Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Immunol ; 208(7): 1554-1565, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35321879

RESUMO

Type 1 diabetes (T1D) is characterized by the loss of immune self-tolerance, resulting in an aberrant immune responses against self-tissue. A few therapeutics have been partially successful in reverting or slowing down T1D progression in patients, and the infusion of autologous hematopoietic stem cells (HSCs) is emerging as an option to be explored. In this study, we proposed to pharmacologically enhance by ex vivo modulation with small molecules the immunoregulatory and trafficking properties of HSCs to provide a safer and more efficacious treatment option for patients with T1D and other autoimmune disorders. A high-throughput targeted RNA sequencing screening strategy was used to identify a combination of small molecules (16,16-dimethyl PGE2 and dexamethasone), which significantly upregulate key genes involved in trafficking (e.g., CXCR4) and immunoregulation (e.g., programmed death ligand 1). The pharmacologically enhanced, ex vivo-modulated HSCs (regulatory HSCs [HSC.Regs]) have strong trafficking properties to sites of inflammation in a mouse model of T1D, reverted autoimmune diabetes in NOD mice, and delayed experimental multiple sclerosis and rheumatoid arthritis in preclinical models. Mechanistically, HSC.Regs reduced lymphocytic infiltration of pancreatic ß cells and inhibited the activity of autoreactive T cells. Moreover, when tested in clinically relevant in vitro autoimmune assays, HSC.Regs abrogated the autoimmune response. Ex vivo pharmacological modulation enhances the immunoregulatory and trafficking properties of HSCs, thus generating HSC.Regs, which mitigated autoimmune diabetes and other autoimmune disorders.


Assuntos
Doenças Autoimunes , Diabetes Mellitus Tipo 1 , Transplante de Células-Tronco Hematopoéticas , Animais , Doenças Autoimunes/terapia , Diabetes Mellitus Tipo 1/terapia , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas , Humanos , Camundongos , Camundongos Endogâmicos NOD
2.
Acta Neuropathol ; 134(1): 97-111, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28247063

RESUMO

A common feature of inherited and sporadic ALS is accumulation of abnormal proteinaceous inclusions in motor neurons and glia. SOD1 is the major protein component accumulating in patients with SOD1 mutations, as well as in mutant SOD1 mouse models. ALS-linked mutations of SOD1 have been shown to increase its propensity to misfold and/or aggregate. Antibodies specific for monomeric or misfolded SOD1 have detected misfolded SOD1 accumulating predominantly in spinal cord motor neurons of ALS patients with SOD1 mutations. We now use seven different conformationally sensitive antibodies to misfolded human SOD1 (including novel high affinity antibodies currently in pre-clinical development) coupled with immunohistochemistry, immunofluorescence and immunoprecipitation to test for the presence of misfolded SOD1 in high quality human autopsy samples. Whereas misfolded SOD1 is readily detectable in samples from patients with SOD1 mutations, it is below detection limits for all of our measures in spinal cord and cortex tissues from patients with sporadic or non-SOD1 inherited ALS. The absence of evidence for accumulated misfolded SOD1 supports a conclusion that SOD1 misfolding is not a primary component of sporadic ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Superóxido Dismutase-1/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Modelos Animais de Doenças , Feminino , Humanos , Imuno-Histoquímica , Imunoprecipitação , Masculino , Camundongos Transgênicos , Pessoa de Meia-Idade , Dobramento de Proteína , Medula Espinal/metabolismo , Medula Espinal/patologia , Superóxido Dismutase-1/genética , Adulto Jovem
3.
Proc Natl Acad Sci U S A ; 110(8): E736-45, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23382207

RESUMO

Transactivating response region DNA binding protein (TDP-43) is the major protein component of ubiquitinated inclusions found in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with ubiquitinated inclusions. Two ALS-causing mutants (TDP-43(Q331K) and TDP-43(M337V)), but not wild-type human TDP-43, are shown here to provoke age-dependent, mutant-dependent, progressive motor axon degeneration and motor neuron death when expressed in mice at levels and in a cell type-selective pattern similar to endogenous TDP-43. Mutant TDP-43-dependent degeneration of lower motor neurons occurs without: (i) loss of TDP-43 from the corresponding nuclei, (ii) accumulation of TDP-43 aggregates, and (iii) accumulation of insoluble TDP-43. Computational analysis using splicing-sensitive microarrays demonstrates alterations of endogenous TDP-43-dependent alternative splicing events conferred by both human wild-type and mutant TDP-43(Q331K), but with high levels of mutant TDP-43 preferentially enhancing exon exclusion of some target pre-mRNAs affecting genes involved in neurological transmission and function. Comparison with splicing alterations following TDP-43 depletion demonstrates that TDP-43(Q331K) enhances normal TDP-43 splicing function for some RNA targets but loss-of-function for others. Thus, adult-onset motor neuron disease does not require aggregation or loss of nuclear TDP-43, with ALS-linked mutants producing loss and gain of splicing function of selected RNA targets at an early disease stage.


Assuntos
Esclerose Lateral Amiotrófica/genética , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Mutação , Splicing de RNA , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Proteínas de Ligação a DNA/metabolismo , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase em Tempo Real , Ubiquitinação
4.
J Neurosci ; 33(11): 4657-71, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23486940

RESUMO

Mitochondria have been proposed as targets for toxicity in amyotrophic lateral sclerosis (ALS), a progressive, fatal adult-onset neurodegenerative disorder characterized by the selective loss of motor neurons. A decrease in the capacity of spinal cord mitochondria to buffer calcium (Ca(2+)) has been observed in mice expressing ALS-linked mutants of SOD1 that develop motor neuron disease with many of the key pathological hallmarks seen in ALS patients. In mice expressing three different ALS-causing SOD1 mutants, we now test the contribution of the loss of mitochondrial Ca(2+)-buffering capacity to disease mechanism(s) by eliminating ubiquitous expression of cyclophilin D, a critical regulator of Ca(2+)-mediated opening of the mitochondrial permeability transition pore that determines mitochondrial Ca(2+) content. A chronic increase in mitochondrial buffering of Ca(2+) in the absence of cyclophilin D was maintained throughout disease course and was associated with improved mitochondrial ATP synthesis, reduced mitochondrial swelling, and retention of normal morphology. This was accompanied by an attenuation of glial activation, reduction in levels of misfolded SOD1 aggregates in the spinal cord, and a significant suppression of motor neuron death throughout disease. Despite this, muscle denervation, motor axon degeneration, and disease progression and survival were unaffected, thereby eliminating mutant SOD1-mediated loss of mitochondrial Ca(2+) buffering capacity, altered mitochondrial morphology, motor neuron death, and misfolded SOD1 aggregates, as primary contributors to disease mechanism for fatal paralysis in these models of familial ALS.


Assuntos
Esclerose Lateral Amiotrófica , Cálcio/metabolismo , Mitocôndrias/metabolismo , Neurônios Motores/patologia , Superóxido Dismutase/metabolismo , Trifosfato de Adenosina/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/mortalidade , Esclerose Lateral Amiotrófica/patologia , Animais , Anticorpos/farmacologia , Axônios/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Morte Celular/genética , Cromatografia em Gel , Peptidil-Prolil Isomerase F , Ciclofilinas/deficiência , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Força da Mão/fisiologia , Humanos , Imunoprecipitação , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Microscopia Eletrônica de Transmissão , Mitocôndrias/genética , Mitocôndrias/patologia , Neurônios Motores/ultraestrutura , Mutação/genética , Junção Neuromuscular/patologia , Superóxido Dismutase/genética , Superóxido Dismutase/imunologia , Superóxido Dismutase-1
5.
J Biol Chem ; 288(35): 25266-25274, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-23867462

RESUMO

Dysfunction of two structurally and functionally related proteins, FUS and TAR DNA-binding protein of 43 kDa (TDP-43), implicated in crucial steps of cellular RNA metabolism can cause amyotrophic lateral sclerosis (ALS) and certain other neurodegenerative diseases. The proteins are intrinsically aggregate-prone and form non-amyloid inclusions in the affected nervous tissues, but the role of these proteinaceous aggregates in disease onset and progression is still uncertain. To address this question, we designed a variant of FUS, FUS 1-359, which is predominantly cytoplasmic, highly aggregate-prone, and lacks a region responsible for RNA recognition and binding. Expression of FUS 1-359 in neurons of transgenic mice, at a level lower than that of endogenous FUS, triggers FUSopathy associated with severe damage of motor neurons and their axons, neuroinflammatory reaction, and eventual loss of selective motor neuron populations. These pathological changes cause abrupt development of a severe motor phenotype at the age of 2.5-4.5 months and death of affected animals within several days of onset. The pattern of pathology in transgenic FUS 1-359 mice recapitulates several key features of human ALS with the dynamics of the disease progression compressed in line with shorter mouse lifespan. Our data indicate that neuronal FUS aggregation is sufficient to cause ALS-like phenotype in transgenic mice.


Assuntos
Sequência de Aminoácidos , Esclerose Lateral Amiotrófica/metabolismo , Axônios/metabolismo , Neurônios Motores/metabolismo , Sinais de Localização Nuclear , Proteína FUS de Ligação a RNA/biossíntese , Deleção de Sequência , Motivos de Aminoácidos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Axônios/patologia , Citoplasma/genética , Citoplasma/metabolismo , Citoplasma/patologia , Humanos , Camundongos , Camundongos Transgênicos , Neurônios Motores/patologia , Fenótipo , RNA , Proteína FUS de Ligação a RNA/genética
6.
Biochim Biophys Acta ; 1783(5): 904-11, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18339324

RESUMO

Stomatin is a member of a large family of proteins including prohibitins, HflK/C, flotillins, mechanoreceptors and plant defense proteins, that are thought to play a role in protein turnover. Using different proteomic approaches, we and others have identified SLP-2, a member of the stomatin gene family, as a component of the mitochondria. In this study, we show that SLP-2 is strongly associated with the mitochondrial inner membrane and that it interacts with prohibitins. Depleting HeLa cells of SLP-2 lead to increased proteolysis of prohibitins and of subunits of the respiratory chain complexes I and IV. Further supporting the role of SLP-2 in regulating the stability of specific mitochondrial proteins, we found that SLP-2 is up-regulated under conditions of mitochondrial stress leading to increased protein turnover. These data indicate that SLP-2 plays a role in regulating the stability of mitochondrial proteins including prohibitins and subunits of respiratory chain complexes.


Assuntos
Proteínas Sanguíneas/metabolismo , Proteínas de Membrana/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Repressoras/metabolismo , Animais , Células Cultivadas , Complexo I de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Células HeLa , Humanos , Imunoprecipitação , Mitocôndrias/metabolismo , Proibitinas
7.
J Cell Biol ; 159(6): 923-9, 2002 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-12486111

RESUMO

Mitochondrial outer membrane permeabilization by proapoptotic Bcl-2 family proteins, such as Bax, plays a crucial role in apoptosis induction. However, whether this only causes the intracytosolic release of inducers of caspase-dependent death, such as cytochrome c, or also of caspase-independent death, such as apoptosis-inducing factor (AIF) remains unknown. Here, we show that on isolated mitochondria, Bax causes the release of cytochrome c, but not of AIF, and the association of AIF with the mitochondrial inner membrane provides a simple explanation for its lack of release upon Bax-mediated outer membrane permeabilization. In cells overexpressing Bax or treated either with the Bax- or Bak-dependent proapoptotic drugs staurosporine or actinomycin D, or with hydrogen peroxide, caspase inhibitors did not affect the intracytosolic translocation of cytochrome c, but prevented that of AIF. These results provide a paradigm for mitochondria-dependent death pathways in which AIF cannot substitute for caspase executioners because its intracytosolic release occurs downstream of that of cytochrome c.


Assuntos
Apoptose , Grupo dos Citocromos c/metabolismo , Flavoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Animais , Fator de Indução de Apoptose , Western Blotting , Inibidores de Caspase , Morte Celular , Linhagem Celular , Dactinomicina/farmacologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Eletroforese em Gel de Poliacrilamida , Células HeLa , Humanos , Peróxido de Hidrogênio/farmacologia , Membranas Intracelulares/metabolismo , Fígado/metabolismo , Microscopia de Fluorescência , Inibidores da Síntese de Proteínas/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Frações Subcelulares/metabolismo , Transfecção , Proteína X Associada a bcl-2
8.
Mol Cell Biol ; 26(20): 7397-408, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17015472

RESUMO

Apoptosis, induced by a number of death stimuli, is associated with a fragmentation of the mitochondrial network. These morphological changes in mitochondria have been shown to require proteins, such as Drp1 or hFis1, which are involved in regulating the fission of mitochondria. However, the precise role of mitochondrial fission during apoptosis remains elusive. Here we report that inhibiting the fission machinery in Bax/Bak-mediated apoptosis, by down-regulating of Drp1 or hFis1, prevents the fragmentation of the mitochondrial network and partially inhibits the release of cytochrome c from the mitochondria but fails to block the efflux of Smac/DIABLO. In addition, preventing mitochondrial fragmentation does not inhibit cell death induced by Bax/Bak-dependent death stimuli, in contrast to the effects of Bcl-xL or caspase inhibition. Therefore, the fission of mitochondria is a dispensable event in Bax/Bak-dependent apoptosis.


Assuntos
Apoptose , Mitocôndrias/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Linhagem Celular , Chlorocebus aethiops , Citocromos c/metabolismo , Dinaminas , GTP Fosfo-Hidrolases/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Microscopia Eletrônica de Transmissão , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , Proteínas Mitocondriais/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/genética
9.
Elife ; 82019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30747709

RESUMO

Mutations in coding and non-coding regions of FUS cause amyotrophic lateral sclerosis (ALS). The latter mutations may exert toxicity by increasing FUS accumulation. We show here that broad expression within the nervous system of wild-type or either of two ALS-linked mutants of human FUS in mice produces progressive motor phenotypes accompanied by characteristic ALS-like pathology. FUS levels are autoregulated by a mechanism in which human FUS downregulates endogenous FUS at mRNA and protein levels. Increasing wild-type human FUS expression achieved by saturating this autoregulatory mechanism produces a rapidly progressive phenotype and dose-dependent lethality. Transcriptome analysis reveals mis-regulation of genes that are largely not observed upon FUS reduction. Likely mechanisms for FUS neurotoxicity include autophagy inhibition and defective RNA metabolism. Thus, our results reveal that overriding FUS autoregulation will trigger gain-of-function toxicity via altered autophagy-lysosome pathway and RNA metabolism function, highlighting a role for protein and RNA dyshomeostasis in FUS-mediated toxicity.


Assuntos
Autofagia , Homeostase , Lisossomos/metabolismo , Proteína FUS de Ligação a RNA/biossíntese , Proteína FUS de Ligação a RNA/toxicidade , RNA/metabolismo , Animais , Perfilação da Expressão Gênica , Humanos , Camundongos Endogâmicos C57BL , Proteínas Mutantes/biossíntese , Proteínas Mutantes/genética , Proteínas Mutantes/toxicidade , Proteína FUS de Ligação a RNA/genética
10.
Neuron ; 100(4): 816-830.e7, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30344044

RESUMO

Through the generation of humanized FUS mice expressing full-length human FUS, we identify that when expressed at near endogenous murine FUS levels, both wild-type and ALS-causing and frontotemporal dementia (FTD)-causing mutations complement the essential function(s) of murine FUS. Replacement of murine FUS with mutant, but not wild-type, human FUS causes stress-mediated induction of chaperones, decreased expression of ion channels and transporters essential for synaptic function, and reduced synaptic activity without loss of nuclear FUS or its cytoplasmic aggregation. Most strikingly, accumulation of mutant human FUS is shown to activate an integrated stress response and to inhibit local, intra-axonal protein synthesis in hippocampal neurons and sciatic nerves. Collectively, our evidence demonstrates that human ALS/FTD-linked mutations in FUS induce a gain of toxicity that includes stress-mediated suppression in intra-axonal translation, synaptic dysfunction, and progressive age-dependent motor and cognitive disease without cytoplasmic aggregation, altered nuclear localization, or aberrant splicing of FUS-bound pre-mRNAs. VIDEO ABSTRACT.


Assuntos
Esclerose Lateral Amiotrófica/genética , Axônios/fisiologia , Demência Frontotemporal/genética , Mutação com Perda de Função/genética , Biossíntese de Proteínas/fisiologia , Proteína FUS de Ligação a RNA/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Axônios/patologia , Células Cultivadas , Feminino , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Gravidez , Proteína FUS de Ligação a RNA/biossíntese
11.
Biochim Biophys Acta ; 1763(5-6): 522-30, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16762428

RESUMO

Apoptosis is a form of programmed cell death that is essential for the development and tissue homeostasis in all metazoan animals. Mitochondria play a critical role during apoptosis, since the release of pro-apoptogenic proteins from the organelle is a pivotal event in cell death triggered by many cytotoxic stimuli. A striking morphological change occurring during apoptosis is the disintegration of the semi-reticular mitochondrial network into small punctiform organelles. It is only recently that this event has been shown to require the activity of proteins involved in the physiological processes of mitochondrial fission and fusion. Here, we discuss how this mitochondrial morphological transition occurs during cell death and the role that it may have in apoptosis.


Assuntos
Apoptose , Mitocôndrias/fisiologia , Animais , Humanos
12.
Novartis Found Symp ; 287: 170-6; discussion 176-82, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18074638

RESUMO

In response to many apoptotic stimuli, Bcl-2 family pro-apoptotic members, such as Bax and Bak, are activated. This results in their oligomerization, permeabilization of the outer mitochondrial membrane, and release of many proteins that are normally confined in the mitochondrial inter-membrane space. Among these proteins are cytochrome c, Smac/DIABLO, OMI/HtrA2, AIF and endonuclease G. Mitochondrial outer membrane permeabilization (MOMP) is also associated with fragmentation of the mitochondrial network. The mechanisms that lead to the oligomerization of proapoptotic members of the Bcl-2 family and to MOMP are still unclear and the role of mitochondrial fission in these events remains elusive.


Assuntos
Permeabilidade da Membrana Celular/fisiologia , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Humanos
13.
Expert Rev Proteomics ; 2(4): 541-51, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16097887

RESUMO

Mitochondria are essential organelles for cellular homeostasis. A variety of pathologies including cancer, myopathies, diabetes, obesity, aging and neurodegenerative diseases are linked to mitochondrial dysfunction. Therefore, mapping the different components of mitochondria is of particular interest to gain further understanding of such diseases. In recent years, proteomics-based approaches have been developed in attempts to determine the complete set of mitochondrial proteins in yeast, plants and mammals. In addition, proteomics-based methods have been applied not only to the analysis of protein function in the organelle, but also to identify biomarkers for diagnosis and therapeutic targets of specific pathologies associated with mitochondria. Altogether, it is becoming clear that proteomics is a powerful tool not only to identify currently unknown components of the mitochondrion, but also to study the different roles of the organelle in cellular homeostasis.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Animais , Apoptose , Transporte Biológico , Humanos , Mitocôndrias/química , Proteínas Mitocondriais/classificação , Oxirredução , Proteoma/classificação
14.
Essays Biochem ; 39: 41-51, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14585073

RESUMO

Mitochondria play a central role in apoptosis triggered by many stimuli. They integrate death signals through Bcl-2 family members and co-ordinate caspase activation through the release of apoptogenic factors that are normally sequestered in the mitochondrial intermembrane space. The release of these proteins is the result of the outer mitochondrial membrane becoming permeable. In addition, mitochondria can initiate apoptosis through the production of reactive oxygen species.


Assuntos
Apoptose , Mitocôndrias/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica , Mitocôndrias/fisiologia , Modelos Biológicos , Oxigênio/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
16.
Bio Protoc ; 3(21)2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-27819013

RESUMO

Mitochondria are eukaryotic organelles that play a crucial role in several cellular processes, including energy production, ß-oxidation of fatty acids and regulation of calcium homeostasis. In the last 20 years there has been a hightened interest in the study of mitochondria following the discoveries that mitochondria are central to the process of programmed cell death and that mitochondrial dysfunctions are implicated in numerous diseases including a wide range of neurological disorders such as Parkinson's disease, Alzheimer's disease, Huntington's disease and amyotrophic lateral sclerosis. In order to identify and study changes in mitochondrial function related to specific neurological conditions the mitochondria are often isolated from the compartment of the central nervous system most affected during disease. Here, we describe a protocol for the isolation of mitochondria from mouse spinal cord, a compartment of the central nervous system that is significantly affected in neuromuscular diseases such as amyotrophic lateral sclerosis. This method relies on differential centrifugation to separate the mitochondria from the other subcellular compartments.

17.
Cell Metab ; 15(5): 778-86, 2012 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-22560226

RESUMO

The transcriptional coactivator PGC-1α induces multiple effects on muscle, including increased mitochondrial mass and activity. Amyotrophic lateral sclerosis (ALS) is a progressive, fatal, adult-onset neurodegenerative disorder characterized by selective loss of motor neurons and skeletal muscle degeneration. An early event is thought to be denervation-induced muscle atrophy accompanied by alterations in mitochondrial activity and morphology within muscle. We now report that elevation of PGC-1α levels in muscles of mice that develop fatal paralysis from an ALS-causing SOD1 mutant elevates PGC-1α-dependent pathways throughout disease course. Mitochondrial biogenesis and activity are maintained through end-stage disease, accompanied by retention of muscle function, delayed muscle atrophy, and significantly improved muscle endurance even at late disease stages. However, survival was not extended. Therefore, muscle is not a primary target of mutant SOD1-mediated toxicity, but drugs increasing PGC-1α activity in muscle represent an attractive therapy for maintaining muscle function during progression of ALS.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Mitocôndrias/metabolismo , Músculo Esquelético/fisiopatologia , Transativadores/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Humanos , Camundongos , Camundongos Transgênicos , Mitocôndrias/genética , Neurônios Motores/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatologia , Paralisia/genética , Paralisia/metabolismo , Paralisia/fisiopatologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Transativadores/genética , Fatores de Transcrição
18.
Cell Calcium ; 47(1): 11-8, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19944461

RESUMO

Mitochondria play a major role in cellular calcium homeostasis. Despite decades of studies, the molecules that mediate and regulate the transport of calcium ions in and out of the mitochondrial matrix remain unknown. Here, we investigate whether SLP-2, an inner membrane mitochondrial protein of unknown function, modulates the activity of mitochondrial Ca(2+) transporters. In HeLa cells depleted of SLP-2, the amplitude and duration of mitochondrial Ca(2+) elevations evoked by agonists were decreased compared to control cells. SLP-2 depletion increased the rates of calcium extrusion from mitochondria. This effect disappeared upon Na(+) removal or addition of CGP-37157, an inhibitor of the mitochondrial Na(+)/Ca(2+) exchanger, and persisted in permeabilized cells exposed to a fixed cytosolic Na(+) and Ca(2+) concentration. The rates of mitochondrial Ca(2+) extrusion were prolonged in SLP-2 over-expressing cells, independently of the amplitude of mitochondrial Ca(2+) elevations. The amplitude of cytosolic Ca(2+) elevations was increased by SLP-2 depletion and decreased by SLP-2 over-expression. These data show that SLP-2 modulates mitochondrial calcium extrusion, thereby altering the ability of mitochondria to buffer Ca(2+) and to shape cytosolic Ca(2+) signals.


Assuntos
Proteínas Sanguíneas/metabolismo , Sinalização do Cálcio/genética , Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/fisiologia , Sódio/metabolismo , Proteínas Sanguíneas/genética , Sinalização do Cálcio/efeitos dos fármacos , Clonazepam/análogos & derivados , Clonazepam/farmacologia , Citosol/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/genética , Mitocôndrias/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , RNA Interferente Pequeno/genética , Trocador de Sódio e Cálcio/antagonistas & inibidores , Tiazepinas/farmacologia
19.
PLoS One ; 3(9): e3257, 2008 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-18806874

RESUMO

Mitochondria form a highly dynamic tubular network, the morphology of which is regulated by frequent fission and fusion events. However, the role of mitochondrial fission in homeostasis of the organelle is still unknown. Here we report that preventing mitochondrial fission, by down-regulating expression of Drp1 in mammalian cells leads to a loss of mitochondrial DNA and a decrease of mitochondrial respiration coupled to an increase in the levels of cellular reactive oxygen species (ROS). At the cellular level, mitochondrial dysfunction resulting from the lack of fission leads to a drop in the levels of cellular ATP, an inhibition of cell proliferation and an increase in autophagy. In conclusion, we propose that mitochondrial fission is required for preservation of mitochondrial function and thereby for maintenance of cellular homeostasis.


Assuntos
DNA Mitocondrial/metabolismo , Regulação da Expressão Gênica , Mitocôndrias/fisiologia , Trifosfato de Adenosina/metabolismo , Autofagia , Proliferação de Células , Dinaminas , GTP Fosfo-Hidrolases/metabolismo , Células HeLa , Homeostase , Humanos , Potencial da Membrana Mitocondrial , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Consumo de Oxigênio , Interferência de RNA , Espécies Reativas de Oxigênio
20.
Exp Cell Res ; 313(4): 834-47, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17239854

RESUMO

The signal recognition particle (SRP) is required for protein translocation into the endoplasmic reticulum (ER). With RNA interference we reduced its level about ten-fold in mammalian cells to study its cellular functions. Such low levels proved insufficient for efficient ER-targeting, since the accumulation of several proteins in the secretory pathway was specifically diminished. Although the cells looked unaffected, they displayed noticeable and selective defects in post-ER membrane trafficking. Specifically, the anterograde transport of VSV-G and the retrograde transport of the Shiga toxin B-subunit were stalled at the level of the Golgi whereas the endocytosed transferrin receptor failed to recycle to the plasma membrane. Endocytic membrane trafficking from the plasma membrane to lysosomes or Golgi was undisturbed and major morphological changes in the ER and the Golgi were undetectable at low resolution. Selective membrane trafficking defects were specifically suppressed under conditions when low levels of SRP became sufficient for efficient ER-targeting and are therefore a direct consequence of the lower targeting capacity of cells with reduced SRP levels. Selective post-ER membrane trafficking defects occur at SRP levels sufficient for survival suggesting that changes in SRP levels and their effects on post-ER membrane trafficking might serve as a mechanism to alter temporarily the localization of selected proteins.


Assuntos
Retículo Endoplasmático/metabolismo , Transporte Proteico , Partícula de Reconhecimento de Sinal/fisiologia , Células Cultivadas , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Modelos Biológicos , Interferência de RNA , Partícula de Reconhecimento de Sinal/antagonistas & inibidores , Vesículas Transportadoras/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA