Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proteomics ; 24(11): e2300391, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38556629

RESUMO

Arterial thrombosis manifesting as heart attack and stroke is the leading cause of death worldwide. Platelets are central mediators of thrombosis that can be activated through multiple activation pathways. Platelet-derived extracellular vesicles (pEVs), also known as platelet-derived microparticles, are granular mixtures of membrane structures produced by platelets in response to various activating stimuli. Initial studies have attracted interest on how platelet agonists influence the composition of the pEV proteome. In the current study, we used physiological platelet agonists of varying potencies which reflect the microenvironments that platelets experience during thrombus formation: adenosine diphosphate, collagen, thrombin as well as a combination of thrombin/collagen to induce platelet activation and pEV generation. Proteomic profiling revealed that pEVs have an agonist-dependent altered proteome in comparison to their cells of origin, activated platelets. Furthermore, we found that various protein classes including those related to coagulation and complement (prothrombin, antithrombin, and plasminogen) and platelet activation (fibrinogen) are attributed to platelet EVs following agonist stimulation. This agonist-dependent altered proteome suggests that protein packaging is an active process that appears to occur without de novo protein synthesis. This study provides new information on the influence of physiological agonist stimuli on the biogenesis and proteome landscape of pEVs.


Assuntos
Plaquetas , Vesículas Extracelulares , Ativação Plaquetária , Proteoma , Proteômica , Trombina , Plaquetas/metabolismo , Plaquetas/efeitos dos fármacos , Humanos , Proteoma/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/efeitos dos fármacos , Ativação Plaquetária/efeitos dos fármacos , Trombina/farmacologia , Trombina/metabolismo , Proteômica/métodos , Difosfato de Adenosina/farmacologia , Difosfato de Adenosina/metabolismo , Colágeno/metabolismo
2.
Haemophilia ; 30(3): 638-647, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38578179

RESUMO

AIM: To characterise non-severe haemophilia A (HA) patients enrolled on the Australian Bleeding Disorders Registry (ABDR) treated through a state-wide Haemophilia Treatment Centre (HTC) with respect to their mutational profile, inhibitor risk and health-care burden. METHOD: We conducted a single-centre observational study of all non-severe HA patients treated at the Alfred Health HTC registered on the ABDR as of the 26th July 2023. Data were extracted from the ABDR and electronic medical record (EMR) regarding demographics, severity, genetic testing, treatment, inhibitors, bleeding events and procedures. Inhibitor risk was calculated as a function of exposure days (EDs) of FVIII replacement. RESULTS: There were 289 non-severe HA patients treated at the Alfred HTC registered on the ABDR as of July 2023, all of whom were adult patients aged > 18 years old. Genotyping had been performed in 228/289 (78.9%). Of the inhibitor analysis population, 14/193 (7.3%) had an inhibitor. The cumulative incidence of inhibitor development at 75 EDs was 31% (95% CI 13%-46%). The median cost of bypassing agents per inhibitor patient was $57,087.50/year. CONCLUSION: These results demonstrate a relatively high inhibitor prevalence and incidence risk in non-severe HA compared to previously published work, although this may partly reflect a smaller population size. High rates of genotyping have allowed representative mutational characterisation. The burden of care imposed by non-severe HA in terms of bleeding events, procedures and bypassing agent cost is larger than expected, particularly within the inhibitor population.


Assuntos
Hemofilia A , Mutação , Humanos , Hemofilia A/tratamento farmacológico , Hemofilia A/genética , Austrália , Adulto , Masculino , Pessoa de Meia-Idade , Fator VIII/uso terapêutico , Fator VIII/genética , Feminino , Adulto Jovem , Adolescente , Índice de Gravidade de Doença , Idoso , Custos de Cuidados de Saúde
3.
Arterioscler Thromb Vasc Biol ; 43(6): 1031-1040, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37078286

RESUMO

BACKGROUND: Current clinical imaging of thromboembolic diseases often relies on indirect detection of thrombi, which may delay diagnosis and ultimately the institution of beneficial, potentially lifesaving treatment. Therefore, the development of targeting tools that facilitate the rapid, specific, and direct imaging of thrombi using molecular imaging is highly sought after. One potential molecular target is FXIIa (factor XIIa), which initiates the intrinsic coagulation pathway but also activates the kallikrein-kinin system, thereby initiating coagulation and inflammatory/immune responses. As FXII (factor XII) is dispensable for normal hemostasis, its activated form (FXIIa) represents an ideal molecular target for diagnostic and therapeutic approaches, the latter combining diagnosis/identification of thrombi and effective antithrombotic therapy. METHODS: We conjugated an FXIIa-specific antibody, 3F7, to a near-infrared (NIR) fluorophore and demonstrated binding to FeCl3-induced carotid thrombosis with 3-dimensional fluorescence emission computed tomography/computed tomography and 2-dimensional fluorescence imaging. We further demonstrated ex vivo imaging of thromboplastin-induced pulmonary embolism and detection of FXIIa in human thrombi produced in vitro. RESULTS: We demonstrated imaging of carotid thrombosis by fluorescence emission computed tomography/computed tomography and measured a significant fold increase in signal between healthy and control vessels from mice injected with 3F7-NIR compared with mice injected with nontargeted probe (P=0.002) ex vivo. In a model of pulmonary embolism, we measured increased NIR signal in lungs from mice injected with 3F7-NIR compared with mice injected with nontargeted probe (P=0.0008) and healthy lungs from mice injected with 3F7-NIR (P=0.021). CONCLUSIONS: Overall, we demonstrate that FXIIa targeting is highly suitable for the specific detection of venous and arterial thrombi. This approach will allow direct, specific, and early imaging of thrombosis in preclinical imaging modalities and may facilitate monitoring of antithrombotic treatment in vivo.


Assuntos
Trombose das Artérias Carótidas , Embolia Pulmonar , Trombose , Camundongos , Humanos , Animais , Coagulação Sanguínea , Trombose/diagnóstico por imagem , Fator XII/metabolismo , Fator XIIa/metabolismo , Imagem Molecular
4.
Br J Haematol ; 203(3): 355-368, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37583269

RESUMO

Congenital fibrinogen disorders or CFDs are heterogenous, both in clinical manifestation and array of culprit molecular lesions. Correlations between phenotype and genotype remain poorly defined. This review examines the genetic landscape discovered to date for this rare condition. The question of a possible oligogenic model of inheritance influencing phenotypic heterogeneity is raised, with discussion of the benefits and challenges of sequencing technology used to enhance discovery in this space. Considerable work lies ahead in order to achieve diagnostic and prognostic precision and subsequently provide targeted management to this complex cohort of patients.

5.
Thromb J ; 21(1): 59, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221578

RESUMO

BACKGROUND: Venous thromboembolism (VTE) prophylaxis is effective in reducing VTE events, however, its impact on mortality is unclear. We examined the association between omission of VTE prophylaxis within the first 24 h after intensive care unit (ICU) admission and hospital mortality. METHODS: Retrospective analysis of prospectively collected data from the Australian New Zealand Intensive Care Society Adult Patient Database. Data were obtained for adult admissions between 2009 and 2020. Mixed effects logistic regression models were used to evaluate the association between omission of early VTE prophylaxis and hospital mortality. RESULTS: Of the 1,465,020 ICU admissions, 107,486 (7.3%) did not receive any form of VTE prophylaxis within the first 24 h after ICU admission without documented contraindication. Omission of early VTE prophylaxis was independently associated with 35% increased odds of in-hospital mortality (odds ratios (OR): 1.35; 95% CI: 1.31-1.41). The associations between omission of early VTE prophylaxis and mortality varied by admission diagnosis. In patients diagnosed with stroke (OR: 1.26, 95% CI: 1.05-1.52), cardiac arrest (OR: 1.85, 95% CI: 1.65-2.07) or intracerebral haemorrhage (OR: 1.48, 95% CI: 1.19-1.84), omission of VTE prophylaxis was associated with increased risk of mortality, but not in patients diagnosed with subarachnoid haemorrhage or head injury. CONCLUSIONS: Omission of VTE prophylaxis within the first 24 h after ICU admission was independently associated with increased risk of mortality that varied by admission diagnosis. Consideration of early thromboprophylaxis may be required for patients with stroke, cardiac arrest and intracerebral haemorrhage but not in those with subarachnoid haemorrhage or head injury. The findings highlight the importance of individualised diagnosis-related thromboprophylaxis benefit-harm assessments.

6.
Circ Res ; 127(4): 571-587, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32586214

RESUMO

The recent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the ensuing global pandemic has presented a health emergency of unprecedented magnitude. Recent clinical data has highlighted that coronavirus disease 2019 (COVID-19) is associated with a significant risk of thrombotic complications ranging from microvascular thrombosis, venous thromboembolic disease, and stroke. Importantly, thrombotic complications are markers of severe COVID-19 and are associated with multiorgan failure and increased mortality. The evidence to date supports the concept that the thrombotic manifestations of severe COVID-19 are due to the ability of SARS-CoV-2 to invade endothelial cells via ACE-2 (angiotensin-converting enzyme 2), which is expressed on the endothelial cell surface. However, in patients with COVID-19 the subsequent endothelial inflammation, complement activation, thrombin generation, platelet, and leukocyte recruitment, and the initiation of innate and adaptive immune responses culminate in immunothrombosis, ultimately causing (micro)thrombotic complications, such as deep vein thrombosis, pulmonary embolism, and stroke. Accordingly, the activation of coagulation (eg, as measured with plasma D-dimer) and thrombocytopenia have emerged as prognostic markers in COVID-19. Given thrombotic complications are central determinants of the high mortality rate in COVID-19, strategies to prevent thrombosis are of critical importance. Several antithrombotic drugs have been proposed as potential therapies to prevent COVID-19-associated thrombosis, including heparin, FXII inhibitors, fibrinolytic drugs, nafamostat, and dipyridamole, many of which also possess pleiotropic anti-inflammatory or antiviral effects. The growing awareness and mechanistic understanding of the prothrombotic state of COVID-19 patients are driving efforts to more stringent diagnostic screening for thrombotic complications and to the early institution of antithrombotic drugs, for both the prevention and therapy of thrombotic complications. The shifting paradigm of diagnostic and treatment strategies holds significant promise to reduce the burden of thrombotic complications and ultimately improve the prognosis for patients with COVID-19.


Assuntos
Infecções por Coronavirus/complicações , Pneumonia Viral/complicações , Trombose/tratamento farmacológico , Anticoagulantes/administração & dosagem , Anticoagulantes/uso terapêutico , COVID-19 , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/terapia , Humanos , Imunidade Inata , Pandemias , Inibidores da Agregação Plaquetária/administração & dosagem , Inibidores da Agregação Plaquetária/uso terapêutico , Pneumonia Viral/epidemiologia , Pneumonia Viral/terapia , Trombose/etiologia , Trombose/imunologia
7.
Intern Med J ; 52(9): 1638-1642, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36100562

RESUMO

Obesity is a well-recognised risk factor for venous thromboembolism, and increased dosing of pharmacological prophylaxis is recommended in obese inpatients. We performed a clinical decision support intervention by adjusting order sentences of prophylactic enoxaparin within our electronic medical records, which significantly improved appropriate dosing for thromboprophylaxis in obese inpatients at our institution.


Assuntos
Tromboembolia Venosa , Anticoagulantes/uso terapêutico , Enoxaparina/uso terapêutico , Humanos , Pacientes Internados , Obesidade/complicações , Tromboembolia Venosa/tratamento farmacológico
8.
Subcell Biochem ; 94: 499-520, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32189313

RESUMO

C-reactive protein (CRP) is an evolutionary highly conserved member of the pentraxin superfamily of proteins. CRP is widely used as a marker of inflammation, infection and for risk stratification of cardiovascular events. However, there is now a large body of evidence, that continues to evolve, detailing that CRP directly mediates inflammatory reactions and the innate immune response in the context of localised tissue injury. These data support the concept that the pentameric conformation of CRP dissociates into pro-inflammatory CRP isoforms termed pCRP* and monomeric CRP. These pro-inflammatory CRP isoforms undergo conformational changes that facilitate complement binding and immune cell activation and therefore demonstrate the ability to trigger complement activation, activate platelets, monocytes and endothelial cells. The dissociation of pCRP occurs on the surface of necrotic, apoptotic, and ischaemic cells, regular ß-sheet structures such as ß-amyloid, the membranes of activated cells (e.g., platelets, monocytes, and endothelial cells), and/or the surface of microparticles, the latter by binding to phosphocholine. Therefore, the deposition and localisation of these pro-inflammatory isoforms of CRP have been demonstrated to amplify inflammation and tissue damage in a broad range of clinical conditions including ischaemia/reperfusion injury, Alzheimer's disease, age-related macular degeneration and immune thrombocytopaenia. Given the potentially broad relevance of CRP to disease pathology, the development of inhibitors of CRP remains an area of active investigation, which may pave the way for novel therapeutics for a diverse range of inflammatory diseases.


Assuntos
Proteína C-Reativa/química , Proteína C-Reativa/metabolismo , Sequência Conservada , Evolução Molecular , Inflamação/metabolismo , Inflamação/patologia , Biomarcadores/química , Biomarcadores/metabolismo , Humanos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo
10.
Semin Thromb Hemost ; 45(8): 802-809, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31622994

RESUMO

Platelets have long been considered simple anucleate cells that rapidly adhere and aggregate at sites of vascular injury. However, recent in vivo experimental data have shed new light on the platelet response to vascular injury. These data have unexpectedly revealed that platelet thrombus formation is a highly dynamic process and yields a platelet thrombus with a distinct hierarchical structure composed of a "core" of highly activated platelets and a "shell" of platelets in a low activation state. This has given rise to the concept that therapeutic targeting of the propagating thrombus shell may hold promise as a means to target thrombosis while sparing hemostasis. While platelets have been historically considered central to arterial thrombosis, they have been traditionally viewed as minor contributors to the formation of venous thrombosis. However, this concept has recently been challenged with the emergence of a large body of evidence highlighting the important proinflammatory function of platelets. The proinflammatory function of platelets is afforded by their ability to induce neutrophil extracellular trap formation, enhance leucocyte recruitment, and secrete granular contents such as high mobility group protein B1 and polyphosphate. These proinflammatory processes trigger coagulation, via the intrinsic pathway, and are central to the formation of venous thrombosis, a condition now appreciated to be a form of sterile inflammation. These data now place platelets at the center stage in orchestrating the thromboinflammatory response underpinning venous thrombosis and have provided new hope that novel platelet-targeted therapeutics may represent a safe and effective approach to prevent venous thrombosis.


Assuntos
Plaquetas/metabolismo , Trombose/sangue , Humanos
11.
Blood ; 139(11): 1612-1613, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35298603
19.
J Biol Chem ; 289(8): 5051-60, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24385425

RESUMO

The Dok proteins are a family of adaptor molecules that have a well defined role in regulating cellular migration, immune responses, and tumor progression. Previous studies have demonstrated that Doks-1 to 3 are expressed in platelets and that Dok-2 is tyrosine-phosphorylated downstream of integrin αIIbß3, raising the possibility that it participates in integrin αIIbß3 outside-in signaling. We demonstrate that Dok-2 in platelets is primarily phosphorylated by Lyn kinase. Moreover, deficiency of Dok-2 leads to dysregulated integrin αIIbß3-dependent cytosolic calcium flux and phosphatidylinositol(3,4)P2 accumulation. Although agonist-induced integrin αIIbß3 affinity regulation was unaltered in Dok-2(-/-) platelets, Dok-2 deficiency was associated with a shear-dependent increase in integrin αIIbß3 adhesive function, resulting in enhanced platelet-fibrinogen and platelet-platelet adhesive interactions under flow. This increase in adhesion was restricted to discoid platelets and involved the shear-dependent regulation of membrane tethers. Dok-2 deficiency was associated with an increased rate of platelet aggregate formation on thrombogenic surfaces, leading to accelerated thrombus growth in vivo. Overall, this study defines an important role for Dok-2 in regulating biomechanical adhesive function of discoid platelets. Moreover, they define a previously unrecognized prothrombotic mechanism that is not detected by conventional platelet function assays.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fosfoproteínas/metabolismo , Adesividade Plaquetária/fisiologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Resistência ao Cisalhamento , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Animais , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Plaquetas/ultraestrutura , Cálcio/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Fibrinogênio/farmacologia , Hemorreologia/efeitos dos fármacos , Humanos , Proteínas Imobilizadas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Fosfatos de Fosfatidilinositol/metabolismo , Fosfoproteínas/deficiência , Adesividade Plaquetária/efeitos dos fármacos , Resistência ao Cisalhamento/efeitos dos fármacos , Trombose/metabolismo , Trombose/patologia , Trombose/fisiopatologia , Fatores de Tempo
20.
Blood ; 132(5): 465-466, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30072414
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA