role in diabetic wound repair. Apigenin has been reported to be anti-inflammatory and promote tissue repair; however, whether it regulates macrophage polarization to participate in diabetic wound repair remains to be investigated. We found that apigenin promoted miR-21 expression in LPS-stimulated RAW264.7 cells, inhibited cellular M1-type factor TNF-α and IL-1ß secretion and increased M2-type factor IL-10 and TGF-ß secretion, and accelerated macrophage conversion from M1 type to M2 type, whereas this protective effect of apigenin was counteracted by a miR-21 inhibitor. Moreover, we established a macrophage-HUVECs cell in vitro co-culture system and found that apigenin accelerated the migration, proliferation, and VEGF secretion of HUVECs by promoting macrophage miR-21 expression. Further, mechanistic studies revealed that this was mediated by the TLR4/Myd88/NF-κB axis. In in vivo study, diabetic mice had significantly delayed wound healing compared to non-diabetic mice, accelerated wound healing in apigenin-treated diabetic mice, and decreased M1-type macrophages and increased M2-type macrophages in wound tissues.

8.
EMBO Rep ; 23(1): e53466, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34779558

RESUMO

High-salt diets have recently been implicated in hypertension, cardiovascular disease, and autoimmune disease. However, whether and how dietary salt affects host antiviral response remain elusive. Here, we report that high salt induces an instant reduction in host antiviral immunity, although this effect is compromised during a long-term high-salt diet. Further studies reveal that high salt stimulates the acetylation at Lys663 of p97, which promotes the recruitment of ubiquitinated proteins for proteasome-dependent degradation. p97-mediated degradation of the deubiquitinase USP33 results in a deficiency of Viperin protein expression during viral infection, which substantially attenuates host antiviral ability. Importantly, switching to a low-salt diet during viral infection significantly enhances Viperin expression and improves host antiviral ability. These findings uncover dietary salt-induced regulation of ubiquitinated cellular proteins and host antiviral immunity, and could offer insight into the daily consumption of salt-containing diets during virus epidemics.


Assuntos
Fatores de Restrição Antivirais/imunologia , Imunidade Inata/efeitos dos fármacos , Cloreto de Sódio na Dieta/efeitos adversos , Viroses , Humanos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Ubiquitina Tiolesterase , Ubiquitinação , Viroses/imunologia , Vírus/patogenicidade
9.
Cell Immunol ; 388-389: 104730, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37210768

RESUMO

HHLA2 has been recently demonstrated to play multifaceted roles in several types of cancers. However, its underlying mechanism in the progression of human ovarian cancer (OC) remains largely unexplored. In the present study, we aimed to determine whether downregulation of HHLA2 inhibited malignant phenotypes of human OC cells and explore its specific mechanism. Our results revealed that downregulation of HHLA2 by transfection with a lentiviral vector significantly suppressed the viability, invasion, and migration of OC cells. Interaction study showed that downregulation of HHLA2 in OC cells reduced the expression of CA9 and increased the expressions of p-IKKß and p-RelA. Conversely, the viability, invasion, and migration of HHLA2-depleted OC cells were increased when CA9 was upregulated. In vivo, we found that downregulation of HHLA2 significantly inhibited tumor growth, which was reversed by CA9 overexpression. In addition, downregulation of HHLA2 inhibited the OC progression via activating the NF-κB signaling pathway and decreasing the expression of CA9. Collectively, our data suggested a link between HHLA2 and NF-κB axis in the pathogenesis of OC, and these findings might provide valuable insights into the development of novel potential therapeutic targets for OC.


Assuntos
NF-kappa B , Neoplasias Ovarianas , Humanos , Feminino , NF-kappa B/metabolismo , Regulação para Baixo , Linhagem Celular Tumoral , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Transdução de Sinais , Movimento Celular , Proliferação de Células , Anidrase Carbônica IX/genética , Anidrase Carbônica IX/metabolismo , Antígenos de Neoplasias , Imunoglobulinas/metabolismo
10.
BMC Cancer ; 23(1): 825, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667220

RESUMO

BACKGROUND: Effective identification and development of new molecular methods for the diagnosis, treatment and prognosis of lung adenocarcinoma (LUAD) remains an urgent clinical need. DNA methylation patterns at cytosine bases in the genome are closely related to gene expression, and abnormal DNA methylation is frequently observed in various cancers. The ten-eleven translocation (TET) enzymes oxidize 5-methylcytosine (5mC) and promote locus-specific DNA methylation reversal. This study aimed to explore the role of the TET2 protein and its downstream effector, 5-hmC/5-mC DNA modification, in LUAD progression. METHODS: The expression of TET2 was analysed by real-time PCR, Western blotting and immunohistochemistry. The 5-hmC DNA content was determined by a colorimetric kit. Activation of the cGAS-STING signalling pathway was evaluated by Western blotting. CCK-8, wound healing and Transwell assays were performed to evaluate the effect of TET2 on cell proliferation, migration and invasion abilities. A xenograft model was used to analyse the effect of TET2 on the tumorigenic ability of A549 cells. RESULTS: TET2 overexpression decreased proliferation and metastasis of A549 and H1975 cells in vitro and in vivo. However, TET2 knockdown dramatically enhanced the proliferation, migration and invasion of A549 and H1975 cells. Mechanistically, activation of the cGAS-STING signalling pathway is critical for the TET2-mediated suppression of LUAD cell tumorigenesis and metastasis. CONCLUSION: In this study, we demonstrate a tumour suppressor role of TET2 in LUAD, providing new potential molecular therapeutic targets and clinical therapies for patients with non-small cell lung cancer.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Proteínas de Ligação a DNA , Dioxigenases , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Carcinogênese , Proliferação de Células/genética , Dioxigenases/genética , DNA , Proteínas de Ligação a DNA/genética , Neoplasias Pulmonares/genética , Nucleotidiltransferases/genética
11.
J Transl Med ; 20(1): 298, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794583

RESUMO

BACKGROUND: As an important N6-methyladenosine (m6A) regulator, abnormal expression of methyltransferase-like protein 3 (METTL3) has been reported in certain human cancers. Although some data have shown that METTL3 plays an essential role in the progression of clear-cell renal cell carcinoma RCC (ccRCC), the detailed mechanism still remains largely undetermined. METHODS: Immunohistochemistry (IHC) assay was used to examine the expression of METTL3 and its clinical implications in human ccRCC by using tissue-microarray (TMA). The cellular models based on ccRCC cell lines such as 786-O and ACHN, were established by operating METTL3 and HHLA2 via knockdown or overexpression, followed by in vitro cellular function studies and in vivo subcutaneous transplantation tumor model. RESULTS: We found that METTL3 expression in ccRCC tissues was significantly higher compared with adjacent normal tissues. We also found the overall survival (OS) of the patients with low METTL3 expression was significantly better compared with the patients with high METTL3 expression. Furthermore, HHLA2highMETTL3high could serve as a better prognostic predictor for ccRCC patients. Depletion of METTL3 could significantly inhibit the cell viability, migration, and invasion abilities in ccRCC cell lines. Cellular studies further revealed that METTL3 could regulate HHLA2 expression via m6A modification of HHLA2 mRNA. In vitro studies revealed that HHLA2 overexpression could reverse the inhibition of cellular functions mediated by METTL3 depletion. The subcutaneous transplantation tumor model confirmed that HHLA2 overexpression could reverse the inhibition of tumor growth mediated by METTL3 depletion. CONCLUSION: Our study indicated that METTL3 served as an important prognostic predictor for ccRCC patients, and we demonstrated a novel regulatory mechanism of HHLA2 by mRNA epigenetic modification via METTL3. Moreover, we found that the METTL3/HHLA2 axis could promote tumorigenesis of ccRCC. Collectively, our current findings provided new insights into the therapeutic strategy against this malignancy targeting METTL3.


Assuntos
Carcinoma de Células Renais , Imunoglobulinas , Neoplasias Renais , Metiltransferases , RNA Mensageiro , Adenosina/análogos & derivados , Adenosina/genética , Adenosina/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Transformação Celular Neoplásica , Humanos , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
12.
J Transl Med ; 20(1): 433, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180876

RESUMO

BACKGROUND: The immune checkpoint inhibitors (ICIs) combined with other therapeutic strategies have shown exciting results in various malignancies, and ICIs have now become the gold standard for current cancer treatment. In several preclinical and clinical investigations, ablation coupled with immunotherapy has proved to be quite effective. Our previous studies have shown that ablation coupled with ICI is a potential anti-cancer regimen for colorectal cancer liver metastases (CRLM). Furthermore, we have reported that following microwave ablation (MWA), the expression of LAG3 is up-regulated in tumor microenvironment (TME), indicating that LAG3 is implicated in the regulation of immunosuppressive immune response, and combination therapy of MWA and LAG3 blockade can serve as a promising therapeutic strategy against cancer. METHODS: The expression of LAG3 was investigated in this study utilizing a preclinical mouse model treated with MWA. Moreover, we monitored the tumor development and survival in mice to assess the anti-cancer effects of MWA alone or in combination with LAG3 blockade. Flow cytometry was also used to phenotype the tumor-infiltrating lymphocytes (TILs) and CD8+ T cell effector molecules. We finally analyzed the single-cell RNA sequencing (scRNA-seq) data of infiltrating CD45+ immune cells in the tumors from the MWA alone and MWA combined with LAG3 blockade groups. RESULTS: After MWA, the expression of LAG3 was up-regulated on sub-populations of TILs, and introducing LAG3 blockade to MWA postponed tumor development and extended survival in the MC38 tumor model. Flow cytometry and scRNA-seq revealed that LAG3 blockade in combination with MWA markedly boosted the proliferation and the function of CD8+ TILs, leading to altered myeloid cells in the TME. CONCLUSION: Combination therapy of LAG3 blockade and MWA was a unique therapeutic regimen for some solid tumors, and such combination therapy might reprogram the TME to an anti-tumor manner.


Assuntos
Neoplasias Hepáticas , Micro-Ondas , Animais , Linfócitos T CD8-Positivos , Inibidores de Checkpoint Imunológico , Linfócitos do Interstício Tumoral , Camundongos , Micro-Ondas/uso terapêutico , Microambiente Tumoral
13.
J Obstet Gynaecol Res ; 47(10): 3471-3479, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34235813

RESUMO

AIM: To investigate the expression of formyl peptide receptor 2 (FPR2) in maternal blood, umbilical blood, and placenta of patients with gestational diabetes mellitus (GDM), and to analyze the changes of other pro-inflammatory cytokines in blood, including interleukin 33 (IL-33), IL-1ß, tumor necrosis factor alpha (TNF-α), and C-reactive protein (CRP), so as to reveal the pathogenesis of GDM. METHODS: FPR2, IL-33, IL-1ß, T TNF-α, and CRP in maternal blood and umbilical cord blood of 50 pregnant women with GDM and 30 normal pregnant women were analyzed by ELISA method to explore the correlation between inflammatory factors and blood glucose. The expression of FPR2 in placental tissues was analyzed by PCR and immunohistochemistry. RESULTS: The expression of FPR2 in maternal blood of gestational diabetes patients was significantly higher than that of normal pregnant women, and other inflammatory factors IL-33 and IL-1ß in maternal blood were also significantly increased. The expression of FPR2 in umbilical cord blood of gestational diabetes was higher than that of normal pregnant women, but the difference was not significant. Other inflammatory factors IL-33, IL-1ß, and CRP in umbilical cord blood were also significantly increased. The expression of FPR2mRNA and protein in placental tissues of gestational diabetes was significantly higher than that of normal pregnant women. CONCLUSIONS: The level of FPR2, IL-33, and IL-1ß in maternal blood was related to the pathogenesis of GDM and these inflammatory factors could be used as special candidate direction of marks for the prevention, clinical treatment and drug design of GDM, laying a new theoretical foundation for the treatment of GDM.


Assuntos
Diabetes Gestacional , Placenta , Receptores de Formil Peptídeo/sangue , Receptores de Lipoxinas/sangue , Diabetes Gestacional/sangue , Feminino , Sangue Fetal , Humanos , Gravidez , Fator de Necrose Tumoral alfa
14.
Gynecol Oncol ; 157(1): 222-233, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31987601

RESUMO

BACKGROUND: Ovarian cancer samples were studied to determine the expression of programmed death ligand-1 (PD-L1) and its relationship with prognosis, and to explore the effect and potential mechanism of a PARP inhibitor combined with PD-L1 monoclonal antibody for the treatment of ovarian cancer. MATERIALS AND METHODS: PD-L1 expression in paraffin-embedded tissues of ovarian cancer was detected by immunohistochemistry (IHC). Flow cytometry was used to detect PD-L1 expression in TILs. Furthermore, we investigated the mechanism of the upregulation of PD-L1 expression by PARP inhibitors in vitro and verified the combined effect in vivo. RESULTS: Our study demonstrated that PD-L1 expression in ovarian cancer tissues was associated with the FIGO stage (P = 0.026). OS was significantly lower in high PD-L1 expression group than in the low expression group (P = 0.0005, HR = 2.689), PD-L1 high expression (P = 0.023, HR = 2.275) and FIGO stage (P = 0.024, HR = 11.229) were independent risk factors affecting the survival and prognosis of ovarian cancer patients. Flow cytometry test suggested that PD-L1+ expression was negatively correlated with CD8+ T cell count in ovarian cancer cells (P = 0.054, r = -0.624). In vitro experiments revealed that PD-L1 expression of ovarian cancer cell lines was upregulated after intervention with PARP inhibitors through the Chk1 pathway. The results of in vivo experiments suggested that the growth volume and quality of tumors in the combination group were significantly lower than those in control group (P < 0.05). CONCLUSIONS: PARP inhibitors could induce upregulation of PD-L1 expression by promoting phosphorylation of chk1. Antagonistic PD-L1 could reverse the inhibitory effect of PARP inhibitors on CD8+T cells, and had synergistic antitumor effect with PARP inhibitors.


Assuntos
Antígeno B7-H1/biossíntese , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/imunologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Animais , Antígeno B7-H1/imunologia , Feminino , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Pessoa de Meia-Idade , Prognóstico , Distribuição Aleatória , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Mol Ther ; 27(3): 542-558, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30799283

RESUMO

Erbin has been shown to have significant effects on the development of solid tumors. However, little is known about its function and regulatory mechanism in hematological malignancies. The biological function of Erbin on cell proliferation was measured in vitro and in vivo. The predicted target of Erbin was validated by dual-luciferase reporter assay and rescue experiment. We found that overexpression of Erbin could inhibit the cell proliferation and promote the cell differentiation of acute myeloid leukemia (AML) cells, whereas depletion of Erbin could enhance the cell proliferation and block the cell differentiation in AML cells in vitro and in vivo. Besides, miR-183-5p was identified as the upstream regulator that negatively regulated the Erbin expression. The results were confirmed by dual-luciferase reporter and RNA pull-down assay. Furthermore, we found that miR-183-5p negatively regulated Erbin, resulting in enhanced cell proliferation of AML cells via activation of RAS/RAF/MEK/ERK and PI3K/AKT/FoxO3a pathways. The activation of RAS/RAF/MEK/ERK and PI3K/AKT/FoxO3a pathways was mediated by Erbin interacting with Grb2. These results were also validated by rescue experiments in vitro and in vivo. All above-mentioned findings indicated that the miR-183-5p/Erbin signaling pathway might represent a novel prognostic biomarker or therapeutic target for treatment of AML.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Diferenciação Celular/fisiologia , Proteína Forkhead Box O3/metabolismo , Leucemia Mieloide/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Proliferação de Células/fisiologia , Citometria de Fluxo , Proteína Forkhead Box O3/genética , Células HL-60 , Humanos , Leucemia Mieloide/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Células U937
16.
Mol Ther ; 27(2): 355-364, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30503969

RESUMO

Radiotherapy is one of the most important treatment methods of tumors. However, the application of radiotherapy in hepatocellular carcinoma (HCC) is limited due to the low tolerance of normal liver cells for radiation and inherent radiation resistance in HCC. With the in-depth study of microRNAs (miRNAs) in tumor therapy, the regulation of tumor radiosensitivity by miRNAs has been a research hotspot in recent years. In the present study, the expression of miR-621 was lower in HCC tissues and cells, and such low expression of miR-621 was associated with poor prognosis in HCC patients. In addition, in vivo and in vitro assays confirmed that the high expression of miR-621 could significantly enhance the radiosensitivity of HCC. Moreover, the expressions of miR-621 and SETDB1 in HCC tissues were negatively correlated. Dual-luciferase reporter assays indicated that miR-621 could directly target the 3' UTR of SETDB1. In addition, miR-621 enhanced the radiosensitivity of HCC cells via directly inhibiting SETDB1. Besides, the miR-621 and/or SETDB1 axis improved the radiosensitivity of HCC cells via activating the p53-signaling pathway. Taken together, miR-621 and/or SETDB1 might be used as a novel therapeutic target for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Neoplasias Hepáticas/metabolismo , MicroRNAs/metabolismo , Micro-Ondas , Radiossensibilizantes/metabolismo , Animais , Carcinoma Hepatocelular/radioterapia , Linhagem Celular Tumoral , Proliferação de Células/genética , Proliferação de Células/efeitos da radiação , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Células Hep G2 , Histona-Lisina N-Metiltransferase/genética , Humanos , Neoplasias Hepáticas/radioterapia , Camundongos , Camundongos Nus , MicroRNAs/genética , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação
17.
Mol Cancer ; 18(1): 47, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30925892

RESUMO

BACKGROUND: It has been well established that circular RNAs (circRNAs) play an important regulatory role during tumor progression. Recent studies have indicated that even though circRNAs generally regulate gene expression through miRNA sponges, they may encode small peptides in tumor pathogenesis. However, it remains largely unexplored whether circRNAs are involved in the tumorigenesis of colon cancer (CC). METHODS: The expression profiles of circRNAs in CC tissues were assessed by circRNA microarray. Quantitative real-time PCR, RNase R digestion assay and tissue microarray were used to confirm the existence and expression pattern of circPPP1R12A. The subcellular distribution of circPPP1R12A was analyzed by nuclear mass separation assay and fluorescence in situ hybridization (FISH). SDS-PAGE and LC/MS were employed to evaluate the protein-coding ability of circPPP1R12A. CC cells were stably transfected with lentivirus approach, and cell proliferation, migration and invasion, as well as tumorigenesis and metastasis in nude mice were assessed to clarify the functional roles of circPPP1R12A and its encoded protein circPPP1R12A-73aa. RNA-sequencing and Western blotting analysis were furthered employed to identify the critical signaling pathway regulated by circPPP1R12A-73aa. RESULTS: We firstly screened the expression profiles of human circRNAs in CC tissues and found that the expression of hsa_circ_0000423 (termed as circPPP1R12A) was significantly increased in CC tissues. We also found that circPPP1R12A was mostly localized in the cytoplasm of CC cells. Kaplan-Meier analysis showed that patients with higher levels of circPPP1R12A had a significantly shorter overall survival. By gain- and loss-of-function approaches, the results suggested that circPPP1R12A played a critical role in proliferation, migration and invasion of CC cells. Furthermore, we showed that circPPP1R12A carried an open reading frame (ORF), which encoded a functional protein (termed as circPPP1R12A-73aa). Next, we found that PPP1R12A-C, not circPPP1R12A, promoted the proliferation, migration and invasion abilities of CC in vitro and in vivo. Finally, we identified that circPPP1R12A-73aa promoted the growth and metastasis of CC via activating Hippo-YAP signaling pathway. In addition, the YAP specific inhibitor Peptide 17 dramatically alleviated the promotive effect of circPPP1R12A-73aa on CC cells. CONCLUSIONS: In the present study, we illustrated the coding-potential of circRNA circPPP1R12A in the progression of CC. Moreover, we identified that circPPP1R12A-73aa promoted the tumor pathogenesis and metastasis of CC via activating Hippo-YAP signaling pathway. Our findings might provide valuable insights into the development of novel potential therapeutic targets for CC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/secundário , Fosfatase de Miosina-de-Cadeia-Leve/genética , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , RNA/genética , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Estudos de Casos e Controles , Ciclo Celular , Proliferação de Células , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Feminino , Seguimentos , Via de Sinalização Hippo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , Fosfoproteínas/genética , Prognóstico , Proteínas Serina-Treonina Quinases/genética , RNA Circular , Taxa de Sobrevida , Fatores de Transcrição , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Sinalização YAP
18.
Biochem Biophys Res Commun ; 508(2): 527-535, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30509491

RESUMO

Circular RNAs (circRNAs) were recently reported to be involved in the pathogenesis of Non-small cell lung cancer (NSCLC), however, the molecular mechanisms of circRNAs in cell proliferation, invasion and TKI drug resistance remain largely undetermined. Here, we identified hsa_circ_0004015 was upregulated in NSCLC tissues, and was associated with the poor overall survival rate of NSCLC patients. Knockdown of hsa_circ_0004015 significantly decreased cell viability, proliferation, and invasion, whereas overexpression exhibited opposed effects in vivo and in vitro. Furthermore, hsa_circ_0004015 could enhance the resistance of HCC827 to gefitinib. In mechanism, hsa_circ_0004015 acted as a sponge for miR-1183, and PDPK1 was revealed to be target gene of miR-1183. Subsequently, functional assays illustrated that the oncogenic effects of hsa_circ_0004015 was attributed to the regulation of miR-1183/PDPK1 axis. In conclusion, circ_0016760/miR-1183/PDPK1 signaling pathway might play vital roles in the tumorigenesis of NSCLC.


Assuntos
Carcinogênese/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/patologia , Resistência a Medicamentos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , RNA/farmacologia , Transdução de Sinais , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Carcinogênese/patologia , Proliferação de Células/genética , Células Cultivadas , Gefitinibe/farmacologia , Humanos , MicroRNAs/metabolismo , Invasividade Neoplásica/genética , RNA Circular
19.
J Transl Med ; 17(1): 178, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138322

RESUMO

BACKGROUND: T-cell immunoglobulin and mucin domain 1 (TIM-1) is an important co-stimulatory molecule which serves as a surface marker for T cell activation, especially for Th2 cells. Recently, many studies have also shown that TIM-1 can be abnormally expressed in human cancers and may have a potential role in promoting cancer progression. METHODS: The immunohistochemistry was used to examine the TIM-1 expression in human non-small-cell lung carcinoma (NSCLC) tissues. The cellular studies were performed to investigate the role of TIM-1 in the regulation of biological functions of human lung cancer cell lines. RESULTS: We found that the TIM-1 expression was increased in human NSCLC tissues compared with the adjacent normal tissues, and the OS rate of NSCLC patients with higher TIM-1 expression was significantly lower compared with the ones with lower TIM-1 expression. The COX model showed that higher TIM-1 expression in lung cancer tissues could be used as an independent prognostic predictor for the patients. Furthermore, we depleted TIM-1 in NSCLC cell lines A549 and SK-MES-1, and the cellular functional studies also revealed that depletion of TIM-1 could significantly inhibit the cell viability as well as the abilities of migration and invasion. In addition, our microarray data showed that certain signaling pathways were altered and enriched after depletion of TIM-1. We subsequently verified that PI3K/Akt signaling pathway was involved in the TIM-1-mediated regulation of cellular functions in NSCLC cells. CONCLUSION: Our findings supported the notion that TIM-1 could serve as a potential therapeutic target for NSCLC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Neoplasias Pulmonares/diagnóstico , Células A549 , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Análise Serial de Tecidos , Células Tumorais Cultivadas
20.
Cancer Cell Int ; 19: 106, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31043861

RESUMO

BACKGROUND: Nectin-4, also known as PVRL4 (poliovirus-receptor-like 4), is specifically expressed in the embryo and placenta. Recent studies have reported that the Nectin-4 is over-expressed in multiple human cancers, and such abnormal expression is associated with cancer progression and poor prognosis of the patients. In the present study, we aimed to characterize the expression pattern of Nectin-4 in human esophageal cancer (EC) tissues, and to investigate its clinical implications, prognostic value and regulatory effects on cellular functions of EC cells. METHODS: In the present study, we first examined Nectin-4 expression in human EC tissues by using immunohistochemistry (IHC) assay and analyzed the clinical associations. Then the cellular studies in vitro and the nude mice tumor model in vivo were used to examine the regulatory role of Nectin-4 in the progression of EC. RESULTS: Our results demonstrated that over-expression of Nectin-4 in human EC tissues was significantly associated with tumor size, depth of tumor invasion, and poor prognosis of the patients. The intervention of Nectin-4 expression in EC cell lines showed that the increased Nectin-4 expression could significantly promote the cell viability, migration, invasion and tumor formation. CONCLUSIONS: Our present data unveiled that Nectin-4 played an important role in tumor biology and could serve as a useful prognostic predictor of human EC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA