Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Cell ; 161(2): 319-32, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25843629

RESUMO

Research over the past decade has suggested important roles for pseudogenes in physiology and disease. In vitro experiments demonstrated that pseudogenes contribute to cell transformation through several mechanisms. However, in vivo evidence for a causal role of pseudogenes in cancer development is lacking. Here, we report that mice engineered to overexpress either the full-length murine B-Raf pseudogene Braf-rs1 or its pseudo "CDS" or "3' UTR" develop an aggressive malignancy resembling human diffuse large B cell lymphoma. We show that Braf-rs1 and its human ortholog, BRAFP1, elicit their oncogenic activity, at least in part, as competitive endogenous RNAs (ceRNAs) that elevate BRAF expression and MAPK activation in vitro and in vivo. Notably, we find that transcriptional or genomic aberrations of BRAFP1 occur frequently in multiple human cancers, including B cell lymphomas. Our engineered mouse models demonstrate the oncogenic potential of pseudogenes and indicate that ceRNA-mediated microRNA sequestration may contribute to the development of cancer.


Assuntos
Linfoma Difuso de Grandes Células B/genética , Proteínas Proto-Oncogênicas B-raf/genética , Pseudogenes , RNA/metabolismo , Animais , Sequência de Bases , Humanos , Linfoma Difuso de Grandes Células B/metabolismo , Camundongos , Dados de Sequência Molecular , Proteínas Proto-Oncogênicas B-raf/metabolismo
2.
Cell ; 154(3): 691-703, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23890820

RESUMO

Large numbers of inbred laboratory rat strains have been developed for a range of complex disease phenotypes. To gain insights into the evolutionary pressures underlying selection for these phenotypes, we sequenced the genomes of 27 rat strains, including 11 models of hypertension, diabetes, and insulin resistance, along with their respective control strains. Altogether, we identified more than 13 million single-nucleotide variants, indels, and structural variants across these rat strains. Analysis of strain-specific selective sweeps and gene clusters implicated genes and pathways involved in cation transport, angiotensin production, and regulators of oxidative stress in the development of cardiovascular disease phenotypes in rats. Many of the rat loci that we identified overlap with previously mapped loci for related traits in humans, indicating the presence of shared pathways underlying these phenotypes in rats and humans. These data represent a step change in resources available for evolutionary analysis of complex traits in disease models.


Assuntos
Ratos/classificação , Ratos/genética , Animais , Modelos Animais de Doenças , Genoma , Fenótipo , Filogenia , Polimorfismo de Nucleotídeo Único , Ratos Endogâmicos
3.
Nat Rev Genet ; 20(11): 693-701, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31455890

RESUMO

Human genomics is undergoing a step change from being a predominantly research-driven activity to one driven through health care as many countries in Europe now have nascent precision medicine programmes. To maximize the value of the genomic data generated, these data will need to be shared between institutions and across countries. In recognition of this challenge, 21 European countries recently signed a declaration to transnationally share data on at least 1 million human genomes by 2022. In this Roadmap, we identify the challenges of data sharing across borders and demonstrate that European research infrastructures are well-positioned to support the rapid implementation of widespread genomic data access.


Assuntos
Pesquisa Biomédica , Genoma Humano , Projeto Genoma Humano , Europa (Continente) , Humanos
5.
Nucleic Acids Res ; 50(D1): D1216-D1220, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34718739

RESUMO

The European Variation Archive (EVA; https://www.ebi.ac.uk/eva/) is a resource for sharing all types of genetic variation data (SNPs, indels, and structural variants) for all species. The EVA was created in 2014 to provide FAIR access to genetic variation data and has since grown to be a primary resource for genomic variants hosting >3 billion records. The EVA and dbSNP have established a compatible global system to assign unique identifiers to all submitted genetic variants. The EVA is active within the Global Alliance of Genomics and Health (GA4GH), maintaining, contributing and implementing standards such as VCF, Refget and Variant Representation Specification (VRS). In this article, we describe the submission and permanent accessioning services along with the different ways the data can be retrieved by the scientific community.


Assuntos
Biologia Computacional , Bases de Dados Genéticas , Variação Genética/genética , Software , Animais , Variação Estrutural do Genoma/genética , Genômica , Humanos , Mutação INDEL/genética , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único/genética
6.
Bioinformatics ; 37(17): 2753-2754, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-33543751

RESUMO

MOTIVATION: The majority of genome analysis tools and pipelines require data to be decrypted for access. This potentially leaves sensitive genetic data exposed, either because the unencrypted data is not removed after analysis, or because the data leaves traces on the permanent storage medium. RESULTS: : We defined a file container specification enabling direct byte-level compatible random access to encrypted genetic data stored in community standards such as SAM/BAM/CRAM/VCF/BCF. By standardizing this format, we show how it can be added as a native file format to genomic libraries, enabling direct analysis of encrypted data without the need to create a decrypted copy. AVAILABILITY AND IMPLEMENTATION: The Crypt4GH specification can be found at: http://samtools.github.io/hts-specs/crypt4gh.pdf. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

7.
Bioinformatics ; 38(1): 299-300, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34260694

RESUMO

MOTIVATION: Reference sequences are essential in creating a baseline of knowledge for many common bioinformatics methods, especially those using genomic sequencing. RESULTS: We have created refget, a Global Alliance for Genomics and Health API specification to access reference sequences and sub-sequences using an identifier derived from the sequence itself. We present four reference implementations across in-house and cloud infrastructure, a compliance suite and a web report used to ensure specification conformity across implementations. AVAILABILITY AND IMPLEMENTATION: The refget specification can be found at: https://w3id.org/ga4gh/refget. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genômica , Software
8.
PLoS Genet ; 15(11): e1008446, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31725724

RESUMO

For over a century, mice have been used to model human disease, leading to many fundamental discoveries about mammalian biology and the development of new therapies. Mouse genetics research has been further catalysed by a plethora of genomic resources developed in the last 20 years, including the genome sequence of C57BL/6J and more recently the first draft reference genomes for 16 additional laboratory strains. Collectively, the comparison of these genomes highlights the extreme diversity that exists at loci associated with the immune system, pathogen response, and key sensory functions, which form the foundation for dissecting phenotypic traits in vivo. We review the current status of the mouse genome across the diversity of the mouse lineage and discuss the value of mice to understanding human disease.


Assuntos
Animais Endogâmicos/genética , Genoma/genética , Genômica , Animais , Mapeamento Cromossômico , Haplótipos , Humanos , Endogamia , Camundongos , Fenótipo
9.
Genome Res ; 28(11): 1720-1732, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30341161

RESUMO

Despite the rapid development of sequencing technologies, the assembly of mammalian-scale genomes into complete chromosomes remains one of the most challenging problems in bioinformatics. To help address this difficulty, we developed Ragout 2, a reference-assisted assembly tool that works for large and complex genomes. By taking one or more target assemblies (generated from an NGS assembler) and one or multiple related reference genomes, Ragout 2 infers the evolutionary relationships between the genomes and builds the final assemblies using a genome rearrangement approach. By using Ragout 2, we transformed NGS assemblies of 16 laboratory mouse strains into sets of complete chromosomes, leaving <5% of sequence unlocalized per set. Various benchmarks, including PCR testing and realigning of long Pacific Biosciences (PacBio) reads, suggest only a small number of structural errors in the final assemblies, comparable with direct assembly approaches. We applied Ragout 2 to the Mus caroli and Mus pahari genomes, which exhibit karyotype-scale variations compared with other genomes from the Muridae family. Chromosome painting maps confirmed most large-scale rearrangements that Ragout 2 detected. We applied Ragout 2 to improve draft sequences of three ape genomes that have recently been published. Ragout 2 transformed three sets of contigs (generated using PacBio reads only) into chromosome-scale assemblies with accuracy comparable to chromosome assemblies generated in the original study using BioNano maps, Hi-C, BAC clones, and FISH.


Assuntos
Mapeamento de Sequências Contíguas/métodos , Sequenciamento Completo do Genoma/métodos , Animais , Mapeamento de Sequências Contíguas/normas , Camundongos , Padrões de Referência , Sequenciamento Completo do Genoma/normas
10.
Genome Res ; 28(4): 448-459, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29563166

RESUMO

Understanding the mechanisms driving lineage-specific evolution in both primates and rodents has been hindered by the lack of sister clades with a similar phylogenetic structure having high-quality genome assemblies. Here, we have created chromosome-level assemblies of the Mus caroli and Mus pahari genomes. Together with the Mus musculus and Rattus norvegicus genomes, this set of rodent genomes is similar in divergence times to the Hominidae (human-chimpanzee-gorilla-orangutan). By comparing the evolutionary dynamics between the Muridae and Hominidae, we identified punctate events of chromosome reshuffling that shaped the ancestral karyotype of Mus musculus and Mus caroli between 3 and 6 million yr ago, but that are absent in the Hominidae. Hominidae show between four- and sevenfold lower rates of nucleotide change and feature turnover in both neutral and functional sequences, suggesting an underlying coherence to the Muridae acceleration. Our system of matched, high-quality genome assemblies revealed how specific classes of repeats can play lineage-specific roles in related species. Recent LINE activity has remodeled protein-coding loci to a greater extent across the Muridae than the Hominidae, with functional consequences at the species level such as reproductive isolation. Furthermore, we charted a Muridae-specific retrotransposon expansion at unprecedented resolution, revealing how a single nucleotide mutation transformed a specific SINE element into an active CTCF binding site carrier specifically in Mus caroli, which resulted in thousands of novel, species-specific CTCF binding sites. Our results show that the comparison of matched phylogenetic sets of genomes will be an increasingly powerful strategy for understanding mammalian biology.


Assuntos
Evolução Molecular , Genoma/genética , Muridae/genética , Filogenia , Animais , Sítios de Ligação , Fator de Ligação a CCCTC/genética , Cromossomos/genética , Cariotipagem/métodos , Elementos Nucleotídeos Longos e Dispersos/genética , Camundongos , Retroelementos/genética , Especificidade da Espécie
11.
Nature ; 517(7535): 489-92, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25363767

RESUMO

Next-generation sequencing of human tumours has refined our understanding of the mutational processes operative in cancer initiation and progression, yet major questions remain regarding the factors that induce driver mutations and the processes that shape mutation selection during tumorigenesis. Here we performed whole-exome sequencing on adenomas from three mouse models of non-small-cell lung cancer, which were induced either by exposure to carcinogens (methyl-nitrosourea (MNU) and urethane) or by genetic activation of Kras (Kras(LA2)). Although the MNU-induced tumours carried exactly the same initiating mutation in Kras as seen in the Kras(LA2) model (G12D), MNU tumours had an average of 192 non-synonymous, somatic single-nucleotide variants, compared with only six in tumours from the Kras(LA2) model. By contrast, the Kras(LA2) tumours exhibited a significantly higher level of aneuploidy and copy number alterations compared with the carcinogen-induced tumours, suggesting that carcinogen-induced and genetically engineered models lead to tumour development through different routes. The wild-type allele of Kras has been shown to act as a tumour suppressor in mouse models of non-small-cell lung cancer. We demonstrate that urethane-induced tumours from wild-type mice carry mostly (94%) Kras Q61R mutations, whereas those from Kras heterozygous animals carry mostly (92%) Kras Q61L mutations, indicating a major role for germline Kras status in mutation selection during initiation. The exome-wide mutation spectra in carcinogen-induced tumours overwhelmingly display signatures of the initiating carcinogen, while adenocarcinomas acquire additional C > T mutations at CpG sites. These data provide a basis for understanding results from human tumour genome sequencing, which has identified two broad categories of tumours based on the relative frequency of single-nucleotide variations and copy number alterations, and underline the importance of carcinogen models for understanding the complex mutation spectra seen in human cancers.


Assuntos
Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/genética , Genes ras/genética , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Mutação/genética , Proteína Oncogênica p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Adenocarcinoma/induzido quimicamente , Adenocarcinoma/genética , Animais , Carcinógenos/toxicidade , Carcinoma Pulmonar de Células não Pequenas/induzido quimicamente , Carcinoma Pulmonar de Células não Pequenas/genética , Variações do Número de Cópias de DNA/genética , Progressão da Doença , Feminino , Instabilidade Genômica/genética , Mutação em Linhagem Germinativa/genética , Humanos , Masculino , Metilnitrosoureia/toxicidade , Camundongos , Modelos Genéticos , Mutação Puntual/genética , Uretana/toxicidade
12.
Genome Res ; 27(2): 300-309, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27986821

RESUMO

We are rapidly approaching the point where we have sequenced millions of human genomes. There is a pressing need for new data structures to store raw sequencing data and efficient algorithms for population scale analysis. Current reference-based data formats do not fully exploit the redundancy in population sequencing nor take advantage of shared genetic variation. In recent years, the Burrows-Wheeler transform (BWT) and FM-index have been widely employed as a full-text searchable index for read alignment and de novo assembly. We introduce the concept of a population BWT and use it to store and index the sequencing reads of 2705 samples from the 1000 Genomes Project. A key feature is that, as more genomes are added, identical read sequences are increasingly observed, and compression becomes more efficient. We assess the support in the 1000 Genomes read data for every base position of two human reference assembly versions, identifying that 3.2 Mbp with population support was lost in the transition from GRCh37 with 13.7 Mbp added to GRCh38. We show that the vast majority of variant alleles can be uniquely described by overlapping 31-mers and show how rapid and accurate SNP and indel genotyping can be carried out across the genomes in the population BWT. We use the population BWT to carry out nonreference queries to search for the presence of all known viral genomes and discover human T-lymphotropic virus 1 integrations in six samples in a recognized epidemiological distribution.


Assuntos
Genoma Humano/genética , Genômica , Alinhamento de Sequência/métodos , Sequenciamento Completo do Genoma/métodos , Alelos , Compressão de Dados , Genótipo , Humanos , Mutação INDEL/genética , Análise de Sequência de DNA , Software
13.
Bioinformatics ; 35(1): 119-121, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29931085

RESUMO

Summary: Standardized interfaces for efficiently accessing high-throughput sequencing data are a fundamental requirement for large-scale genomic data sharing. We have developed htsget, a protocol for secure, efficient and reliable access to sequencing read and variation data. We demonstrate four independent client and server implementations, and the results of a comprehensive interoperability demonstration. Availability and implementation: http://samtools.github.io/hts-specs/htsget.html. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Software , Genoma
14.
BMC Cancer ; 20(1): 600, 2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32600361

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a multifactorial disease resulting from both genetic predisposition and environmental factors including the gut microbiota (GM), but deciphering the influence of genetic variants, environmental variables, and interactions with the GM is exceedingly difficult. We previously observed significant differences in intestinal adenoma multiplicity between C57BL/6 J-ApcMin (B6-Min/J) from The Jackson Laboratory (JAX), and original founder strain C57BL/6JD-ApcMin (B6-Min/D) from the University of Wisconsin. METHODS: To resolve genetic and environmental interactions and determine their contributions we utilized two genetically inbred, independently isolated ApcMin mouse colonies that have been separated for over 20 generations. Whole genome sequencing was used to identify genetic variants unique to the two substrains. To determine the influence of genetic variants and the impact of differences in the GM on phenotypic variability, we used complex microbiota targeted rederivation to generate two Apc mutant mouse colonies harboring complex GMs from two different sources (GMJAX originally from JAX or GMHSD originally from Envigo), creating four ApcMin groups. Untargeted metabolomics were used to characterize shifts in the fecal metabolite profile based on genetic variation and differences in the GM. RESULTS: WGS revealed several thousand high quality variants unique to the two substrains. No homozygous variants were present in coding regions, with the vast majority of variants residing in noncoding regions. Host genetic divergence between Min/J and Min/D and the complex GM additively determined differential adenoma susceptibility. Untargeted metabolomics revealed that both genetic lineage and the GM collectively determined the fecal metabolite profile, and that each differentially regulates bile acid (BA) metabolism. Metabolomics pathway analysis facilitated identification of a functionally relevant private noncoding variant associated with the bile acid transporter Fatty acid binding protein 6 (Fabp6). Expression studies demonstrated differential expression of Fabp6 between Min/J and Min/D, and the variant correlates with adenoma multiplicity in backcrossed mice. CONCLUSIONS: We found that both genetic variation and differences in microbiota influences the quantitiative adenoma phenotype in ApcMin mice. These findings demonstrate how the use of metabolomics datasets can aid as a functional genomic tool, and furthermore illustrate the power of a multi-omics approach to dissect complex disease susceptibility of noncoding variants.


Assuntos
Adenoma/genética , Neoplasias Colorretais/genética , Microbioma Gastrointestinal/fisiologia , Predisposição Genética para Doença , Adenoma/metabolismo , Adenoma/microbiologia , Proteína da Polipose Adenomatosa do Colo/genética , Alelos , Animais , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/microbiologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Metabolômica , Metagenômica , Camundongos , Mutação
15.
EMBO J ; 34(11): 1509-22, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-25899817

RESUMO

DNA double-strand break (DSB) repair by homologous recombination (HR) requires 3' single-stranded DNA (ssDNA) generation by 5' DNA-end resection. During meiosis, yeast Sae2 cooperates with the nuclease Mre11 to remove covalently bound Spo11 from DSB termini, allowing resection and HR to ensue. Mitotic roles of Sae2 and Mre11 nuclease have remained enigmatic, however, since cells lacking these display modest resection defects but marked DNA damage hypersensitivities. By combining classic genetic suppressor screening with high-throughput DNA sequencing, we identify Mre11 mutations that strongly suppress DNA damage sensitivities of sae2∆ cells. By assessing the impacts of these mutations at the cellular, biochemical and structural levels, we propose that, in addition to promoting resection, a crucial role for Sae2 and Mre11 nuclease activity in mitotic DSB repair is to facilitate the removal of Mre11 from ssDNA associated with DSB ends. Thus, without Sae2 or Mre11 nuclease activity, Mre11 bound to partly processed DSBs impairs strand invasion and HR.


Assuntos
Reparo do DNA/fisiologia , DNA Fúngico/metabolismo , DNA de Cadeia Simples/metabolismo , Endonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , DNA Fúngico/genética , DNA de Cadeia Simples/genética , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Endonucleases/genética , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
16.
Nat Chem Biol ; 13(1): 12-14, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27820796

RESUMO

In model organisms, classical genetic screening via random mutagenesis provides key insights into the molecular bases of genetic interactions, helping to define synthetic lethality, synthetic viability and drug-resistance mechanisms. The limited genetic tractability of diploid mammalian cells, however, precludes this approach. Here, we demonstrate the feasibility of classical genetic screening in mammalian systems by using haploid cells, chemical mutagenesis and next-generation sequencing, providing a new tool to explore mammalian genetic interactions.


Assuntos
Testes Genéticos , Genoma/efeitos dos fármacos , Genoma/genética , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/metabolismo , Mutagênese/efeitos dos fármacos , Animais , Linhagem Celular , Camundongos
17.
Nature ; 477(7364): 326-9, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21921916

RESUMO

Structural variation is widespread in mammalian genomes and is an important cause of disease, but just how abundant and important structural variants (SVs) are in shaping phenotypic variation remains unclear. Without knowing how many SVs there are, and how they arise, it is difficult to discover what they do. Combining experimental with automated analyses, we identified 711,920 SVs at 281,243 sites in the genomes of thirteen classical and four wild-derived inbred mouse strains. The majority of SVs are less than 1 kilobase in size and 98% are deletions or insertions. The breakpoints of 160,000 SVs were mapped to base pair resolution, allowing us to infer that insertion of retrotransposons causes more than half of SVs. Yet, despite their prevalence, SVs are less likely than other sequence variants to cause gene expression or quantitative phenotypic variation. We identified 24 SVs that disrupt coding exons, acting as rare variants of large effect on gene function. One-third of the genes so affected have immunological functions.


Assuntos
Variação Genética/genética , Genoma/genética , Camundongos Endogâmicos/genética , Fenótipo , Animais , Pontos de Quebra do Cromossomo , Éxons/genética , Feminino , Expressão Gênica , Genômica , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos/imunologia , Mutagênese Insercional/genética , Locos de Características Quantitativas/genética , Ratos , Retroelementos/genética , Deleção de Sequência/genética
18.
Nature ; 477(7364): 289-94, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21921910

RESUMO

We report genome sequences of 17 inbred strains of laboratory mice and identify almost ten times more variants than previously known. We use these genomes to explore the phylogenetic history of the laboratory mouse and to examine the functional consequences of allele-specific variation on transcript abundance, revealing that at least 12% of transcripts show a significant tissue-specific expression bias. By identifying candidate functional variants at 718 quantitative trait loci we show that the molecular nature of functional variants and their position relative to genes vary according to the effect size of the locus. These sequences provide a starting point for a new era in the functional analysis of a key model organism.


Assuntos
Regulação da Expressão Gênica/genética , Variação Genética/genética , Genoma/genética , Camundongos Endogâmicos/genética , Camundongos/genética , Fenótipo , Alelos , Animais , Animais de Laboratório/genética , Genômica , Camundongos/classificação , Camundongos Endogâmicos C57BL/genética , Filogenia , Locos de Características Quantitativas/genética
19.
Genome Res ; 23(8): 1329-38, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23604024

RESUMO

Commonly used classical inbred mouse strains have mosaic genomes with sequences from different subspecific origins. Their genomes are derived predominantly from the Western European subspecies Mus musculus domesticus, with the remaining sequences derived mostly from the Japanese subspecies Mus musculus molossinus. However, it remains unknown how this intersubspecific genome introgression occurred during the establishment of classical inbred strains. In this study, we resequenced the genomes of two M. m. molossinus-derived inbred strains, MSM/Ms and JF1/Ms. MSM/Ms originated from Japanese wild mice, and the ancestry of JF1/Ms was originally found in Europe and then transferred to Japan. We compared the characteristics of these sequences to those of the C57BL/6J reference sequence and the recent data sets from the resequencing of 17 inbred strains in the Mouse Genome Project (MGP), and the results unequivocally show that genome introgression from M. m. molossinus into M. m. domesticus provided the primary framework for the mosaic genomes of classical inbred strains. Furthermore, the genomes of C57BL/6J and other classical inbred strains have long consecutive segments with extremely high similarity (>99.998%) to the JF1/Ms strain. In the early 20th century, Japanese waltzing mice with a morphological phenotype resembling that of JF1/Ms mice were often crossed with European fancy mice for early studies of "Mendelism," which suggests that the ancestor of the extant JF1/Ms strain provided the origin of the M. m. molossinus genome in classical inbred strains and largely contributed to its intersubspecific genome diversity.


Assuntos
Camundongos Endogâmicos C57BL/genética , Mosaicismo , Animais , Genoma , Genótipo , Endogamia , Camundongos , Dados de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
20.
Eukaryot Cell ; 14(9): 941-57, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26150413

RESUMO

Mechanistic studies on gliotoxin biosynthesis and self-protection in Aspergillus fumigatus, both of which require the gliotoxin oxidoreductase GliT, have revealed a rich landscape of highly novel biochemistries, yet key aspects of this complex molecular architecture remain obscure. Here we show that an A. fumigatus ΔgliA strain is completely deficient in gliotoxin secretion but still retains the ability to efflux bisdethiobis(methylthio)gliotoxin (BmGT). This correlates with a significant increase in sensitivity to exogenous gliotoxin because gliotoxin trapped inside the cell leads to (i) activation of the gli cluster, as disabling gli cluster activation, via gliZ deletion, attenuates the sensitivity of an A. fumigatus ΔgliT strain to gliotoxin, thus implicating cluster activation as a factor in gliotoxin sensitivity, and (ii) increased methylation activity due to excess substrate (dithiol gliotoxin) for the gliotoxin bis-thiomethyltransferase GtmA. Intracellular dithiol gliotoxin is oxidized by GliT and subsequently effluxed by GliA. In the absence of GliA, gliotoxin persists in the cell and is converted to BmGT, with levels significantly higher than those in the wild type. Similarly, in the ΔgliT strain, gliotoxin oxidation is impeded, and methylation occurs unchecked, leading to significant S-adenosylmethionine (SAM) depletion and S-adenosylhomocysteine (SAH) overproduction. This in turn significantly contributes to the observed hypersensitivity of gliT-deficient A. fumigatus to gliotoxin. Our observations reveal a key role for GliT in preventing dysregulation of the methyl/methionine cycle to control intracellular SAM and SAH homeostasis during gliotoxin biosynthesis and exposure. Moreover, we reveal attenuated GliT abundance in the A. fumigatus ΔgliK strain, but not the ΔgliG strain, following exposure to gliotoxin, correlating with relative sensitivities. Overall, we illuminate new systems interactions that have evolved in gliotoxin-producing, compared to gliotoxin-naive, fungi to facilitate their cellular presence.


Assuntos
Aspergillus fumigatus/metabolismo , Gliotoxina/biossíntese , Metionina/metabolismo , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Gliotoxina/toxicidade , Metilação , S-Adenosil-Homocisteína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA