Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 38(20): e101266, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31544965

RESUMO

Inflammasomes are cytosolic protein complexes, which orchestrate the maturation of active IL-1ß by proteolytic cleavage via caspase-1. Although many principles of inflammasome activation have been described, mechanisms that limit inflammasome-dependent immune responses remain poorly defined. Here, we show that the thiol-specific peroxidase peroxiredoxin-4 (Prdx4) directly regulates IL-1ß generation by interfering with caspase-1 activity. We demonstrate that caspase-1 and Prdx4 form a redox-sensitive regulatory complex via caspase-1 cysteine 397 that leads to caspase-1 sequestration and inactivation. Mice lacking Prdx4 show an increased susceptibility to LPS-induced septic shock. This effect was phenocopied in mice carrying a conditional deletion of Prdx4 in the myeloid lineage (Prdx4-ΔLysMCre). Strikingly, we demonstrate that Prdx4 co-localizes with inflammasome components in extracellular vesicles (EVs) from inflammasome-activated macrophages. Purified EVs are able to transmit a robust IL-1ß-dependent inflammatory response in vitro and also in recipient mice in vivo. Loss of Prdx4 boosts the pro-inflammatory potential of EVs. These findings identify Prdx4 as a critical regulator of inflammasome activity and provide new insights into remote cell-to-cell communication function of inflammasomes via macrophage-derived EVs.


Assuntos
Caspase 1/metabolismo , Vesículas Extracelulares/metabolismo , Inflamassomos/imunologia , Macrófagos/imunologia , Peroxirredoxinas/fisiologia , Choque Séptico/prevenção & controle , Animais , Caspase 1/genética , Citocinas/metabolismo , Feminino , Inflamassomos/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Choque Séptico/induzido quimicamente , Choque Séptico/imunologia , Choque Séptico/patologia , Transdução de Sinais
2.
Gastroenterology ; 159(4): 1357-1374.e10, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32673694

RESUMO

BACKGROUND & AIMS: Excess and unresolved endoplasmic reticulum (ER) stress in intestinal epithelial cells (IECs) promotes intestinal inflammation. Activating transcription factor 6 (ATF6) is one of the signaling mediators of ER stress. We studied the pathways that regulate ATF6 and its role for inflammation in IECs. METHODS: We performed an RNA interference screen, using 23,349 unique small interfering RNAs targeting 7783 genes and a luciferase reporter controlled by an ATF6-dependent ERSE (ER stress-response element) promoter, to identify proteins that activate or inhibit the ATF6 signaling pathway in HEK293 cells. To validate the screening results, intestinal epithelial cell lines (Caco-2 cells) were transfected with small interfering RNAs or with a plasmid overexpressing a constitutively active form of ATF6. Caco-2 cells with a CRISPR-mediated disruption of autophagy related 16 like 1 gene (ATG16L1) were used to study the effect of ATF6 on ER stress in autophagy-deficient cells. We also studied intestinal organoids derived from mice that overexpress constitutively active ATF6, from mice with deletion of the autophagy related 16 like 1 or X-Box binding protein 1 gene in IECs (Atg16l1ΔIEC or Xbp1ΔIEC, which both develop spontaneous ileitis), from patients with Crohn's disease (CD) and healthy individuals (controls). Cells and organoids were incubated with tunicamycin to induce ER stress and/or chemical inhibitors of newly identified activator proteins of ATF6 signaling, and analyzed by real-time polymerase chain reaction and immunoblots. Atg16l1ΔIEC and control (Atg16l1fl/fl) mice were given intraperitoneal injections of tunicamycin and were treated with chemical inhibitors of ATF6 activating proteins. RESULTS: We identified and validated 15 suppressors and 7 activators of the ATF6 signaling pathway; activators included the regulatory subunit of casein kinase 2 (CSNK2B) and acyl-CoA synthetase long chain family member 1 (ACSL1). Knockdown or chemical inhibition of CSNK2B and ACSL1 in Caco-2 cells reduced activity of the ATF6-dependent ERSE reporter gene, diminished transcription of the ATF6 target genes HSP90B1 and HSPA5 and reduced NF-κB reporter gene activation on tunicamycin stimulation. Atg16l1ΔIEC and or Xbp1ΔIEC organoids showed increased expression of ATF6 and its target genes. Inhibitors of ACSL1 or CSNK2B prevented activation of ATF6 and reduced CXCL1 and tumor necrosis factor (TNF) expression in these organoids on induction of ER stress with tunicamycin. Injection of mice with inhibitors of ACSL1 or CSNK2B significantly reduced tunicamycin-mediated intestinal inflammation and IEC death and expression of CXCL1 and TNF in Atg16l1ΔIEC mice. Purified ileal IECs from patients with CD had higher levels of ATF6, CSNK2B, and HSPA5 messenger RNAs than controls; early-passage organoids from patients with active CD show increased levels of activated ATF6 protein, incubation of these organoids with inhibitors of ACSL1 or CSNK2B reduced transcription of ATF6 target genes, including TNF. CONCLUSIONS: Ileal IECs from patients with CD have higher levels of activated ATF6, which is regulated by CSNK2B and HSPA5. ATF6 increases expression of TNF and other inflammatory cytokines in response to ER stress in these cells and in organoids from Atg16l1ΔIEC and Xbp1ΔIEC mice. Strategies to inhibit the ATF6 signaling pathway might be developed for treatment of inflammatory bowel diseases.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Células Epiteliais/patologia , Íleo/metabolismo , Íleo/patologia , Doenças Inflamatórias Intestinais/metabolismo , Animais , Autofagia , Células CACO-2 , Técnicas de Cultura de Células , Chaperona BiP do Retículo Endoplasmático , Células HEK293 , Humanos , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/patologia , Camundongos , Transdução de Sinais
3.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806053

RESUMO

Extracellular vesicles (EVs) serve as trafficking vehicles and intercellular communication tools. Their cargo molecules directly reflect characteristics of their parental cell. This includes information on cell identity and specific cellular conditions, ranging from normal to pathological states. In cancer, the content of EVs derived from tumor cells is altered and can induce oncogenic reprogramming of target cells. As a result, tumor-derived EVs compromise antitumor immunity and promote cancer progression and spreading. However, this pro-oncogenic phenotype is constantly being challenged by EVs derived from the local tumor microenvironment and from remote sources. Here, we summarize the role of EVs in the tumor-immune cross-talk that includes, but is not limited to, immune cells in the tumor microenvironment. We discuss the potential of remotely released EVs from the microbiome and during physical activity to shape the tumor-immune cross-talk, directly or indirectly, and confer antitumor activity. We further discuss the role of proinflammatory EVs in the temporal development of the tumor-immune interactions and their potential use for cancer diagnostics.


Assuntos
Vesículas Extracelulares/imunologia , Neoplasias/imunologia , Microambiente Tumoral , Animais , Linfócitos B/metabolismo , Comunicação Celular , Proliferação de Células , Humanos , Sistema Imunitário , Imunidade Inata , Inflamação , Células Matadoras Naturais/metabolismo , Biópsia Líquida , Camundongos , Fenótipo , Linfócitos T/metabolismo
4.
Gastroenterology ; 156(1): 145-159.e19, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30273559

RESUMO

BACKGROUND & AIMS: RNase H2 is a holoenzyme, composed of 3 subunits (ribonuclease H2 subunits A, B, and C), that cleaves RNA:DNA hybrids and removes mis-incorporated ribonucleotides from genomic DNA through ribonucleotide excision repair. Ribonucleotide incorporation by eukaryotic DNA polymerases occurs during every round of genome duplication and produces the most frequent type of naturally occurring DNA lesion. We investigated whether intestinal epithelial proliferation requires RNase H2 function and whether RNase H2 activity is disrupted during intestinal carcinogenesis. METHODS: We generated mice with epithelial-specific deletion of ribonuclease H2 subunit B (H2bΔIEC) and mice that also had deletion of tumor-suppressor protein p53 (H2b/p53ΔIEC); we compared phenotypes with those of littermate H2bfl/fl or H2b/p53fl/fl (control) mice at young and old ages. Intestinal tissues were collected and analyzed by histology. We isolated epithelial cells, generated intestinal organoids, and performed RNA sequence analyses. Mutation signatures of spontaneous tumors from H2b/p53ΔIEC mice were characterized by exome sequencing. We collected colorectal tumor specimens from 467 patients, measured levels of ribonuclease H2 subunit B, and associated these with patient survival times and transcriptome data. RESULTS: The H2bΔIEC mice had DNA damage to intestinal epithelial cells and proliferative exhaustion of the intestinal stem cell compartment compared with controls and H2b/p53ΔIEC mice. However, H2b/p53ΔIEC mice spontaneously developed small intestine and colon carcinomas. DNA from these tumors contained T>G base substitutions at GTG trinucleotides. Analyses of transcriptomes of human colorectal tumors associated lower levels of RNase H2 with shorter survival times. CONCLUSIONS: In analyses of mice with disruption of the ribonuclease H2 subunit B gene and colorectal tumors from patients, we provide evidence that RNase H2 functions as a colorectal tumor suppressor. H2b/p53ΔIEC mice can be used to study the roles of RNase H2 in tissue-specific carcinogenesis.


Assuntos
Transformação Celular Neoplásica/metabolismo , Células Epiteliais/enzimologia , Instabilidade Genômica , Neoplasias Intestinais/prevenção & controle , Intestino Delgado/enzimologia , Ribonuclease H/metabolismo , Animais , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Colite/induzido quimicamente , Colite/enzimologia , Colite/genética , Colite/patologia , Dano ao DNA , Sulfato de Dextrana , Modelos Animais de Doenças , Células Epiteliais/patologia , Feminino , Predisposição Genética para Doença , Humanos , Neoplasias Intestinais/enzimologia , Neoplasias Intestinais/genética , Neoplasias Intestinais/patologia , Intestino Delgado/patologia , Masculino , Camundongos Knockout , Fenótipo , Ribonuclease H/deficiência , Ribonuclease H/genética , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética
5.
Nature ; 487(7408): 477-81, 2012 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-22837003

RESUMO

Malnutrition affects up to one billion people in the world and is a major cause of mortality. In many cases, malnutrition is associated with diarrhoea and intestinal inflammation, further contributing to morbidity and death. The mechanisms by which unbalanced dietary nutrients affect intestinal homeostasis are largely unknown. Here we report that deficiency in murine angiotensin I converting enzyme (peptidyl-dipeptidase A) 2 (Ace2), which encodes a key regulatory enzyme of the renin-angiotensin system (RAS), results in highly increased susceptibility to intestinal inflammation induced by epithelial damage. The RAS is known to be involved in acute lung failure, cardiovascular functions and SARS infections. Mechanistically, ACE2 has a RAS-independent function, regulating intestinal amino acid homeostasis, expression of antimicrobial peptides, and the ecology of the gut microbiome. Transplantation of the altered microbiota from Ace2 mutant mice into germ-free wild-type hosts was able to transmit the increased propensity to develop severe colitis. ACE2-dependent changes in epithelial immunity and the gut microbiota can be directly regulated by the dietary amino acid tryptophan. Our results identify ACE2 as a key regulator of dietary amino acid homeostasis, innate immunity, gut microbial ecology, and transmissible susceptibility to colitis. These results provide a molecular explanation for how amino acid malnutrition can cause intestinal inflammation and diarrhoea.


Assuntos
Colite/etiologia , Colite/microbiologia , Intestinos/microbiologia , Desnutrição/complicações , Metagenoma , Peptidil Dipeptidase A/metabolismo , Triptofano/metabolismo , Enzima de Conversão de Angiotensina 2 , Animais , Biocatálise , Colite/tratamento farmacológico , Colite/patologia , Sulfato de Dextrana , Diarreia/complicações , Proteínas Alimentares/metabolismo , Proteínas Alimentares/farmacologia , Feminino , Deleção de Genes , Predisposição Genética para Doença , Vida Livre de Germes , Homeostase , Imunidade Inata , Intestinos/patologia , Masculino , Desnutrição/metabolismo , Camundongos , Modelos Biológicos , Niacinamida/metabolismo , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Peptidil Dipeptidase A/deficiência , Peptidil Dipeptidase A/genética , Sistema Renina-Angiotensina/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Ácido Trinitrobenzenossulfônico , Triptofano/farmacologia , Triptofano/uso terapêutico
6.
J Allergy Clin Immunol ; 138(2): 421-31, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26906082

RESUMO

BACKGROUND: Asthma is a disease affecting more boys than girls in childhood and more women than men in adulthood. The mechanisms behind these sex-specific differences are not yet understood. OBJECTIVE: We analyzed whether and how genetic factors contribute to sex-specific predisposition to childhood-onset asthma. METHODS: Interactions between sex and polymorphisms on childhood asthma risk were evaluated in the Multicentre Asthma Genetics in Childhood Study (MAGICS)/Phase II International Study of Asthma and Allergies in Childhood (ISAAC II) population on a genome-wide level, and findings were validated in independent populations. Genetic fine mapping of sex-specific asthma association signals was performed, and putatively causal polymorphisms were characterized in vitro by using electrophoretic mobility shift and luciferase activity assays. Gene and protein expression of the identified gene doublesex and mab-3 related transcription factor 1 (DMRT1) were measured in different human tissues by using quantitative real-time PCR and immunohistochemistry. RESULTS: Polymorphisms in the testis-associated gene DMRT1 displayed interactions with sex on asthma status in a population of primarily clinically defined asthmatic children and nonasthmatic control subjects (lowest P = 5.21 × 10(-6)). Replication of this interaction was successful in 2 childhood populations clinically assessed for asthma but showed heterogeneous results in other population-based samples. Polymorphism rs3812523 located in the putative DMRT1 promoter was associated with allele-specific changes in transcription factor binding and promoter activity in vitro. DMRT1 expression was observed not only in the testis but also in lung macrophages. CONCLUSION: DMRT1 might influence sex-specific patterns of childhood asthma, and its expression in testis tissue and lung macrophages suggests a potential involvement in hormone or immune cell regulation.


Assuntos
Asma/genética , Expressão Gênica , Predisposição Genética para Doença , Macrófagos/metabolismo , Testículo/metabolismo , Fatores de Transcrição/genética , Idade de Início , Alelos , Asma/imunologia , Sítios de Ligação , Criança , Mapeamento Cromossômico , Feminino , Loci Gênicos , Estudo de Associação Genômica Ampla , Humanos , Imuno-Histoquímica , Desequilíbrio de Ligação , Macrófagos/imunologia , Masculino , Razão de Chances , Especificidade de Órgãos/genética , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Fatores Sexuais , Fatores de Transcrição/metabolismo
7.
Proc Natl Acad Sci U S A ; 109(52): 21426-31, 2012 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-23213202

RESUMO

The intracellular nucleotide-binding oligomerization domain-2 (NOD2) receptor detects bacteria-derived muramyl dipeptide (MDP) and activates the transcription factor NF-κB. Here we describe the regulatome of NOD2 signaling using a systematic RNAi screen. Using three consecutive screens, we identified a set of 20 positive NF-κB regulators including the known pathway members RIPK2, RELA, and BIRC4 (XIAP) as well as FRMPD2 (FERM and PDZ domain-containing 2). FRMPD2 interacts with NOD2 via leucine-rich repeats and forms a complex with the membrane-associated protein ERBB2IP. We demonstrate that FRMPD2 spatially assembles the NOD2-signaling complex, hereby restricting NOD2-mediated immune responses to the basolateral compartment of polarized intestinal epithelial cells. We show that genetic truncation of the NOD2 leucine-rich repeat domain, which is associated with Crohn disease, impairs the interaction with FRMPD2, and that intestinal inflammation leads to down-regulation of FRMPD2. These results suggest a structural mechanism for how polarity of epithelial cells acts on intestinal NOD-like receptor signaling to mediate spatial specificity of bacterial recognition and control of immune responses.


Assuntos
Acetilmuramil-Alanil-Isoglutamina/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Interferência de RNA , Transdução de Sinais , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Células CACO-2 , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Enterócitos/efeitos dos fármacos , Enterócitos/metabolismo , Células HEK293 , Humanos , Modelos Biológicos , Proteínas Mutantes/metabolismo , NF-kappa B/metabolismo , Proteína Adaptadora de Sinalização NOD2/química , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , RNA Interferente Pequeno/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos , Especificidade por Substrato/efeitos dos fármacos , Proteínas de Junções Íntimas/química
8.
Gastroenterology ; 145(2): 339-47, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23624108

RESUMO

BACKGROUND & AIMS: Genome-wide association studies (GWAS) have identified 140 Crohn's disease (CD) susceptibility loci. For most loci, the variants that cause disease are not known and the genes affected by these variants have not been identified. We aimed to identify variants that cause CD through detailed sequencing, genetic association, expression, and functional studies. METHODS: We sequenced whole exomes of 42 unrelated subjects with CD and 5 healthy subjects (controls) and then filtered single nucleotide variants by incorporating association results from meta-analyses of CD GWAS and in silico mutation effect prediction algorithms. We then genotyped 9348 subjects with CD, 2868 subjects with ulcerative colitis, and 14,567 control subjects and associated variants analyzed in functional studies using materials from subjects and controls and in vitro model systems. RESULTS: We identified rare missense mutations in PR domain-containing 1 (PRDM1) and associated these with CD. These mutations increased proliferation of T cells and secretion of cytokines on activation and increased expression of the adhesion molecule L-selectin. A common CD risk allele, identified in GWAS, correlated with reduced expression of PRDM1 in ileal biopsy specimens and peripheral blood mononuclear cells (combined P = 1.6 × 10(-8)). We identified an association between CD and a common missense variant, Val248Ala, in nuclear domain 10 protein 52 (NDP52) (P = 4.83 × 10(-9)). We found that this variant impairs the regulatory functions of NDP52 to inhibit nuclear factor κB activation of genes that regulate inflammation and affect the stability of proteins in Toll-like receptor pathways. CONCLUSIONS: We have extended the results of GWAS and provide evidence that variants in PRDM1 and NDP52 determine susceptibility to CD. PRDM1 maps adjacent to a CD interval identified in GWAS and encodes a transcription factor expressed by T and B cells. NDP52 is an adaptor protein that functions in selective autophagy of intracellular bacteria and signaling molecules, supporting the role of autophagy in the pathogenesis of CD.


Assuntos
Colite Ulcerativa/genética , Doença de Crohn/genética , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Adolescente , Adulto , Estudos de Casos e Controles , Exoma/genética , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único , Fator 1 de Ligação ao Domínio I Regulador Positivo , Locos de Características Quantitativas , Adulto Jovem
9.
Gut ; 62(4): 520-30, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22442160

RESUMO

OBJECTIVE: Cathepsin K is a lysosomal cysteine protease that has pleiotropic roles in bone resorption, arthritis, atherosclerosis, blood pressure regulation, obesity and cancer. Recently, it was demonstrated that cathepsin K-deficient (Ctsk(-/-) ) mice are less susceptible to experimental autoimmune arthritis and encephalomyelitis, which implies a functional role for cathepsin K in chronic inflammatory responses. Here, the authors address the relevance of cathepsin K in the intestinal immune response during chronic intestinal inflammation. DESIGN: Chronic colitis was induced by administration of 2% dextran sodium sulphate (DSS) in distilled water. Mice were assessed for disease severity, histopathology and endoscopic appearance. Furthermore, DSS-exposed Ctsk(-/-) mice were treated by rectal administration of recombinant cathepsin K. Intestinal microflora was assessed by real-time PCR and 16srDNA molecular fingerprinting of ileal and colonic mucosal and faecal samples. RESULTS: Using Ctsk(-/-) mice, the authors demonstrate a protective role of cathepsin K against chronic DSS colitis. Dissecting the underlying mechanisms the authors found cathepsin K to be present in intestinal goblet cells and the mucin layer. Furthermore, a direct cathepsin K-mediated bactericidal activity against intestinal bacteria was demonstrated, which potentially explains the alteration of intestinal microbiota observed in Ctsk(-/-) mice. Rectal administration of recombinant cathepsin K in DSS-treated Ctsk(-/-) mice ameliorates the severity of intestinal inflammation. CONCLUSION: These data identify extracellular cathepsin K as an intestinal antibacterial factor with anti-inflammatory potential and suggest that topical administration of cathepsin K might provide a therapeutic option for patients with inflammatory bowel disease.


Assuntos
Catepsina K/farmacologia , Colite/tratamento farmacológico , Colite/microbiologia , Animais , Western Blotting , Catepsina K/metabolismo , Colite/induzido quimicamente , Colite/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Endoscopia Gastrointestinal , Ensaio de Imunoadsorção Enzimática , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real
10.
J Immunol ; 186(7): 4027-38, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21335489

RESUMO

NOD2 is an intracellular receptor for the bacterial cell wall component muramyl dipeptide (MDP), and variants of NOD2 are associated with chronic inflammatory diseases of barrier organs (e.g., Crohn's disease, asthma, and atopic eczema). It is known that activation of NOD2 induces a variety of inflammatory and antibacterial factors. The exact transcriptomal signatures that define the cellular programs downstream of NOD2 activation and the influence of the Crohn-associated variant L1007fsinsC are yet to be defined. To describe the MDP-induced activation program, we analyzed the transcriptomal reactions of isogenic HEK293 cells expressing NOD2(wt) or NOD2(L1007fsinsC) to stimulation with MDP. Importantly, a clear loss of function could be observed in the cells carrying the Crohn-associated variant L1007fsinsC, whereas the NOD2(wt) cells showed differential regulation of growth factors, chemokines, and several antagonists of NF-κB (e.g., TNFAIP3 [A20] and IER3). This genotype-dependent regulation pattern was confirmed in primary human myelomonocytic cells. The influence of TNFAIP3 and IER3 in the context of NOD2 signaling was characterized, and we could validate the predicted role as inhibitors of NOD2-induced NF-κB activation. We show that IER3 impairs the protective effect of NOD2(wt) against bacterial cytoinvasion. These results further our understanding of NOD2 as a first-line defense molecule and emphasize the importance of simultaneous upregulation of counterregulatory anti-inflammatory factors as an integral part of the NOD2-induced cellular program. Lack of these regulatory events due to the L1007fsinsC variant may pivotally contribute to the induction and perpetuation of chronic inflammation.


Assuntos
Doença de Crohn/imunologia , Regulação para Baixo/imunologia , Mutação da Fase de Leitura/imunologia , Perfilação da Expressão Gênica , Genoma Humano , Proteína Adaptadora de Sinalização NOD2/deficiência , Animais , Linhagem Celular Tumoral , Células Cultivadas , Doença de Crohn/genética , Doença de Crohn/patologia , Regulação para Baixo/genética , Perfilação da Expressão Gênica/métodos , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/citologia , Monócitos/imunologia , Monócitos/patologia , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/fisiologia
11.
Am J Respir Crit Care Med ; 186(9): 877-85, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22837380

RESUMO

RATIONALE: Sarcoidosis is a complex inflammatory disease with a heterogeneous clinical picture. Among others, an acute and chronic clinical course can be distinguished, for which specific genetic risk factors are known. OBJECTIVES: To identify additional risk loci for sarcoidosis and its acute and chronic subforms, we analyzed imputed data from a genome-wide association scan for these phenotypes. METHODS: After quality control, the genome-wide association scan comprised nearly 1.3 million imputed single-nucleotide polymorphisms based on an Affymetrix 6.0 Gene Chip dataset of 564 German sarcoidosis cases, including 176 acute and 354 chronic cases and 1,575 control subjects. MEASUREMENTS AND MAIN RESULTS: We identified chromosome 11q13.1 (rs479777) as a novel locus influencing susceptibility to sarcoidosis with genome-wide significance. The marker was significantly associated in three distinct German case-control populations and in an additional German family sample with odds ratios ranging from 0.67 to 0.77. This finding was further replicated in two independent European case-control populations from the Czech Republic (odds ratio, 0.75) and from Sweden (odds ratio, 0.79). In a meta-analysis of the included European case-control samples the marker yielded a P value of 2.68 × 10(-18). The locus was previously reported to be associated with Crohn disease, psoriasis, alopecia areata, and leprosy. For sarcoidosis, fine-mapping and expression analysis suggest KCNK4, PRDX5, PCLB3, and most promising CCDC88B as candidates for the underlying risk gene in the associated region. CONCLUSIONS: This study provides striking evidence for association of chromosome 11q13.1 with sarcoidosis in Europeans, and thus identified a further genetic risk locus shared by sarcoidosis, Crohn disease and psoriasis.


Assuntos
Proteínas de Transporte/genética , Doença de Crohn/genética , Sarcoidose/genética , Doença Aguda , Estudos de Casos e Controles , Mapeamento Cromossômico , Doença Crônica , República Tcheca , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Alemanha , Humanos , Polimorfismo de Nucleotídeo Único , Suécia
12.
G3 (Bethesda) ; 13(1)2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36413074

RESUMO

Viruses and bacteriophages have a strong impact on intestinal barrier function and the composition and functional properties of commensal bacterial communities. Shifts of the fecal virome might be involved in human diseases, including inflammatory bowel disease (IBD). Loss-of-function variants in the nucleotide-binding oligomerization domain-containing protein 2 (NOD2) gene are associated with an increased risk of developing Crohn's disease, a subtype of human chronic IBD, where specific changes in fecal viral communities have also been described. To improve our understanding of the dynamics of the enteric virome, we longitudinally characterized the virome in fecal samples from wild-type C57BL/6J and NOD2 knock-out mice in response to an antibiotic perturbation. Sequencing of virus-like particles demonstrated both a high diversity and high interindividual variation of the murine fecal virome composed of eukaryotic viruses and bacteriophages. Antibiotics had a significant impact on the fecal murine virome. Viral community composition only partially recovered in the observation period (10 weeks after cessation of antibiotics) irrespective of genotype. However, compositional shifts in the virome and bacteriome were highly correlated, suggesting that the loss of specific phages may contribute to prolonged dysregulation of the bacterial community composition. We suggest that therapeutic interference with the fecal virome may represent a novel approach in microbiota-targeted therapies.


Assuntos
Bacteriófagos , Doenças Inflamatórias Intestinais , Vírus , Animais , Humanos , Camundongos , Antibacterianos/farmacologia , Camundongos Endogâmicos C57BL , Vírus/genética , Bacteriófagos/genética , Bactérias/genética
13.
Leukemia ; 37(1): 134-142, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36411356

RESUMO

Acute myeloid leukemia (AML) is characterized by complex molecular alterations and driver mutations. Elderly patients show increased frequencies of IDH mutations with high chemoresistance and relapse rates despite recent therapeutic advances. Besides being associated with global promoter hypermethylation, IDH1 mutation facilitated changes in 3D DNA-conformation by CTCF-anchor methylation and upregulated oncogene expression in glioma, correlating with poor prognosis. Here, we investigated the role of IDH1 p.R132H mutation in altering 3D DNA-architecture and subsequent oncogene activation in AML. Using public RNA-Seq data, we identified upregulation of tyrosine kinase PDGFRA in IDH1-mutant patients, correlating with poor prognosis. DNA methylation analysis identified CpG hypermethylation within a CTCF-anchor upstream of PDGFRA in IDH1-mutant patients. Increased PDGFRA expression, PDGFRA-CTCF methylation and decreased CTCF binding were confirmed in AML CRISPR cells with heterozygous IDH1 p.R132H mutation and upon exogenous 2-HG treatment. IDH1-mutant cells showed higher sensitivity to tyrosine kinase inhibitor dasatinib, which was supported by reduced blast count in a patient with refractory IDH1-mutant AML after dasatinib treatment. Our data illustrate that IDH1 p.R132H mutation leads to CTCF hypermethylation, disrupting DNA-looping and insulation of PDGFRA, resulting in PDGFRA upregulation in IDH1-mutant AML. Treatment with dasatinib may offer a novel treatment strategy for IDH1-mutant AML.


Assuntos
Isocitrato Desidrogenase , Leucemia Mieloide Aguda , Humanos , Idoso , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Dasatinibe , Mutação , Oncogenes , Leucemia Mieloide Aguda/genética , Carcinogênese/genética
14.
J Immunol ; 184(4): 1990-2000, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20061403

RESUMO

Nucleotide-binding oligomerization domain-like receptors (NLRs) are a group of intracellular proteins that mediate recognition of pathogen-associated molecular patterns or other cytosolic danger signals. Mutations in NLR genes have been linked to a variety of inflammatory diseases, underscoring their pivotal role in host defense and immunity. This report describes the genomic organization and regulation of the human NLR family member NLRC5 and aspects of cellular function of the encoded protein. We have analyzed the tissue-specific expression of NLRC5 and have characterized regulatory elements in the NLRC5 promoter region that are responsive to IFN-gamma. We show that NLRC5 is upregulated in human fibroblasts postinfection with CMV and demonstrate the role of a JAK/STAT-mediated autocrine signaling loop involving IFN-gamma. We demonstrate that overexpression and enforced oligomerization of NLRC5 protein results in activation of the IFN-responsive regulatory promoter elements IFN-gamma activation sequence and IFN-specific response element and upregulation of antiviral target genes (e.g., IFN-alpha, OAS1, and PRKRIR). Finally, we demonstrate the effect of small interfering RNA-mediated knockdown of NLRC5 on a target gene level in the context of viral infection. We conclude that NLRC5 may represent a molecular switch of IFN-gamma activation sequence/IFN-specific response element signaling pathways contributing to antiviral defense mechanisms.


Assuntos
Citomegalovirus/imunologia , Interferon gama/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Oligodesoxirribonucleotídeos/metabolismo , Sequência de Aminoácidos , Células CACO-2 , Linhagem Celular Tumoral , Células Cultivadas , Fibroblastos/imunologia , Fibroblastos/virologia , Células HT29 , Células HeLa , Humanos , Interferon gama/química , Interferon gama/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/isolamento & purificação , Dados de Sequência Molecular , Oligodesoxirribonucleotídeos/genética , Ligação Proteica/imunologia , Estrutura Terciária de Proteína/genética , Elementos de Resposta/imunologia , Transdução de Sinais/imunologia
15.
J Biol Chem ; 285(26): 19921-6, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20385562

RESUMO

Caspase activating and recruitment domain 8 (CARD8) has been implicated as a co-regulator of several pro-inflammatory and apoptotic signaling pathways. In the present study, we demonstrate a specific modulation of NOD2-induced signaling by CARD8 in intestinal epithelial cells. We show that CARD8 physically interacts with NOD2 and inhibits nodosome assembly and subsequent signaling upon muramyl-dipeptide stimulation. Furthermore, CARD8 inhibits the direct bactericidal effect of NOD2 against intracellular infection by Listeria monocytogenes. Thus, CARD8 represents a novel molecular switch involved in the endogenous regulation of NOD2-dependent inflammatory processes in epithelial cells.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Colo/enzimologia , Proteínas de Neoplasias/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Transdução de Sinais/fisiologia , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Antibacterianos/farmacologia , Western Blotting , Proteínas Adaptadoras de Sinalização CARD/genética , Células CACO-2 , Linhagem Celular , Linhagem Celular Tumoral , Doença de Crohn/genética , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Perfilação da Expressão Gênica , Gentamicinas/farmacologia , Células HT29 , Células HeLa , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Espaço Intracelular/microbiologia , Listeria monocytogenes/crescimento & desenvolvimento , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Microscopia de Fluorescência , Proteínas de Neoplasias/genética , Proteína Adaptadora de Sinalização NOD2/genética , Ligação Proteica , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transfecção
16.
J Biol Chem ; 285(53): 41637-45, 2010 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-20959452

RESUMO

Chlamydia trachomatis infections cause severe and irreversible damage that can lead to infertility and blindness in both males and females. Following infection of epithelial cells, Chlamydia induces production of reactive oxygen species (ROS). Unconventionally, Chlamydiae use ROS to their advantage by activating caspase-1, which contributes to chlamydial growth. NLRX1, a member of the Nod-like receptor family that translocates to the mitochondria, can augment ROS production from the mitochondria following Shigella flexneri infections. However, in general, ROS can also be produced by membrane-bound NADPH oxidases. Given the importance of ROS-induced caspase-1 activation in growth of the chlamydial vacuole, we investigated the sources of ROS production in epithelial cells following infection with C. trachomatis. In this study, we provide evidence that basal levels of ROS are generated during chlamydial infection by NADPH oxidase, but ROS levels, regardless of their source, are enhanced by an NLRX1-dependent mechanism. Significantly, the presence of NLRX1 is required for optimal chlamydial growth.


Assuntos
Chlamydia trachomatis/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Espécies Reativas de Oxigênio , Animais , Caspase 1/metabolismo , Células HeLa , Humanos , Imunidade Inata , Lentivirus/metabolismo , Camundongos , Camundongos Transgênicos , NADPH Oxidases/química , RNA Interferente Pequeno/metabolismo , Shigella flexneri/metabolismo
17.
J Cell Sci ; 122(Pt 19): 3522-30, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19759286

RESUMO

Generation of microbicidal reactive oxygen species (ROS) is a pivotal protective component of the innate immune system in many eukaryotes. NOD (nucleotide oligomerisation domain containing protein)-like receptors (NLRs) have been implicated as phylogenetically ancient sensors of intracellular pathogens or endogenous danger signals. NOD2 recognizes the bacterial cell wall component muramyldipeptide leading to NFkappaB and MAPK activation via induced proximity signalling through the serine-threonine kinase RIP2. In addition to the subsequent induction of cytokines and antimicrobial peptides, NOD2 has been shown also to exert a direct antibacterial effect. Using a fluorescence-based ROS detection assay we demonstrate controlled ROS generation as an integral component of NOD2-induced signalling in epithelial cells. We demonstrate that the NAD(P)H oxidase family member DUOX2 is involved in NOD2-dependent ROS production. Coimmunoprecipitation and fluorescence microscopy were used to show that DUOX2 interacts and colocalizes with NOD2 at the plasma membrane. Moreover, simultaneous overexpression of NOD2 and DUOX2 was found to result in cooperative protection against bacterial cytoinvasion using the Listeria monocytogenes infection model. RNAi-based studies revealed that DUOX2 is required for the direct bactericidal properties of NOD2. Our results demonstrate a new role of ROS as effector molecules of protective cellular signalling in response to a defined danger signal carried out by a mammalian intracellular NLR system.


Assuntos
Listeriose/imunologia , NADPH Oxidases/imunologia , Proteína Adaptadora de Sinalização NOD2/imunologia , Espécies Reativas de Oxigênio/imunologia , Animais , Linhagem Celular , Células Cultivadas , Oxidases Duais , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Listeria monocytogenes/fisiologia , Listeriose/genética , Listeriose/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidases/genética , Proteína Adaptadora de Sinalização NOD2/genética , Ligação Proteica
19.
Cell Mol Gastroenterol Hepatol ; 10(2): 365-389, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32289499

RESUMO

BACKGROUND & AIMS: Loss-of-function variants in nucleotide-binding oligomerization domain-containing protein 2 (NOD2) impair the recognition of the bacterial cell wall component muramyl-dipeptide and are associated with an increased risk for developing Crohn's disease. Likewise, exposure to antibiotics increases the individual risk for developing inflammatory bowel disease. Here, we studied the long-term impact of NOD2 on the ability of the gut bacterial and fungal microbiota to recover after antibiotic treatment. METHODS: Two cohorts of 20-week-old and 52-week-old wild-type (WT) C57BL/6J and NOD2 knockout (Nod2-KO) mice were treated with broad-spectrum antibiotics and fecal samples were collected to investigate temporal dynamics of the intestinal microbiota (bacteria and fungi) using 16S ribosomal RNA and internal transcribed spacer 1 sequencing. In addition, 2 sets of germ-free WT mice were colonized with either WT or Nod2-KO after antibiotic donor microbiota and the severity of intestinal inflammation was monitored in the colonized mice. RESULTS: Antibiotic exposure caused long-term shifts in the bacterial and fungal community composition. Genetic ablation of NOD2 was associated with delayed body weight gain after antibiotic treatment and an impaired recovery of the bacterial gut microbiota. Transfer of the postantibiotic fecal microbiota of Nod2-KO mice induced an intestinal inflammatory response in the colons of germ-free recipient mice compared with respective microbiota from WT controls based on histopathology and gene expression analyses. CONCLUSIONS: Our data show that the bacterial sensor NOD2 contributes to intestinal microbial community composition after antibiotic treatment and may add to the explanation of how defects in the NOD2 signaling pathway are involved in the etiology of Crohn's disease.


Assuntos
Antibacterianos/efeitos adversos , Doença de Crohn/genética , Disbiose/induzido quimicamente , Microbioma Gastrointestinal/imunologia , Proteína Adaptadora de Sinalização NOD2/deficiência , Animais , Doença de Crohn/imunologia , Doença de Crohn/microbiologia , DNA Bacteriano/isolamento & purificação , DNA Fúngico/isolamento & purificação , Modelos Animais de Doenças , Disbiose/genética , Disbiose/imunologia , Disbiose/microbiologia , Transplante de Microbiota Fecal , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Vida Livre de Germes , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mutação com Perda de Função , Camundongos , Camundongos Knockout , Proteína Adaptadora de Sinalização NOD2/genética , RNA Ribossômico 16S/genética , Transdução de Sinais/imunologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-30709874

RESUMO

Whole-genome and whole-exome sequencing of individual patients allow the study of rare and potentially causative genetic variation. In this study, we sequenced DNA of a trio comprising a boy with very-early-onset inflammatory bowel disease (veoIBD) and his unaffected parents. We identified a rare, X-linked missense variant in the NAPDH oxidase NOX1 gene (c.C721T, p.R241C) in heterozygous state in the mother and in hemizygous state in the patient. We discovered that, in addition, the patient was homozygous for a common missense variant in the CYBA gene (c.T214C, p.Y72H). CYBA encodes the p22phox protein, a cofactor for NOX1. Functional assays revealed reduced cellular ROS generation and antibacterial capacity of NOX1 and p22phox variants in intestinal epithelial cells. Moreover, the identified NADPH oxidase complex variants affected NOD2-mediated immune responses, and p22phox was identified as a novel NOD2 interactor. In conclusion, we detected missense variants in a veoIBD patient that disrupt the host response to bacterial challenges and reduce protective innate immune signaling via NOD2. We assume that the patient's individual genetic makeup favored disturbed intestinal mucosal barrier function.


Assuntos
Doenças Inflamatórias Intestinais/genética , Mutação de Sentido Incorreto , NADPH Oxidase 1/genética , NADPH Oxidases/genética , Linhagem Celular Tumoral , Cromossomos Humanos X , Homozigoto , Humanos , Doenças Inflamatórias Intestinais/enzimologia , Masculino , Proteína Adaptadora de Sinalização NOD2/genética , Polimorfismo de Nucleotídeo Único , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA