Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 644: 34-39, 2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36623396

RESUMO

Protein phosphatase 2A (PP2A) is targeted to the plant peroxisome via a C-terminal SSL sequence on its regulatory B' theta (θ) subunit. To date the substrates of peroxisomal PP2A are unknown but are thought to be recruited by the regulatory B'θ subunit. Employing yeast two hybrid screening, we have identified Arabidopsis E3 ligase SINA-like 10 as a B'θ binding partner. The E3 ligase SINA-like 10 was found to harbor the PP2A B'-binding Short Linear interaction Motif or SLiM, LxxIxE. This interaction was further verified both in vitro and in vivo using direct pulldown assays and bimolecular fluorescence complementation. Utilizing peroxisomal targeted and a cytosolic version of B'θ (lacking its C-terminal peroxisomal targeting sequence SSL>) bimolecular fluorescence complementation suggests an interaction to occur in the cytosol followed by piggybacking E3 ligase SINA-like 10 into peroxisomes. These results identify a first peroxisomal PP2A interactor, which also obtains a PP2A B'-binding SLiM.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteína Fosfatase 2/metabolismo , Peroxissomos/metabolismo , Ubiquitina-Proteína Ligases/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo
2.
Plant Cell ; 31(9): 2169-2186, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31266901

RESUMO

In Arabidopsis (Arabidopsis thaliana) leaves, starch is synthesized during the day and degraded at night to fuel growth and metabolism. Starch is degraded primarily by ß-amylases, liberating maltose, but this activity is preceded by glucan phosphorylation and is accompanied by dephosphorylation. A glucan phosphatase family member, LIKE SEX4 1 (LSF1), binds starch and is required for normal starch degradation, but its exact role is unclear. Here, we show that LSF1 does not dephosphorylate glucans. The recombinant dual specificity phosphatase (DSP) domain of LSF1 had no detectable phosphatase activity. Furthermore, a variant of LSF1 mutated in the catalytic cysteine of the DSP domain complemented the starch-excess phenotype of the lsf1 mutant. By contrast, a variant of LSF1 with mutations in the carbohydrate binding module did not complement lsf1 Thus, glucan binding, but not phosphatase activity, is required for the function of LSF1 in starch degradation. LSF1 interacts with the ß-amylases BAM1 and BAM3, and the BAM1-LSF1 complex shows amylolytic but not glucan phosphatase activity. Nighttime maltose levels are reduced in lsf1, and genetic analysis indicated that the starch-excess phenotype of lsf1 is dependent on bam1 and bam3 We propose that LSF1 binds ß-amylases at the starch granule surface, thereby promoting starch degradation.


Assuntos
Arabidopsis/metabolismo , Metabolismo dos Carboidratos/fisiologia , Fosfatases de Especificidade Dupla/metabolismo , Amido/metabolismo , beta-Amilase/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metabolismo dos Carboidratos/genética , Proteínas de Transporte , Clonagem Molecular , Fosfatases de Especificidade Dupla/genética , Regulação da Expressão Gênica de Plantas , Glucanos/metabolismo , Fosforilação , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes , Alinhamento de Sequência , Nicotiana/genética , Nicotiana/metabolismo , beta-Amilase/genética
3.
Biochem Biophys Res Commun ; 528(3): 607-611, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32513542

RESUMO

Protein phosphatase one (PP1) is a major eukaryotic serine/threonine protein phosphatase whose activity is controlled by targeting or regulatory subunits. Currently, very few plant protein phosphatase one regulatory subunits are known. Here, Arabidopsis GL2 EXPRESSION MODULATOR (GEM) was identified and confirmed as a protein phosphatase one binding partner. GEM is a phosphoprotein, contains a highly conserved phosphoinositide binding GRAM domain and a classic protein phosphatase one binding RVXF motif. Lipid overlays show GEM has the ability to interact with phosphoinositides through its GRAM domain. GEM is the first plant specific protein phosphatase one interactor to be discovered.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosfatidilinositóis/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sítios de Ligação/genética , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Ligação Proteica , Domínios Proteicos/genética , Proteína Fosfatase 1/metabolismo
4.
Mol Cell Proteomics ; 17(12): 2448-2461, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30228194

RESUMO

A "tug-of-war" between kinases and phosphatases establishes the phosphorylation states of proteins. While serine and threonine phosphorylation can be catalyzed by more than 400 protein kinases, the majority of serine and threonine dephosphorylation is carried out by seven phosphoprotein phosphatases (PPPs). The PPP family consists of protein phosphatases 1 (PP1), 2A (PP2A), 2B (PP2B), 4 (PP4), 5 (PP5), 6 (PP6), and 7 (PP7). The imbalance in numbers between serine- and threonine-directed kinases and phosphatases led to the early belief that PPPs are unspecific and that kinases are the primary determinants of protein phosphorylation. However, it is now clear that PPPs achieve specificity through association with noncatalytic subunits to form multimeric holoenzymes, which expands the number of functionally distinct signaling entities to several hundred. Although there has been great progress in deciphering signaling by kinases, much less is known about phosphatases.We have developed a chemical proteomic strategy for the systematic interrogation of endogenous PPP catalytic subunits and their interacting proteins, including regulatory and scaffolding subunits (the "PPPome"). PP1, PP2A, PP4, PP5, and PP6 were captured using an immobilized, specific but nonselective PPP inhibitor microcystin-LR (MCLR), followed by protein identification by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in a single analysis. Here, we combine this approach of phosphatase inhibitor bead profiling and mass spectrometry (PIB-MS) with label-free and tandem mass tag (TMT) quantification to map the PPPome in human cancer cell lines, mouse tissues, and yeast species, through which we identify cell- and tissue-type-specific PPP expression patterns and discover new PPP interacting proteins.


Assuntos
Domínio Catalítico , Microcistinas/farmacologia , Neoplasias/enzimologia , Fosfoproteínas Fosfatases/antagonistas & inibidores , Proteômica/métodos , Saccharomyces cerevisiae/enzimologia , Animais , Cromatografia Líquida , Células HeLa , Humanos , Células MCF-7 , Toxinas Marinhas , Camundongos , Fosfoproteínas Fosfatases/classificação , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Ligação Proteica , Transdução de Sinais , Espectrometria de Massas em Tandem
5.
Plant Physiol ; 173(2): 956-969, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27923987

RESUMO

Reversible protein phosphorylation catalyzed by protein kinases and phosphatases represents the most prolific and well-characterized posttranslational modification known. Here, we demonstrate that Arabidopsis (Arabidopsis thaliana) Shewanella-like protein phosphatase 2 (AtSLP2) is a bona fide Ser/Thr protein phosphatase that is targeted to the mitochondrial intermembrane space (IMS) where it interacts with the mitochondrial oxidoreductase import and assembly protein 40 (AtMIA40), forming a protein complex. Interaction with AtMIA40 is necessary for the phosphatase activity of AtSLP2 and is dependent on the formation of disulfide bridges on AtSLP2. Furthermore, by utilizing atslp2 null mutant, AtSLP2 complemented and AtSLP2 overexpressing plants, we identify a function for the AtSLP2-AtMIA40 complex in negatively regulating gibberellic acid-related processes during seed germination. Results presented here characterize a mitochondrial IMS-localized protein phosphatase identified in photosynthetic eukaryotes as well as a protein phosphatase target of the highly conserved eukaryotic MIA40 IMS oxidoreductase.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Arabidopsis/enzimologia , Germinação , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Sementes/embriologia , Sementes/metabolismo , Ácido Abscísico/farmacologia , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/química , Vias Biossintéticas/efeitos dos fármacos , Dissulfetos/metabolismo , Ativação Enzimática/efeitos dos fármacos , Germinação/efeitos dos fármacos , Giberelinas/biossíntese , Mitocôndrias/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/química , Modelos Biológicos , Oxirredução/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Sementes/efeitos dos fármacos , Alinhamento de Sequência , Especificidade por Substrato/efeitos dos fármacos , Triazóis/farmacologia
6.
J Biol Chem ; 291(11): 5926-5934, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26742850

RESUMO

Cellular signaling through protein tyrosine phosphorylation is well established in mammalian cells. Although lacking the classic tyrosine kinases present in humans, plants have a tyrosine phospho-proteome that rivals human cells. Here we report a novel plant tyrosine phosphatase from Arabidopsis thaliana (AtRLPH2) that, surprisingly, has the sequence hallmarks of a phospho-serine/threonine phosphatase belonging to the PPP family. Rhizobiales/Rhodobacterales/Rhodospirillaceae-like phosphatases (RLPHs) are conserved in plants and several other eukaryotes, but not in animals. We demonstrate that AtRLPH2 is localized to the plant cell cytosol, is resistant to the classic serine/threonine phosphatase inhibitors okadaic acid and microcystin, but is inhibited by the tyrosine phosphatase inhibitor orthovanadate and is particularly sensitive to inhibition by the adenylates, ATP and ADP. AtRLPH2 displays remarkable selectivity toward tyrosine-phosphorylated peptides versus serine/threonine phospho-peptides and readily dephosphorylates a classic tyrosine phosphatase protein substrate, suggesting that in vivo it is a tyrosine phosphatase. To date, only one other tyrosine phosphatase is known in plants; thus AtRLPH2 represents one of the missing pieces in the plant tyrosine phosphatase repertoire and supports the concept of protein tyrosine phosphorylation as a key regulatory event in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Arabidopsis/química , Arabidopsis/citologia , Proteínas de Arabidopsis/análise , Fosfoproteínas Fosfatases/análise , Fosforilação , Proteínas Tirosina Fosfatases/análise , Proteínas Tirosina Fosfatases/metabolismo
7.
Biochem Biophys Res Commun ; 484(4): 864-870, 2017 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-28188792

RESUMO

Centrosomal protein of 192 kDa (CEP192) is a scaffolding protein that recruits the mitotic protein kinases Aurora A and PLK1 to the centrosome. Here we demonstrate that CEP192 also recruits the type one protein phosphatase (PP1) via a highly conserved KHVTF docking motif. The threonine of the KHVTF motif is phosphorylated during mitosis and protein kinase inhibition studies suggest this to be a PLK1-dependent process.


Assuntos
Centrossomo/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Mitose/fisiologia , Receptores de Neuropeptídeo Y/química , Receptores de Neuropeptídeo Y/metabolismo , Sítios de Ligação , Centrossomo/ultraestrutura , Ativação Enzimática , Células HeLa , Humanos , Fosforilação , Ligação Proteica
8.
Biochem Biophys Res Commun ; 458(4): 739-44, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25666948

RESUMO

Protein phosphatase 2A (PP2A) is a major serine/threonine phosphatase of eukaryotes. PP2A containing the B55 subunit is a key regulator of mitosis and must be inhibited by phosphorylated α-endosulfine (ENSA) or cyclic AMP-regulated 19 kDa phosphoprotein (ARPP-19) to allow passage through mitosis. Exit from mitosis then requires dephosphorylation of ENSA/ARPP-19 to relieve inhibition of PP2A/B55. ENSA/ARPP-19 has been characterized in several vertebrates and budding yeast, but little is known about its presence in plants and the majority of other eukaryotes. Here we show that three isoforms of ENSA/ARPP-19 are present in the Arabidopsis thaliana genome with distinct expression profiles across various plant tissues. The ENSA/ARPP-19 proteins, and in particular their key inhibitory sequence FDSGDY (FDSADW in plants), is remarkably conserved across plants and most eukaryotes suggesting an ancient origin and conserved function to control PP2A activity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Peptídeos/metabolismo , Fosfoproteínas/metabolismo , Proteína Fosfatase 2/metabolismo , Sequência de Aminoácidos , Animais , Arabidopsis/química , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Biologia Computacional , Eucariotos , Regulação da Expressão Gênica de Plantas , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Mitose , Dados de Sequência Molecular , Fosfoproteínas/química , Fosfoproteínas/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Alinhamento de Sequência
9.
Biochem Biophys Res Commun ; 453(3): 432-7, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25281536

RESUMO

Protein phosphatase 1 (PP1), a serine/threonine protein phosphatase, controls diverse key cellular events. PP1 catalytic subunits form complexes with a variety of interacting proteins that control its ability to dephosphorylate substrates. Here we show that the human mitotic kinesin-8, KIF18A, directly interacts with PP1γ through a conserved RVxF motif. Our phylogenetic analyses of the kinesins further uncovered the broad conservation of this interaction potential within the otherwise highly diverse motor-protein superfamily. This suggests an ancestral origin of PP1 recruitment to KIF18A and a strategic role in human mitotic cells.


Assuntos
Cinesinas/metabolismo , Mitose , Proteína Fosfatase 1/metabolismo , Sítios de Ligação , Células HeLa , Humanos , Filogenia
10.
Plant Physiol ; 163(4): 1829-43, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24108212

RESUMO

Protein phosphorylation is a reversible regulatory process catalyzed by the opposing reactions of protein kinases and phosphatases, which are central to the proper functioning of the cell. Dysfunction of members in either the protein kinase or phosphatase family can have wide-ranging deleterious effects in both metazoans and plants alike. Previously, three bacterial-like phosphoprotein phosphatase classes were uncovered in eukaryotes and named according to the bacterial sequences with which they have the greatest similarity: Shewanella-like (SLP), Rhizobiales-like (RLPH), and ApaH-like (ALPH) phosphatases. Utilizing the wealth of data resulting from recently sequenced complete eukaryotic genomes, we conducted database searching by hidden Markov models, multiple sequence alignment, and phylogenetic tree inference with Bayesian and maximum likelihood methods to elucidate the pattern of evolution of eukaryotic bacterial-like phosphoprotein phosphatase sequences, which are predominantly distributed in photosynthetic eukaryotes. We uncovered a pattern of ancestral mitochondrial (SLP and RLPH) or archaeal (ALPH) gene entry into eukaryotes, supplemented by possible instances of lateral gene transfer between bacteria and eukaryotes. In addition to the previously known green algal and plant SLP1 and SLP2 protein forms, a more ancestral third form (SLP3) was found in green algae. Data from in silico subcellular localization predictions revealed class-specific differences in plants likely to result in distinct functions, and for SLP sequences, distinctive and possibly functionally significant differences between plants and nonphotosynthetic eukaryotes. Conserved carboxyl-terminal sequence motifs with class-specific patterns of residue substitutions, most prominent in photosynthetic organisms, raise the possibility of complex interactions with regulatory proteins.


Assuntos
Archaea/metabolismo , Bactérias/enzimologia , Eucariotos/enzimologia , Evolução Molecular , Transferência Genética Horizontal , Mitocôndrias/metabolismo , Fosfoproteínas Fosfatases/genética , Filogenia , Motivos de Aminoácidos , Sequência de Aminoácidos , Dados de Sequência Molecular , Fosfoproteínas Fosfatases/química , Fotossíntese , Transporte Proteico , Frações Subcelulares/enzimologia
11.
Biochem J ; 449(3): 649-59, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23088536

RESUMO

The serine/threonine PP-1c (protein phosphatase-1 catalytic subunit) is regulated by association with multiple regulatory subunits. Human ASPPs (apoptosis-stimulating proteins of p53) comprise three family members: ASPP1, ASPP2 and iASPP (inhibitory ASPP), which is uniquely overexpressed in many cancers. While ASPP2 and iASPP are known to bind PP-1c, we now identify novel and distinct molecular interactions that allow all three ASPPs to bind differentially to PP-1c isoforms and p53. iASPP lacks a PP-1c-binding RVXF motif; however, we show it interacts with PP-1c via a RARL sequence with a Kd value of 26 nM. Molecular modelling and mutagenesis of PP-1c-ASPP protein complexes identified two additional modes of interaction. First, two positively charged residues, Lys260 and Arg261 on PP-1c, interact with all ASPP family members. Secondly, the C-terminus of the PP-1c α, ß and γ isoforms contain a type-2 SH3 (Src homology 3) poly-proline motif (PxxPxR), which binds directly to the SH3 domains of ASPP1, ASPP2 and iASPP. In PP-1cγ this comprises residues 309-314 (PVTPPR). When the Px(T)PxR motif is deleted or mutated via insertion of a phosphorylation site mimic (T311D), PP-1c fails to bind to all three ASPP proteins. Overall, we provide the first direct evidence for PP-1c binding via its C-terminus to an SH3 protein domain.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Fosfatase 1/química , Proteína Fosfatase 1/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutagênese Sítio-Dirigida , Neoplasias/genética , Neoplasias/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteína Fosfatase 1/genética , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Ressonância de Plasmônio de Superfície , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Domínios de Homologia de src
12.
Plant J ; 71(2): 263-72, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22404109

RESUMO

It is now emerging that many proteins are regulated by a variety of covalent modifications. Using microcystin-affinity chromatography we have purified multiple protein phosphatases and their associated proteins from Arabidopsis thaliana. One major protein purified was the histone deacetylase HDA14. We demonstrate that HDA14 can deacetylate α-tubulin, associates with α/ß-tubulin and is retained on GTP/taxol-stabilized microtubules, at least in part, by direct association with the PP2A-A2 subunit. Like HDA14, the putative histone acetyltransferase ELP3 was purified on microcystin-Sepharose and is also enriched at microtubules, potentially functioning in opposition to HDA14 as the α-tubulin acetylating enzyme. Consistent with the likelihood of it having many substrates throughout the cell, we demonstrate that HDA14, ELP3 and the PP2A A-subunits A1, A2 and A3 all reside in both the nucleus and cytosol of the cell. The association of a histone deacetylase with PP2A suggests a direct link between protein phosphorylation and acetylation.


Assuntos
Arabidopsis/enzimologia , Histona Acetiltransferases/metabolismo , Histona Desacetilases/metabolismo , Microtúbulos/enzimologia , Proteína Fosfatase 2/metabolismo , Tubulina (Proteína)/metabolismo , Acetilação , Arabidopsis/citologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/enzimologia , Citosol/enzimologia , Histona Acetiltransferases/genética , Histona Acetiltransferases/isolamento & purificação , Histona Desacetilases/genética , Histona Desacetilases/isolamento & purificação , Microcistinas/química , Fosforilação , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/isolamento & purificação , Proteínas Recombinantes de Fusão
13.
Plant Physiol ; 157(4): 1778-92, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21976480

RESUMO

Protein phosphorylation, catalyzed by the opposing actions of protein kinases and phosphatases, is a cornerstone of cellular signaling and regulation. Since their discovery, protein phosphatases have emerged as highly regulated enzymes with specificity that rivals their counteracting kinase partners. However, despite years of focused characterization in mammalian and yeast systems, many protein phosphatases in plants remain poorly or incompletely characterized. Here, we describe a bioinformatic, biochemical, and cellular examination of an ancient, Bacterial-like subclass of the phosphoprotein phosphatase (PPP) family designated the Shewanella-like protein phosphatases (SLP phosphatases). The SLP phosphatase subcluster is highly conserved in all plants, mosses, and green algae, with members also found in select fungi, protists, and bacteria. As in other plant species, the nucleus-encoded Arabidopsis (Arabidopsis thaliana) SLP phosphatases (AtSLP1 and AtSLP2) lack genetic redundancy and phylogenetically cluster into two distinct groups that maintain different subcellular localizations, with SLP1 being chloroplastic and SLP2 being cytosolic. Using heterologously expressed and purified protein, the enzymatic properties of both AtSLP1 and AtSLP2 were examined, revealing unique metal cation preferences in addition to a complete insensitivity to the classic serine/threonine PPP protein phosphatase inhibitors okadaic acid and microcystin. The unique properties and high conservation of the plant SLP phosphatases, coupled to their exclusion from animals, red algae, cyanobacteria, archaea, and most bacteria, render understanding the function(s) of this new subclass of PPP family protein phosphatases of particular interest.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Fosfoproteínas Fosfatases/metabolismo , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Sequência de Bases , Clonagem Molecular , Biologia Computacional , Sequência Conservada , Escherichia coli/genética , Escherichia coli/metabolismo , Microcistinas/farmacologia , Dados de Sequência Molecular , Ácido Okadáico/farmacologia , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/isolamento & purificação , Fosforilação , Filogenia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Alinhamento de Sequência , Shewanella/genética , Vicia faba/genética , Vicia faba/metabolismo
14.
Biochem J ; 435(1): 73-83, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21222654

RESUMO

PP1 (protein phosphatase 1) is among the most conserved enzymes known, with one or more isoforms present in all sequenced eukaryotic genomes. PP1 dephosphorylates specific serine/threonine phosphoproteins as defined by associated regulatory or targeting subunits. In the present study we performed a PP1-binding screen to find putative PP1 interactors in Arabidopsis thaliana and uncovered a homologue of the ancient PP1 interactor, I-2 (inhibitor-2). Bioinformatic analysis revealed remarkable conservation of three regions of plant I-2 that play key roles in binding to PP1 and regulating its function. The sequence-related properties of plant I-2 were compared across eukaryotes, indicating a lack of I-2 in some species and the emergence points from key motifs during the evolution of this ancient regulator. Biochemical characterization of AtI-2 (Arabidopsis I-2) revealed its ability to inhibit all plant PP1 isoforms and inhibitory dependence requiring the primary interaction motif known as RVXF. Arabidopsis I-2 was shown to be a phosphoprotein in vivo that was enriched in the nucleus. TAP (tandem affinity purification)-tag experiments with plant I-2 showed in vivo association with several Arabidopsis PP1 isoforms and identified other potential I-2 binding proteins.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Proteína Fosfatase 1/química , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Proteínas de Arabidopsis/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Biologia Computacional/métodos , Bases de Dados de Proteínas , Dados de Sequência Molecular , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/isolamento & purificação , Fosfoproteínas/metabolismo , Filogenia , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Estruturas Vegetais/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/isolamento & purificação , Isoformas de Proteínas/metabolismo , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/isolamento & purificação , Proteína Fosfatase 1/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
15.
Front Cell Dev Biol ; 10: 745883, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242755

RESUMO

Peroxisomes are eukaryotic specific organelles that perform diverse metabolic functions including fatty acid ß-oxidation, reactive species metabolism, photorespiration, and responses to stress. However, the potential regulation of these functions by post-translational modifications, including protein phosphorylation, has had limited study. Recently, we identified and catalogued a large number of peroxisomal phosphorylated proteins, implicating the presence of protein kinases in this organelle. Here, we employed available prediction models coupled with sequence conservation analysis to identify 31 protein kinases from the Arabidopsis kinome (all protein kinases) that contain a putative, non-canonical peroxisomal targeting signal type 1 (PTS1). From this, twelve C-terminal domain-PTS1s were demonstrated to be functional in vivo, targeting enhanced yellow fluorescent protein to peroxisomes, increasing the list of presumptive peroxisomal protein kinases to nineteen. Of the twelve protein kinases with functional PTS1s, we obtained full length clones for eight and demonstrated that seven target to peroxisomes in vivo. Screening homozygous mutants of the presumptive nineteen protein kinases revealed one candidate (GPK1) that harbors a sugar-dependence phenotype, suggesting it is involved in regulating peroxisomal fatty acid ß-oxidation. These results present new opportunities for investigating the regulation of peroxisome functions.

16.
Methods Mol Biol ; 2329: 205-221, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34085225

RESUMO

Reversible protein phosphorylation regulates the transitions between different phases of the cell cycle ensuring proper segregation of the duplicated genome into two daughter cells. Protein kinases and protein phosphatases establish the appropriate phosphorylation stoichiometries in diverse substrates maintaining genomic stability as a cell undergoes this complex process. Along with regulating common substrates, these opposing enzymes regulate one another by fine-tuning each other's activity both spatially and temporally throughout mitosis. Protein phosphatase catalytic subunits work together with regulatory proteins, which control their localization, activity, and specificity. Protein phosphatase 1 (PP1) recognizes its regulatory proteins via a short linear interaction motif (SLIM) called the "RVxF" motif. A subset of proteins with these "RVxF" motifs contain a phosphorylatable amino acid (S/T) at the 'x' position.Here, we describe methods to generate, affinity purify and utilize phospho-specific antibodies to monitor phosphorylation sites during the cell cycle and the appropriate use of mitotic kinase inhibitors. More specifically, we employ phospho-specific antibodies, which recognize phosphorylated RVp[S/T]F motif-containing proteins, to monitor the phosphorylation status of these motifs throughout the cell cycle. Furthermore, we use mitotic kinase inhibitors to examine the effect of kinase inhibition on the phosphorylation status of multiple RV[S/T]F motifs using these phospho-specific antibodies.


Assuntos
Anticorpos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteína Fosfatase 1/metabolismo , Proteínas/química , Motivos de Aminoácidos/efeitos dos fármacos , Sítios de Ligação , Ciclo Celular , Células HeLa , Humanos , Fosforilação , Ligação Proteica , Proteínas/efeitos dos fármacos , Proteínas/metabolismo
17.
Sci Rep ; 11(1): 13681, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34211082

RESUMO

Phosphoprotein phosphatase (PPP) enzymes are ubiquitous proteins involved in cellular signaling pathways and other functions. Here we have traced the origin of the PPP sequences of Eukaryotes and their radiation. Using a bacterial PPP Hidden Markov Model (HMM) we uncovered "BacterialPPP-Like" sequences in Archaea. A HMM derived from eukaryotic PPP enzymes revealed additional, unique sequences in Archaea and Bacteria that were more like the eukaryotic PPP enzymes then the bacterial PPPs. These sequences formed the basis of phylogenetic tree inference and sequence structural analysis allowing the history of these sequence types to be elucidated. Our phylogenetic tree data strongly suggest that eukaryotic PPPs ultimately arose from ancestors in the Asgard archaea. We have clarified the radiation of PPPs within Eukaryotes, substantially expanding the range of known organisms with PPP subtypes (Bsu1, PP7, PPEF/RdgC) previously thought to have a more restricted distribution. Surprisingly, sequences from the Methanosarcinaceae (Euryarchaeota) form a strongly supported sister group to eukaryotic PPPs in our phylogenetic analysis. This strongly suggests an intimate association between an Asgard ancestor and that of the Methanosarcinaceae. This is highly reminiscent of the syntrophic association recently demonstrated between the cultured Lokiarchaeal species Prometheoarchaeum and a methanogenic bacterial species.


Assuntos
Archaea/enzimologia , Bactérias/enzimologia , Eucariotos/enzimologia , Fosfoproteínas Fosfatases/química , Sequência de Aminoácidos , Animais , Archaea/química , Archaea/genética , Bactérias/química , Bactérias/genética , Eucariotos/química , Eucariotos/genética , Evolução Molecular , Humanos , Fosfoproteínas Fosfatases/genética , Filogenia
18.
Nat Protoc ; 16(10): 4919-4943, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34518704

RESUMO

Phosphoprotein phosphatases (PPPs) execute >90% of serine/threonine dephosphorylation in cells and tissues. While the role of PPPs in cell biology and diseases such as cancer, cardiac hypertrophy and Alzheimer's disease is well established, the molecular mechanisms governing and governed by PPPs still await discovery. Here we describe a chemical proteomic strategy, phosphatase inhibitor beads and mass spectrometry (PIB-MS), that enables the identification and quantification of PPPs and their posttranslational modifications in as little as 12 h. Using a specific but nonselective PPP inhibitor immobilized on beads, PIB-MS enables the efficient affinity-capture, identification and quantification of endogenous PPPs and associated proteins ('PPPome') from cells and tissues. PIB-MS captures functional, endogenous PPP subunit interactions and enables discovery of new binding partners. It performs PPP enrichment without exogenous expression of tagged proteins or specific antibodies. Because PPPs are among the most conserved proteins across evolution, PIB-MS can be employed in any cell line, tissue or organism.


Assuntos
Fosfoproteínas Fosfatases , Proteômica , Espectrometria de Massas
19.
BBA Adv ; 1: 100005, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37082010

RESUMO

Background: Phosphoprotein phosphatases (PPP) belong to the PPP Sequence family, which in turn belongs to the broader metallophosphoesterase (MPE) superfamily. The relationship between the PPP Sequence family and other members of the MPE superfamily remains unresolved, in particular what transitions took place in an ancestral MPE to ultimately produce the phosphoprotein specific phosphatases (PPPs). Methods: We use structural and sequence alignment data, phylogenetic tree analysis, sequence signature (Weblogo) analysis, in silico protein-peptide modeling data, and in silico mutagenesis to trace a likely route of evolution from MPEs to the PPP Sequence family. Hidden Markov Model (HMM) based iterative database search strategies were utilized to identify PPP Sequence Family members from numerous bacterial groups. Results: Using Mre11 as proxy for an ancestral nuclease-like MPE we trace a possible evolutionary route that alters a single active site substrate binding His-residue to yield a new substrate binding accessory, the "2-Arg-Clamp". The 2-Arg-Clamp is not found in MPEs, but is present in all PPP Sequence family members, where the phosphomonesterase reaction predominates. Variation in position of the clamp arginines and a supplemental sequence loop likely provide substrate specificity for each PPP Sequence family group. Conclusions: Loss of a key substrate binding His-in MPEs opened the path to bind novel substrates and evolution of the 2-Arg-Clamp, a sequence change seen in both bacterial and eukaryotic phosphoprotein phosphatases.General significance: We establish a likely evolutionary route from nuclease-like MPE to PPP Sequence family enzymes, that includes the phosphoprotein phosphatases.

20.
BMC Evol Biol ; 10: 196, 2010 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-20576132

RESUMO

BACKGROUND: Phosphorylated phosphatidylinositol (PtdIns) lipids, produced and modified by PtdIns kinases and phosphatases, are critical to the regulation of diverse cellular functions. The myotubularin PtdIns-phosphate phosphatases have been well characterized in yeast and especially animals, where multiple isoforms, both catalytically active and inactive, occur. Myotubularin mutations bring about disruption of cellular membrane trafficking, and in humans, disease. Previous studies have suggested that myotubularins are widely distributed amongst eukaryotes, but key evolutionary questions concerning the origin of different myotubularin isoforms remain unanswered, and little is known about the function of these proteins in most organisms. RESULTS: We have identified 80 myotubularin homologues amidst the completely sequenced genomes of 30 organisms spanning four eukaryotic supergroups. We have mapped domain architecture, and inferred evolutionary histories. We have documented an expansion in the Amoebozoa of a family of inactive myotubularins with a novel domain architecture, which we dub "IMLRK" (inactive myotubularin/LRR/ROCO/kinase). There is an especially large myotubularin gene family in the pathogen Entamoeba histolytica, the majority of them IMLRK proteins. We have analyzed published patterns of gene expression in this organism which indicate that myotubularins may be important to critical life cycle stage transitions and host infection. CONCLUSIONS: This study presents an overall framework of eukaryotic myotubularin gene evolution. Inactive myotubularin homologues with distinct domain architectures appear to have arisen on three separate occasions in different eukaryotic lineages. The large and distinctive set of myotubularin genes found in an important pathogen species suggest that in this organism myotubularins might present important new targets for basic research and perhaps novel therapeutic strategies.


Assuntos
Amebozoários/genética , Evolução Molecular , Filogenia , Proteínas Tirosina Fosfatases não Receptoras/genética , Sequência de Aminoácidos , Animais , Expressão Gênica , Humanos , Dados de Sequência Molecular , Família Multigênica , Fosfatos de Fosfatidilinositol/metabolismo , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA