Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
Mol Ther ; 31(10): 2839-2860, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37574780

RESUMO

Gliomas are the most prevalent and devastating primary malignant brain tumors in adults. Despite substantial advances in understanding glioma biology, there have been no regulatory drug approvals in the US since bevacizumab in 2009 and tumor treating fields in 2011. Recent phase III clinical trials have failed to meet their prespecified therapeutic primary endpoints, highlighting the need for novel therapies. The poor prognosis of glioma patients, resistance to chemo-radiotherapy, and the immunosuppressive tumor microenvironment underscore the need for the development of novel therapies. Gene therapy-based immunotherapeutic strategies that couple the ability of the host immune system to specifically kill glioma cells and develop immunological memory have shown remarkable progress. Two adenoviral vectors expressing Ad-HSV1-TK/GCV and Ad-Flt3L have shown promising preclinical data, leading to FDA approval of a non-randomized, phase I open-label, first in human trial to test safety, cytotoxicity, and immune-stimulatory efficiency in high-grade glioma patients (NCT01811992). This review provides a thorough overview of immune-stimulatory gene therapy highlighting recent advancements, potential drawbacks, future directions, and recommendations for future implementation of clinical trials.


Assuntos
Neoplasias Encefálicas , Glioma , Animais , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Roedores/genética , Adenoviridae/genética , Glioma/genética , Glioma/terapia , Glioma/patologia , Terapia Genética , Timidina Quinase/genética , Vetores Genéticos/genética , Microambiente Tumoral
2.
Lancet Oncol ; 24(9): 1042-1052, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37657463

RESUMO

BACKGROUND: High-grade gliomas have a poor prognosis and do not respond well to treatment. Effective cancer immune responses depend on functional immune cells, which are typically absent from the brain. This study aimed to evaluate the safety and activity of two adenoviral vectors expressing HSV1-TK (Ad-hCMV-TK) and Flt3L (Ad-hCMV-Flt3L) in patients with high-grade glioma. METHODS: In this dose-finding, first-in-human trial, treatment-naive adults aged 18-75 years with newly identified high-grade glioma that was evaluated per immunotherapy response assessment in neuro-oncology criteria, and a Karnofsky Performance Status score of 70 or more, underwent maximal safe resection followed by injections of adenoviral vectors expressing HSV1-TK and Flt3L into the tumour bed. The study was conducted at the University of Michigan Medical School, Michigan Medicine (Ann Arbor, MI, USA). The study included six escalating doses of viral particles with starting doses of 1×1010 Ad-hCMV-TK viral particles and 1×109 Ad-hCMV-Flt3L viral particles (cohort A), and then 1×1011 Ad-hCMV-TK viral particles and 1×109 Ad-hCMV-Flt3L viral particles (cohort B), 1×1010 Ad-hCMV-TK viral particles and 1×1010 Ad-hCMV-Flt3L viral particles (cohort C), 1×1011 Ad-hCMV-TK viral particles and 1×1010 Ad-hCMV-Flt3L viral particles (cohort D), 1×1010 Ad-hCMV-TK viral particles and 1×1011 Ad-hCMV-Flt3L viral particles (cohort E), and 1×1011 Ad-hCMV-TK viral particles and 1×1011 Ad-hCMV-Flt3L viral particles (cohort F) following a 3+3 design. Two 1 mL tuberculin syringes were used to deliver freehand a mix of Ad-hCMV-TK and Ad-hCMV-Flt3L vectors into the walls of the resection cavity with a total injection of 2 mL distributed as 0·1 mL per site across 20 locations. Subsequently, patients received two 14-day courses of valacyclovir (2 g orally, three times per day) at 1-3 days and 10-12 weeks after vector administration and standad upfront chemoradiotherapy. The primary endpoint was the maximum tolerated dose of Ad-hCMV-Flt3L and Ad-hCMV-TK. Overall survival was a secondary endpoint. Recruitment is complete and the trial is finished. The trial is registered with ClinicalTrials.gov, NCT01811992. FINDINGS: Between April 8, 2014, and March 13, 2019, 21 patients were assessed for eligibility and 18 patients with high-grade glioma were enrolled and included in the analysis (three patients in each of the six dose cohorts); eight patients were female and ten were male. Neuropathological examination identified 14 (78%) patients with glioblastoma, three (17%) with gliosarcoma, and one (6%) with anaplastic ependymoma. The treatment was well-tolerated, and no dose-limiting toxicity was observed. The maximum tolerated dose was not reached. The most common serious grade 3-4 adverse events across all treatment groups were wound infection (four events in two patients) and thromboembolic events (five events in four patients). One death due to an adverse event (respiratory failure) occurred but was not related to study treatment. No treatment-related deaths occurred during the study. Median overall survival was 21·3 months (95% CI 11·1-26·1). INTERPRETATION: The combination of two adenoviral vectors demonstrated safety and feasibility in patients with high-grade glioma and warrants further investigation in a phase 1b/2 clinical trial. FUNDING: Funded in part by Phase One Foundation, Los Angeles, CA, The Board of Governors at Cedars-Sinai Medical Center, Los Angeles, CA, and The Rogel Cancer Center at The University of Michigan.


Assuntos
Antineoplásicos , Glioblastoma , Glioma , Adulto , Feminino , Humanos , Masculino , Quimiorradioterapia , Terapia Genética , Glioblastoma/genética , Glioblastoma/terapia , Glioma/genética , Glioma/terapia , Adolescente , Pessoa de Meia-Idade , Idoso
3.
PLoS Comput Biol ; 16(5): e1007611, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32379821

RESUMO

Modeling cancer cells is essential to better understand the dynamic nature of brain tumors and glioma cells, including their invasion of normal brain. Our goal is to study how the morphology of the glioma cell influences the formation of patterns of collective behavior such as flocks (cells moving in the same direction) or streams (cells moving in opposite direction) referred to as oncostream. We have observed experimentally that the presence of oncostreams correlates with tumor progression. We propose an original agent-based model that considers each cell as an ellipsoid. We show that stretching cells from round to ellipsoid increases stream formation. A systematic numerical investigation of the model was implemented in [Formula: see text]. We deduce a phase diagram identifying key regimes for the dynamics (e.g. formation of flocks, streams, scattering). Moreover, we study the effect of cellular density and show that, in contrast to classical models of flocking, increasing cellular density reduces the formation of flocks. We observe similar patterns in [Formula: see text] with the noticeable difference that stream formation is more ubiquitous compared to flock formation.


Assuntos
Neoplasias Encefálicas/patologia , Biologia Computacional/métodos , Glioma/patologia , Contagem de Células/métodos , Movimento Celular/fisiologia , Forma Celular/fisiologia , Humanos , Modelos Biológicos , Modelos Teóricos , Simulação de Dinâmica Molecular
6.
Clin Immunol ; 189: 43-51, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28720549

RESUMO

Glioma cells are one of the most aggressive and malignant tumors. Following initial surgery, and radio-chemotherapy they progress rapidly, so that patients' median survival remains under two years. They invade throughout the brain, which makes them difficult to treat, and are universally lethal. Though total resection is always attempted it is not curative. Standard of care in 2016 comprises surgical resection, radiotherapy and chemotherapy (temozolomide). Median survival is currently ~14-20months post-diagnosis though it can be higher in high complexity medical university centers, or during clinical trials. Why the immune system fails to recognize the growing brain tumor is not completely understood. We believe that one reason for this failure is that the brain lacks cells that perform the role that dendritic cells serve in other organs. The lack of functional dendritic cells from the brain causes the brain to be deficient in priming systemic immune responses to glioma antigens. To overcome this drawback we reconstituted the brain immune system for it to initiate and prime anti-glioma immune responses from within the brain. To achieve brain immune reconstitution adenoviral vectors are injected into the resection cavity or remaining tumor. One adenoviral vector expresses the HSV-1 derived thymidine kinase which converts ganciclovir into phospho-ganciclovir which becomes cytotoxic to dividing cells. The second adenovirus expresses the cytokine fms-like tyrosine kinase 3 ligand (Flt3L). Flt3L differentiates precursors into dendritic cells and acts as a chemokine for dendritic cells. This results in HSV-1/ganciclovir killing of tumor cells, and the release of tumor antigens, which are then taken up by dendritic cells recruited to the brain tumor microenvironment by Flt3L. Concomitant release of HMGB1, a TLR2 agonist that activates dendritic cells, stimulates dendritic cells loaded with glioma antigens to migrate to the cervical lymph nodes to prime a systemic CD8+ T cytotoxic killing of brain tumor cells. This induced immune response causes glioma-specific cytotoxicity, induces immunological memory, and does not cause brain toxicity or autoimmunity. A Phase I Clinical Trial, to test our hypothesis in human patients, was opened in December 2013 (see: NCT01811992, Combined Cytotoxic and Immune-Stimulatory Therapy for Glioma, at ClinicalTrials.gov). This trial is a first in human trial to test whether the re-engineering of the brain immune system can serve to treat malignant brain tumors. The long and winding road from the laboratory to the clinical trial follows below.


Assuntos
Neoplasias Encefálicas/terapia , Terapia Genética/métodos , Glioma/terapia , Imunoterapia/métodos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/efeitos da radiação , Encéfalo/cirurgia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Células Dendríticas/imunologia , Tratamento Farmacológico/métodos , Glioma/genética , Glioma/imunologia , Camundongos , Análise de Sobrevida
7.
Clin Immunol ; 189: 34-42, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-27777083

RESUMO

Various preclinical studies have demonstrated that the success of immunotherapeutic strategies in inhibiting tumor progression in animal models of Glioblastoma multiforme (GBM). It is also evident that tumor-induced immune suppression drastically impacts the efficacy of immune based therapies. Among the mechanisms employed by GBM to induce immunosuppression is the accumulation of regulatory T cells (Tregs) and Myeloid derived suppressor cells (MDSCs). Advancing our understanding about the pathways regulating the expansion, accumulation and activity of MDSCs will allow for the development of therapies aimed at abolishing the inhibitory effect of these cells on immunotherapeutic approaches. In this review, we have focused on the origin, expansion and immunosuppressive mechanisms of MDSCs in animal models and human cancer, in particular GBM.


Assuntos
Imunoterapia/métodos , Células Mieloides/imunologia , Células Supressoras Mieloides/imunologia , Neoplasias/terapia , Microambiente Tumoral/imunologia , Animais , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Glioblastoma/imunologia , Glioblastoma/patologia , Glioblastoma/terapia , Humanos , Neoplasias/imunologia , Neoplasias/patologia , Linfócitos T Reguladores/imunologia
8.
J Virol ; 91(6)2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28053109

RESUMO

Mouse adenovirus type 1 (MAV-1) infection causes encephalitis in susceptible strains of mice and alters the permeability of infected brains to small molecules, which indicates disruption of the blood-brain barrier (BBB). Under pathological conditions, matrix metalloproteinases (MMPs) can disrupt the BBB through their proteolytic activity on basement membrane and tight junction proteins. We examined whether MAV-1 infection alters MMP activity in vivo and in vitro Infected MAV-1-susceptible SJL mice had higher MMP2 and MMP9 activity in brains, measured by gelatin zymography, than mock-infected mice. Infected MAV-1-resistant BALB/c mice had MMP activity levels equivalent to those in mock infection. Primary SJL mouse brain endothelial cells (a target of MAV-1 in vivo) infected ex vivo with MAV-1 had no difference in activities of secreted MMP2 and MMP9 from mock cells. We show for the first time that astrocytes and microglia are also infected in vivo by MAV-1. Infected mixed primary cultures of astrocytes and microglia had higher levels of MMP2 and MMP9 activity than mock-infected cells. These results indicate that increased MMP activity in the brains of MAV-1-infected susceptible mice may be due to MMP activity produced by endothelial cells, astrocytes, and microglia, which in turn may contribute to BBB disruption and encephalitis in susceptible mice.IMPORTANCE RNA and DNA viruses can cause encephalitis; in some cases, this is accompanied by MMP-mediated disruption of the BBB. Activated MMPs degrade extracellular matrix and cleave tight-junction proteins and cytokines, modulating their functions. MAV-1 infection of susceptible mice is a tractable small-animal model for encephalitis, and the virus causes disruption of the BBB. We showed that MAV-1 infection increases enzymatic activity of two key MMPs known to be secreted and activated in neuroinflammation, MMP2 and MMP9, in brains of susceptible mice. MAV-1 infects endothelial cells, astrocytes, and microglia, cell types in the neurovascular unit that can secrete MMPs. Ex vivo MAV-1 infection of these cell types caused higher MMP activity than mock infection, suggesting that they may contribute to the higher MMP activity seen in vivo To our knowledge, this provides the first evidence of an encephalitic DNA virus in its natural host causing increased MMP activity in brains.


Assuntos
Infecções por Adenoviridae/patologia , Encefalite Viral/patologia , Mastadenovirus/patogenicidade , Metaloproteinase 2 da Matriz/análise , Metaloproteinase 9 da Matriz/análise , Infecções por Adenoviridae/virologia , Animais , Astrócitos/enzimologia , Astrócitos/virologia , Encéfalo/patologia , Células Cultivadas , Modelos Animais de Doenças , Encefalite Viral/virologia , Células Endoteliais/enzimologia , Células Endoteliais/virologia , Camundongos , Microglia/enzimologia , Microglia/virologia
9.
Mol Ther ; 25(1): 232-248, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28129117

RESUMO

Survival of glioma (GBM) patients treated with the current standard of care remains dismal. Immunotherapeutic approaches that harness the cytotoxic and memory potential of the host immune system have shown great benefit in other cancers. GBMs have developed multiple strategies, including the accumulation of myeloid-derived suppressor cells (MDSCs) to induce immunosuppression. It is therefore imperative to develop multipronged approaches when aiming to generate a robust anti-tumor immune response. Herein, we tested whether combining MDSC depletion or checkpoint blockade would augment the efficacy of immune-stimulatory herpes simplex type-I thymidine kinase (TK) plus Fms-like tyrosine kinase ligand (Flt3L)-mediated immune stimulatory gene therapy. Our results show that MDSCs constitute >40% of the tumor-infiltrating immune cells. These cells express IL-4Rα, inducible nitric oxide synthase (iNOS), arginase, programmed death ligand 1 (PDL1), and CD80, molecules that are critically involved in antigen-specific T cell suppression. Depletion of MDSCs strongly enhanced the TK/Flt3L gene therapy-induced tumor-specific CD8 T cell response, which lead to increased median survival and percentage of long-term survivors. Also, combining PDL1 or CTLA-4 immune checkpoint blockade greatly improved the efficacy of TK/Flt3L gene therapy. Our results, therefore, indicate that blocking MDSC-mediated immunosuppression holds great promise for increasing the efficacy of gene therapy-mediated immunotherapies for GBM.


Assuntos
Terapia Genética , Glioma/genética , Glioma/imunologia , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Animais , Antígeno B7-H1/metabolismo , Biomarcadores , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Antígeno CTLA-4/metabolismo , Células Cultivadas , Citotoxicidade Imunológica/genética , Citotoxicidade Imunológica/imunologia , Feminino , Expressão Gênica , Terapia Genética/métodos , Glioma/patologia , Glioma/terapia , Humanos , Imunofenotipagem , Terapia de Imunossupressão , Imunoterapia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Timidina Quinase/genética , Timidina Quinase/metabolismo , Transgenes
10.
Proc Natl Acad Sci U S A ; 109(20): 7835-40, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22547816

RESUMO

Following antigen recognition on target cells, effector T cells establish immunological synapses and secrete cytokines. It is thought that T cells secrete cytokines in one of two modes: either synaptically (i.e., toward antigenic target cells) or multidirectionally, affecting a wider population of cells. This paradigm predicts that synaptically secreted cytokines such as IFN-γ will preferentially signal to antigenic target cells contacted by the T cell through an immunological synapse. Despite its physiological significance, this prediction has never been tested. We developed a live-cell imaging system to compare the responses of target cells and nonantigenic bystanders to IFN-γ secreted by CD8+, antigen-specific, cytotoxic T cells. Both target cells and surrounding nontarget cells respond robustly. This pattern of response was detected even at minimal antigenic T-cell stimulation using low doses of antigenic peptide, or altered peptide ligands. Although cytotoxic immunological synapses restrict killing to antigenic target cells, the effects of IFN-γ are more widespread.


Assuntos
Sinapses Imunológicas/imunologia , Interferon gama/metabolismo , Linfócitos T Citotóxicos/imunologia , Adenoviridae , Análise de Variância , Astrócitos/imunologia , Vetores Genéticos/genética , Proteínas de Fluorescência Verde , Processamento de Imagem Assistida por Computador , Interferon gama/imunologia , Microscopia/métodos
11.
J Pharmacol Exp Ther ; 349(3): 458-69, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24696041

RESUMO

Signal transducer and activator of transcription 3 (STAT3) has been implicated as a hub for multiple oncogenic pathways. The constitutive activation of STAT3 is present in several cancers, including gliomas (GBMs), and is associated with poor therapeutic responses. Phosphorylation of STAT3 triggers its dimerization and nuclear transport, where it promotes the transcription of genes that stimulate tumor growth. In light of this role, inhibitors of the STAT3 pathway are attractive therapeutic targets for cancer. To this end, we evaluated the STAT3-inhibitory activities of three compounds (CPA-7 [trichloronitritodiammineplatinum(IV)], WP1066 [(S,E)-3-(6-bromopyridin-2-yl)-2-cyano-N-(1-phenylethyl)acrylamide, C17H14BrN3O], and ML116 [4-benzyl-1-{thieno[2,3-d]pyrimidin-4-yl}piperidine, C18H19N3S]) in cultured rodent and human glioma cells, including GBM cancer stem cells. Our results demonstrate a potent induction of growth arrest in GBM cells after drug treatment with a concomitant induction of cell death. Although these compounds were effective at inhibiting STAT3 phosphorylation, they also displayed variable dose-dependent inhibition of STAT1, STAT5, and nuclear factor κ light-chain enhancer of activated B cells. The therapeutic efficacy of these compounds was further evaluated in peripheral and intracranial mouse tumor models. Whereas CPA-7 elicited regression of peripheral tumors, both melanoma and GBM, its efficacy was not evident when the tumors were implanted within the brain. Our data suggest poor permeability of this compound to tumors located within the central nervous system. WP1066 and ML116 exhibited poor in vivo efficacy. In summary, CPA-7 constitutes a powerful anticancer agent in models of peripheral solid cancers. Our data strongly support further development of CPA-7-derived compounds with increased permeability to enhance their efficacy in primary and metastatic brain tumors.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/secundário , Fator de Transcrição STAT3/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Compostos Clorados/farmacocinética , Compostos Clorados/farmacologia , Compostos Clorados/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais , Glioma/metabolismo , Glioma/patologia , Células HEK293 , Compostos Heterocíclicos com 2 Anéis/farmacocinética , Compostos Heterocíclicos com 2 Anéis/farmacologia , Compostos Heterocíclicos com 2 Anéis/uso terapêutico , Humanos , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Piperidinas/farmacocinética , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Compostos de Platina/farmacocinética , Compostos de Platina/farmacologia , Compostos de Platina/uso terapêutico , Piridinas/farmacocinética , Piridinas/farmacologia , Piridinas/uso terapêutico , Fator de Transcrição STAT3/genética , Bibliotecas de Moléculas Pequenas/farmacocinética , Bibliotecas de Moléculas Pequenas/uso terapêutico , Distribuição Tecidual , Tirfostinas/farmacocinética , Tirfostinas/farmacologia , Tirfostinas/uso terapêutico
12.
Adv Sci (Weinh) ; 11(18): e2309796, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38384234

RESUMO

Glioblastoma (GBM) remains a challenge in Neuro-oncology, with a poor prognosis showing only a 5% survival rate beyond two years. This is primarily due to its aggressiveness and intra-tumoral heterogeneity, which limits complete surgical resection and reduces the efficacy of existing treatments. The existence of oncostreams-neuropathological structures comprising aligned spindle-like cells from both tumor and non-tumor origins- is discovered earlier. Oncostreams are closely linked to glioma aggressiveness and facilitate the spread into adjacent healthy brain tissue. A unique molecular signature intrinsic to oncostreams, with overexpression of key genes (i.e., COL1A1, ACTA2) that drive the tumor's mesenchymal transition and malignancy is also identified. Pre-clinical studies on genetically engineered mouse models demonstrated that COL1A1 inhibition disrupts oncostreams, modifies TME, reduces mesenchymal gene expression, and extends survival. An in vitro model using GFP+ NPA cells to investigate how various treatments affect oncostream dynamics is developed. Analysis showed that factors such as cell density, morphology, neurotransmitter agonists, calcium chelators, and cytoskeleton-targeting drugs influence oncostream formation. This data illuminate the patterns of glioma migration and suggest anti-invasion strategies that can improve GBM patient outcomes when combined with traditional therapies. This work highlights the potential of targeting oncostreams to control glioma invasion and enhance treatment efficacy.


Assuntos
Neoplasias Encefálicas , Glioma , Camundongos , Animais , Glioma/genética , Glioma/patologia , Glioma/metabolismo , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Microambiente Tumoral/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Cadeia alfa 1 do Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I/metabolismo
13.
bioRxiv ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38559270

RESUMO

Mutant isocitrate dehydrogenase 1 (mIDH1; IDH1 R132H ) exhibits a gain of function mutation enabling 2-hydroxyglutarate (2HG) production. 2HG inhibits DNA and histone demethylases, inducing epigenetic reprogramming and corresponding changes to the transcriptome. We previously demonstrated 2HG-mediated epigenetic reprogramming enhances DNA-damage response and confers radioresistance in mIDH1 gliomas harboring p53 and ATRX loss of function mutations. In this study, RNA-seq and ChIP-seq data revealed human and mouse mIDH1 glioma neurospheres have downregulated gene ontologies related to mitochondrial metabolism and upregulated autophagy. Further analysis revealed that the decreased mitochondrial metabolism was paralleled by a decrease in glycolysis, rendering autophagy as a source of energy in mIDH1 glioma cells. Analysis of autophagy pathways showed that mIDH1 glioma cells exhibited increased expression of pULK1-S555 and enhanced LC3 I/II conversion, indicating augmented autophagy activity. This dependence is reflected by increased sensitivity of mIDH1 glioma cells to autophagy inhibition. Blocking autophagy selectively impairs the growth of cultured mIDH1 glioma cells but not wild-type IDH1 (wtIDH1) glioma cells. Targeting autophagy by systemic administration of synthetic protein nanoparticles packaged with siRNA targeting Atg7 (SPNP-siRNA-Atg7) sensitized mIDH1 glioma cells to radiation-induced cell death, resulting in tumor regression, long-term survival, and immunological memory, when used in combination with IR. Our results indicate autophagy as a critical pathway for survival and maintenance of mIDH1 glioma cells, a strategy that has significant potential for future clinical translation. One Sentence Summary: The inhibition of autophagy sensitizes mIDH1 glioma cells to radiation, thus creating a promising therapeutic strategy for mIDH1 glioma patients. Graphical abstract: Our genetically engineered mIDH1 mouse glioma model harbors IDH1 R132H in the context of ATRX and TP53 knockdown. The production of 2-HG elicited an epigenetic reprogramming associated with a disruption in mitochondrial activity and an enhancement of autophagy in mIDH1 glioma cells. Autophagy is a mechanism involved in cell homeostasis related with cell survival under energetic stress and DNA damage protection. Autophagy has been associated with radio resistance. The inhibition of autophagy thus radio sensitizes mIDH1 glioma cells and enhances survival of mIDH1 glioma-bearing mice, representing a novel therapeutic target for this glioma subtype with potential applicability in combined clinical strategies.

14.
Cancer Cell ; 42(1): 1-5, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38039965

RESUMO

Recent clinical trials for H3K27-altered diffuse midline gliomas (DMGs) have shown much promise. We present a consensus roadmap and identify three major barriers: (1) refinement of experimental models to include immune and brain-specific components; (2) collaboration among researchers, clinicians, and industry to integrate patient-derived data through sharing, transparency, and regulatory considerations; and (3) streamlining clinical efforts including biopsy, CNS-drug delivery, endpoint determination, and response monitoring. We highlight the importance of comprehensive collaboration to advance the understanding, diagnostics, and therapeutics for DMGs.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Criança , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Glioma/diagnóstico , Glioma/genética , Glioma/terapia , Mutação , Encéfalo/patologia , Biópsia
15.
Toxicol Appl Pharmacol ; 268(3): 318-30, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23403069

RESUMO

Adenoviral vectors (Ads) are promising gene delivery vehicles due to their high transduction efficiency; however, their clinical usefulness has been hampered by their immunogenicity and the presence of anti-Ad immunity in humans. We reported the efficacy of a gene therapy approach for glioma consisting of intratumoral injection of Ads encoding conditionally cytotoxic herpes simplex type 1 thymidine kinase (Ad-TK) and the immunostimulatory cytokine fms-like tyrosine kinase ligand 3 (Ad-Flt3L). Herein, we report the biodistribution, efficacy, and neurological and systemic effects of a bicistronic high-capacity Ad, i.e., HC-Ad-TK/TetOn-Flt3L. HC-Ads elicit sustained transgene expression, even in the presence of anti-Ad immunity, and can encode large therapeutic cassettes, including regulatory elements to enable turning gene expression "on" or "off" according to clinical need. The inclusion of two therapeutic transgenes within a single vector enables a reduction of the total vector load without adversely impacting efficacy. Because clinically the vectors will be delivered into the surgical cavity, normal regions of the brain parenchyma are likely to be transduced. Thus, we assessed any potential toxicities elicited by escalating doses of HC-Ad-TK/TetOn-Flt3L (1×10(8), 1×10(9), or 1×10(10) viral particles [vp]) delivered into the rat brain parenchyma. We assessed neuropathology, biodistribution, transgene expression, systemic toxicity, and behavioral impact at acute and chronic time points. The results indicate that doses up to 1×10(9) vp of HC-Ad-TK/TetOn-Flt3L can be safely delivered into the normal rat brain and underpin further developments for its implementation in a phase I clinical trial for glioma.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Ensaios Clínicos Fase I como Assunto/métodos , Citotoxinas/administração & dosagem , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Glioblastoma/tratamento farmacológico , Imunização/métodos , Adenoviridae/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Citotoxinas/efeitos adversos , Citotoxinas/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Quimioterapia Combinada , Terapia Genética/efeitos adversos , Vetores Genéticos/efeitos adversos , Vetores Genéticos/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Masculino , Ratos , Ratos Endogâmicos Lew , Distribuição Tecidual/efeitos dos fármacos , Distribuição Tecidual/fisiologia , Resultado do Tratamento
16.
Mol Ther ; 20(4): 808-19, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22233583

RESUMO

The adaptive immune response to viral vectors reduces vector-mediated transgene expression from the brain. It is unknown, however, whether this loss is caused by functional downregulation of transgene expression or death of transduced cells. Herein, we demonstrate that during the elimination of transgene expression, the brain becomes infiltrated with CD4(+) and CD8(+) T cells and that these T cells are necessary for transgene elimination. Further, the loss of transgene-expressing brain cells fails to occur in the absence of IFNγ, perforin, and TNFα receptor. Two methods to induce severe immune suppression in immunized animals also fail to restitute transgene expression, demonstrating the irreversibility of this process. The need for cytotoxic molecules and the irreversibility of the reduction in transgene expression suggested to us that elimination of transduced cells is responsible for the loss of transgene expression. A new experimental paradigm that discriminates between downregulation of transgene expression and the elimination of transduced cells demonstrates that transduced cells are lost from the brain upon the induction of a specific antiviral immune response. We conclude that the anti-adenoviral immune response reduces transgene expression in the brain through loss of transduced cells.


Assuntos
Encéfalo/citologia , Interferon gama/metabolismo , Perforina/metabolismo , Transdução Genética/métodos , Transgenes/genética , Fator de Necrose Tumoral alfa/metabolismo , Adenoviridae/genética , Animais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Citometria de Fluxo , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Camundongos Transgênicos
17.
Proc Natl Acad Sci U S A ; 107(32): 14443-8, 2010 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-20660723

RESUMO

Soluble antigens diffuse out of the brain and can thus stimulate a systemic immune response, whereas particulate antigens (from infectious agents or tumor cells) remain within brain tissue, thus failing to stimulate a systemic immune response. Immune privilege describes how the immune system responds to particulate antigens localized selectively within the brain parenchyma. We believe this immune privilege is caused by the absence of antigen presenting dendritic cells from the brain. We tested the prediction that expression of fms-like tyrosine kinase ligand 3 (Flt3L) in the brain will recruit dendritic cells and induce a systemic immune response against exogenous influenza hemagglutinin in BALB/c mice. Coexpression of Flt3L with HA in the brain parenchyma induced a robust systemic anti-HA immune response, and a small response against myelin basic protein and proteolipid protein epitopes. Depletion of CD4(+)CD25+ regulatory T cells (Tregs) enhanced both responses. To investigate the autoimmune impact of these immune responses, we characterized the neuropathological and behavioral consequences of intraparenchymal injections of Flt3L and HA in BALB/c and C57BL/6 mice. T cell infiltration in the forebrain was time and strain dependent, and increased in animals treated with Flt3L and depleted of Tregs; however, we failed to detect widespread defects in myelination throughout the forebrain or spinal cord. Results of behavioral tests were all normal. These results demonstrate that Flt3L overcomes the brain's immune privilege, and supports the clinical development of Flt3L as an adjuvant to stimulate clinically effective immune responses against brain neo-antigens, for example, those associated with brain tumors.


Assuntos
Encéfalo/imunologia , Sistema Imunitário/imunologia , Tirosina Quinase 3 Semelhante a fms/imunologia , Adjuvantes Imunológicos , Animais , Antígenos/imunologia , Células Dendríticas/imunologia , Hemaglutininas/imunologia , Imunidade , Ligantes , Camundongos , Camundongos Endogâmicos BALB C , Prosencéfalo/imunologia , Medula Espinal/imunologia , Linfócitos T Reguladores/imunologia
18.
Proc Natl Acad Sci U S A ; 107(46): 20021-6, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-21030678

RESUMO

Restricting the cytotoxicity of anticancer agents by targeting receptors exclusively expressed on tumor cells is critical when treating infiltrative brain tumors such as glioblastoma multiforme (GBM). GBMs express an IL-13 receptor (IL13Rα2) that differs from the physiological IL4R/IL13R receptor. We developed a regulatable adenoviral vector (Ad.mhIL-4.TRE.mhIL-13-PE) encoding a mutated human IL-13 fused to Pseudomonas exotoxin (mhIL-13-PE) that specifically binds to IL13Rα2 to provide sustained expression, effective anti-GBM cytotoxicity, and minimal neurotoxicity. The therapeutic Ad also encodes mutated human IL-4 that binds to the physiological IL4R/IL13R without interacting with IL13Rα2, thus inhibiting potential binding of mhIL-13-PE to normal brain cells. Using intracranial GBM xenografts and syngeneic mouse models, we tested the Ad.mhIL-4.TRE.mhIL-13-PE and two protein formulations, hIL-13-PE used in clinical trials (Cintredekin Besudotox) and a second-generation mhIL-13-PE. Cintredekin Besudotox doubled median survival without eliciting long-term survival and caused severe neurotoxicity; mhIL-13-PE led to ∼40% long-term survival, eliciting severe neurological toxicity at the high dose tested. In contrast, Ad-mediated delivery of mhIL-13-PE led to tumor regression and long-term survival in over 70% of the animals, without causing apparent neurotoxicity. Although Cintredekin Besudotox was originally developed to target GBM, when tested in a phase III trial it failed to achieve clinical endpoints and revealed neurotoxicity. Limitations of Cintredekin Besudotox include its short half-life, which demanded frequent or continued administration, and binding to IL4R/IL13R, present in normal brain cells. These shortcomings were overcome by our therapeutic Ad, thus representing a significant advance in the development of targeted therapeutics for GBM.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Citotoxinas/genética , Citotoxinas/uso terapêutico , Técnicas de Transferência de Genes , Terapia Genética , Glioma/tratamento farmacológico , Adenoviridae/genética , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Exotoxinas/genética , Exotoxinas/uso terapêutico , Vetores Genéticos/genética , Glioma/patologia , Humanos , Imunocompetência/imunologia , Interleucina-13/genética , Interleucina-13/uso terapêutico , Camundongos , Camundongos Nus , Mutação/genética , Neurotoxinas/toxicidade , Pseudomonas/metabolismo , Transgenes/genética , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Sci Adv ; 9(26): eadf7170, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37379380

RESUMO

Collective behavior spans several orders of magnitude of biological organization, from cell colonies to flocks of birds. We used time-resolved tracking of individual glioblastoma cells to investigate collective motion in an ex vivo model of glioblastoma. At the population level, glioblastoma cells display weakly polarized motion in the (directional) velocities of single cells. Unexpectedly, fluctuations in velocities are correlated over distances many times the size of a cell. Correlation lengths scale linearly with the maximum end-to-end length of the population, indicating that they are scale-free and lack a characteristic decay scale other than the size of the system. Last, a data-driven maximum entropy model captures statistical features of the experimental data with only two free parameters: the effective length scale (nc) and strength (J) of local pairwise interactions between tumor cells. These results show that glioblastoma assemblies exhibit scale-free correlations in the absence of polarization, suggesting that they may be poised near a critical point.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Entropia , Encéfalo , Movimento (Física)
20.
J Clin Invest ; 133(2)2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36647827

RESUMO

Epigenetic remodeling is a molecular hallmark of gliomas, and it has been identified as a key mediator of glioma progression. Epigenetic dysregulation contributes to gliomagenesis, tumor progression, and responses to immunotherapies, as well as determining clinical features. This epigenetic remodeling includes changes in histone modifications, chromatin structure, and DNA methylation, all of which are driven by mutations in genes such as histone 3 genes (H3C1 and H3F3A), isocitrate dehydrogenase 1/2 (IDH1/2), α-thalassemia/mental retardation, X-linked (ATRX), and additional chromatin remodelers. Although much of the initial research primarily identified how the epigenetic aberrations impacted glioma progression by solely examining the glioma cells, recent studies have aimed at establishing the role of epigenetic alterations in shaping the tumor microenvironment (TME). In this review, we discuss the mechanisms by which these epigenetic phenomena in glioma remodel the TME and how current therapies targeting epigenetic dysregulation affect the glioma immune response and therapeutic outcomes. Understanding the link between epigenetic remodeling and the glioma TME provides insights into the implementation of epigenetic-targeting therapies to improve the antitumor immune response.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/tratamento farmacológico , Glioma/terapia , Glioma/tratamento farmacológico , Mutação , Cromatina , Isocitrato Desidrogenase/genética , Epigênese Genética , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA