Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(32): 11891-11902, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37527511

RESUMO

Volatile chemical products (VCP) are an increasingly important source of hydrocarbon and oxygenated volatile organic compound (OVOC) emissions to the atmosphere, and these emissions are likely to play an important role as anthropogenic precursors for secondary organic aerosol (SOA). While the SOA from VCP hydrocarbons is often accounted for in models, the formation, evolution, and properties of SOA from VCP OVOCs remain uncertain. We use environmental chamber data and a kinetic model to develop SOA parameters for 10 OVOCs representing glycols, glycol ethers, esters, oxygenated aromatics, and amines. Model simulations suggest that the SOA mass yields for these OVOCs are of the same magnitude as widely studied SOA precursors (e.g., long-chain alkanes, monoterpenes, and single-ring aromatics), and these yields exhibit a linear correlation with the carbon number of the precursor. When combined with emissions inventories for two megacities in the United States (US) and a US-wide inventory, we find that VCP VOCs react with OH to form 0.8-2.5× as much SOA, by mass, as mobile sources. Hydrocarbons (terpenes, branched and cyclic alkanes) and OVOCs (terpenoids, glycols, glycol ethers) make up 60-75 and 25-40% of the SOA arising from VCP use, respectively. This work contributes to the growing body of knowledge focused on studying VCP VOC contributions to urban air pollution.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Hidrocarbonetos , Compostos Orgânicos Voláteis/análise , Terpenos , Alcanos , Aerossóis/análise , Éteres , China
2.
Environ Sci Technol ; 56(11): 6905-6913, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34779612

RESUMO

Volatile chemical products (VCPs) are a significant source of reactive organic carbon emissions in the United States with a substantial fraction (>20% by mass) serving as secondary organic aerosol (SOA) precursors. Here, we incorporate a new nationwide VCP inventory into the Community Multiscale Air Quality (CMAQ) model with VCP-specific updates to better model air quality impacts. Model results indicate that VCPs mostly enhance anthropogenic SOA in densely populated areas with population-weighted annual average SOA increasing 15-30% in Southern California and New York City due to VCP emissions (contribution of 0.2-0.5 µg m-3). Annually, VCP emissions enhance total population-weighted PM2.5 by ∼5% in California, ∼3% in New York, New Jersey, and Connecticut, and 1-2% in most other states. While the maximum daily 8 h ozone enhancements from VCP emissions are more modest, their influence can cause a several ppb increase on select days in major cities. Printing Inks, Cleaning Products, and Paints and Coatings product use categories contribute ∼75% to the modeled VCP-derived SOA and Cleaning Products, Paints and Coatings, and Personal Care Products contribute ∼81% to the modeled VCP-derived ozone. Overall, VCPs enhance multiple criteria pollutants throughout the United States with the largest impacts in urban cores.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Ozônio , Compostos Orgânicos Voláteis , Aerossóis , Poluentes Atmosféricos/análise , Cidade de Nova Iorque , Ozônio/análise , Estados Unidos
3.
Proc Natl Acad Sci U S A ; 116(14): 6641-6646, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30886090

RESUMO

Atmospheric oxidation of natural and anthropogenic volatile organic compounds (VOCs) leads to secondary organic aerosol (SOA), which constitutes a major and often dominant component of atmospheric fine particulate matter (PM2.5). Recent work demonstrates that rapid autoxidation of organic peroxy radicals (RO2) formed during VOC oxidation results in highly oxygenated organic molecules (HOM) that efficiently form SOA. As NOx emissions decrease, the chemical regime of the atmosphere changes to one in which RO2 autoxidation becomes increasingly important, potentially increasing PM2.5, while oxidant availability driving RO2 formation rates simultaneously declines, possibly slowing regional PM2.5 formation. Using a suite of in situ aircraft observations and laboratory studies of HOM, together with a detailed molecular mechanism, we show that although autoxidation in an archetypal biogenic VOC system becomes more competitive as NOx decreases, absolute HOM production rates decrease due to oxidant reductions, leading to an overall positive coupling between anthropogenic NOx and localized biogenic SOA from autoxidation. This effect is observed in the Atlanta, Georgia, urban plume where HOM is enhanced in the presence of elevated NO, and predictions for Guangzhou, China, where increasing HOM-RO2 production coincides with increases in NO from 1990 to 2010. These results suggest added benefits to PM2.5 abatement strategies come with NOx emission reductions and have implications for aerosol-climate interactions due to changes in global SOA resulting from NOx interactions since the preindustrial era.

4.
Environ Sci Technol ; 55(2): 862-870, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33395278

RESUMO

Per- and polyfluoroalkyl substances (PFASs) have been released into the environment for decades, yet contributions of air emissions to total human exposure, from inhalation and drinking water contamination via deposition, are poorly constrained. The atmospheric transport and fate of a PFAS mixture from a fluoropolymer manufacturing facility in North Carolina were investigated with the Community Multiscale Air Quality (CMAQ) model applied at high resolution (1 km) and extending ∼150 km from the facility. Twenty-six explicit PFAS compounds, including GenX, were added to CMAQ using current best estimates of air emissions and relevant physicochemical properties. The new model, CMAQ-PFAS, predicts that 5% by mass of total emitted PFAS and 2.5% of total GenX are deposited within ∼150 km of the facility, with the remainder transported out. Modeled air concentrations of total GenX and total PFAS around the facility can reach 24.6 and 8500 ng m-3 but decrease to ∼0.1 and ∼10 ng m-3 at 35 km downwind, respectively. We find that compounds with acid functionality have higher deposition due to enhanced water solubility and pH-driven partitioning to aqueous media. To our knowledge, this is the first modeling study of the fate of a comprehensive, chemically resolved suite of PFAS air emissions from a major manufacturing source.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Purificação da Água , Fluorocarbonos/análise , Humanos , Instalações Industriais e de Manufatura , North Carolina , Poluentes Químicos da Água/análise
5.
Environ Sci Technol ; 55(24): 16326-16338, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34870986

RESUMO

The role of anthropogenic NOx emissions in secondary organic aerosol (SOA) production is not fully understood but is important for understanding the contribution of emissions to air quality. Here, we examine the role of organic nitrates (RONO2) in SOA formation over the Korean Peninsula during the Korea-United States Air Quality field study in Spring 2016 as a model for RONO2 aerosol in cities worldwide. We use aircraft-based measurements of the particle phase and total (gas + particle) RONO2 to explore RONO2 phase partitioning. These measurements show that, on average, one-fourth of RONO2 are in the condensed phase, and we estimate that ≈15% of the organic aerosol (OA) mass can be attributed to RONO2. Furthermore, we observe that the fraction of RONO2 in the condensed phase increases with OA concentration, evidencing that equilibrium absorptive partitioning controls the RONO2 phase distribution. Lastly, we model RONO2 chemistry and phase partitioning in the Community Multiscale Air Quality modeling system. We find that known chemistry can account for one-third of the observed RONO2, but there is a large missing source of semivolatile, anthropogenically derived RONO2. We propose that this missing source may result from the oxidation of semi- and intermediate-volatility organic compounds and/or from anthropogenic molecules that undergo autoxidation or multiple generations of OH-initiated oxidation.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Aerossóis/análise , Poluentes Atmosféricos/análise , Cidades , Nitratos/análise
6.
Proc Natl Acad Sci U S A ; 115(48): 12142-12147, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30413618

RESUMO

Organic peroxy radicals (RO2) are key intermediates in the atmospheric degradation of organic matter and fuel combustion, but to date, few direct studies of specific RO2 in complex reaction systems exist, leading to large gaps in our understanding of their fate. We show, using direct, speciated measurements of a suite of RO2 and gas-phase dimers from O3-initiated oxidation of α-pinene, that ∼150 gaseous dimers (C16-20H24-34O4-13) are primarily formed through RO2 cross-reactions, with a typical rate constant of 0.75-2 × 10-12 cm3 molecule-1 s-1 and a lower-limit dimer formation branching ratio of 4%. These findings imply a gaseous dimer yield that varies strongly with nitric oxide (NO) concentrations, of at least 0.2-2.5% by mole (0.5-6.6% by mass) for conditions typical of forested regions with low to moderate anthropogenic influence (i.e., ≤50-parts per trillion NO). Given their very low volatility, the gaseous C16-20 dimers provide a potentially important organic medium for initial particle formation, and alone can explain 5-60% of α-pinene secondary organic aerosol mass yields measured at atmospherically relevant particle mass loadings. The responses of RO2, dimers, and highly oxygenated multifunctional compounds (HOM) to reacted α-pinene concentration and NO imply that an average ∼20% of primary α-pinene RO2 from OH reaction and 10% from ozonolysis autoxidize at 3-10 s-1 and ≥1 s-1, respectively, confirming both oxidation pathways produce HOM efficiently, even at higher NO concentrations typical of urban areas. Thus, gas-phase dimer formation and RO2 autoxidation are ubiquitous sources of low-volatility organic compounds capable of driving atmospheric particle formation and growth.

7.
Proc Natl Acad Sci U S A ; 115(9): 2038-2043, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29440409

RESUMO

The chemical complexity of atmospheric organic aerosol (OA) has caused substantial uncertainties in understanding its origins and environmental impacts. Here, we provide constraints on OA origins through compositional characterization with molecular-level details. Our results suggest that secondary OA (SOA) from monoterpene oxidation accounts for approximately half of summertime fine OA in Centreville, AL, a forested area in the southeastern United States influenced by anthropogenic pollution. We find that different chemical processes involving nitrogen oxides, during days and nights, play a central role in determining the mass of monoterpene SOA produced. These findings elucidate the strong anthropogenic-biogenic interaction affecting ambient aerosol in the southeastern United States and point out the importance of reducing anthropogenic emissions, especially under a changing climate, where biogenic emissions will likely keep increasing.


Assuntos
Aerossóis/química , Poluentes Atmosféricos/química , Monoterpenos/química , Estações do Ano , Sudeste dos Estados Unidos , Fatores de Tempo
8.
Atmos Environ (1994) ; 244: 117961, 2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33132736

RESUMO

We implement oceanic dimethylsulfide (DMS) emissions and its atmospheric chemical reactions into the Community Multiscale Air Quality (CMAQv53) model and perform annual simulations without and with DMS chemistry to quantify its impact on tropospheric composition and air quality over the Northern Hemisphere. DMS chemistry enhances both sulfur dioxide (SO2) and sulfate ( S O 4 2 - ) over seawater and coastal areas. It enhances annual mean surface SO2 concentration by +46 pptv and S O 4 2 - by +0.33 µg/m3 and decreases aerosol nitrate concentration by -0.07 µg/m3 over seawater compared to the simulation without DMS chemistry. The changes decrease with altitude and are limited to the lower atmosphere. Impacts of DMS chemistry on S O 4 2 - are largest in the summer and lowest in the fall due to the seasonality of DMS emissions, atmospheric photochemistry and resultant oxidant levels. Hydroxyl and nitrate radical-initiated pathways oxidize 75% of the DMS while halogen-initiated pathways oxidize 25%. DMS chemistry leads to more acidic particles over seawater by decreasing aerosol pH. Increased S O 4 2 - from DMS enhances atmospheric extinction while lower aerosol nitrate reduces the extinction so that the net effect of DMS chemistry on visibility tends to remain unchanged over most of the seawater.

9.
Environ Sci Technol ; 53(15): 8682-8694, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31335134

RESUMO

Acid-driven multiphase chemistry of isoprene epoxydiols (IEPOX), key isoprene oxidation products, with inorganic sulfate aerosol yields substantial amounts of secondary organic aerosol (SOA) through the formation of organosulfur compounds. The extent and implications of inorganic-to-organic sulfate conversion, however, are unknown. In this article, we demonstrate that extensive consumption of inorganic sulfate occurs, which increases with the IEPOX-to-inorganic sulfate concentration ratio (IEPOX/Sulfinorg), as determined by laboratory measurements. Characterization of the total sulfur aerosol observed at Look Rock, Tennessee, from 2007 to 2016 shows that organosulfur mass fractions will likely continue to increase with ongoing declines in anthropogenic Sulfinorg, consistent with our laboratory findings. We further demonstrate that organosulfur compounds greatly modify critical aerosol properties, such as acidity, morphology, viscosity, and phase state. These new mechanistic insights demonstrate that changes in SO2 emissions, especially in isoprene-dominated environments, will significantly alter biogenic SOA physicochemical properties. Consequently, IEPOX/Sulfinorg will play an important role in understanding the historical climate and determining future impacts of biogenic SOA on the global climate and air quality.


Assuntos
Atmosfera , Pentanos , Aerossóis , Butadienos , Hemiterpenos , Sulfatos , Tennessee
10.
Atmos Environ (1994) ; 214: 1-116872, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31741655

RESUMO

Previous studies have proposed that model performance statistics from earlier photochemical grid model (PGM) applications can be used to benchmark performance in new PGM applications. A challenge in implementing this approach is that limited information is available on consistently calculated model performance statistics that vary spatially and temporally over the U.S. Here, a consistent set of model performance statistics are calculated by year, season, region, and monitoring network for PM2.5 and its major components using simulations from versions 4.7.1-5.2.1 of the Community Multiscale Air Quality (CMAQ) model for years 2007-2015. The multi-year set of statistics is then used to provide quantitative context for model performance results from the 2015 simulation. Model performance for PM2.5 organic carbon in the 2015 simulation ranked high (i.e., favorable performance) in the multi-year dataset, due to factors including recent improvements in biogenic secondary organic aerosol and atmospheric mixing parameterizations in CMAQ. Model performance statistics for the Northwest region in 2015 ranked low (i.e., unfavorable performance) for many species in comparison to the 2007-2015 dataset. This finding motivated additional investigation that suggests a need for improved speciation of wildfire PM2.5emissions and modeling of boundary layer dynamics near water bodies. Several limitations were identified in the approach of benchmarking new model performance results with previous results. Since performance statistics vary widely by region and season, a simple set of national performance benchmarks (e.g., one or two targets per species and statistic) as proposed previously are inadequate to assess model performance throughout the U.S. Also, trends in model performance statistics for sulfate over the 2007 to 2015 period suggest that model performance for earlier years may not be a useful reference for assessing model performance for recent years in some cases. Comparisons of results from the 2015 base case with results from five sensitivity simulations demonstrated the importance of parameterizations of NH3 surface exchange, organic aerosol volatility and production, and emissions of crustal cations for predicting PM2.5 species concentrations.

11.
Atmos Environ (1994) ; 213: 456-462, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31320832

RESUMO

Fine particulate matter (PM2.5) is known to have an adverse impact on public health and is an important climate forcer. Secondary organic aerosol (SOA) contributes up to 80% of PM2.5 worldwide and multiphase reactions are an important pathway to form SOA. Aerosol-phase state is thought to influence the reactive uptake of gas-phase precursors to aerosol particles by altering diffusion rates within particles. Current air quality models do not include the impact of diffusion-limiting organic coatings on SOA formation. This work examines how α-pinene-derived organic coatings change the predicted formation of SOA from the acid-catalyzed multiphase reactions of isoprene epoxydiols (IEPOX). A box model, with inputs provided from field measurements taken at the Look Rock (LRK) site in Great Smokey Mountains National Park during the 2013 Southern Oxidant and Aerosol Study (SOAS), was modified to incorporate the latest laboratory-based kinetic data accounting for organic coating influences. Including an organic coating influence reduced the modeled reactive uptake when relative humidity was in the 55-80% range, with predicted IEPOX-derived SOA being reduced by up to 33%. Only sensitivity cases with a large increase in Henry's Law values of an order of magnitude or more or in particle reaction rates resulted in the large statistically significant differences form base model performance. These results suggest an organic coating layer could have an impact on IEPOX-derived SOA formation and warrant consideration in regional and global scale models.

12.
Environ Sci Technol ; 52(16): 9254-9265, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30005158

RESUMO

Atmospheric models that accurately describe the fate and transport of trace species for the right reasons aid in the development of effective air-quality management strategies that safeguard human health. Controllable emissions facilitate the formation of biogenic secondary organic aerosol (BSOA) to enhance the atmospheric fine particulate matter (PM2.5) burden. Previous modeling with the EPA's Community Multiscale Air Quality (CMAQ) model predicted that anthropogenic primary organic aerosol (POA) emissions had the greatest impact on BSOA. That experiment included formation processes involving semivolatile partitioning but not aerosol liquid water (ALW), a ubiquitous PM constituent. We conduct 17 summertime CMAQ simulations with updated chemistry and evaluate changes in BSOA due to the removal of individual pollutants and source sectors for the contiguous U.S. CMAQ predicts SO2 from electricity generating units, and mobile source NOX emissions have the largest impacts on BSOA. The removal of anthropogenic NOX, SO2, and POA emissions during the simulation reduces the nationally averaged BSOA by 23, 14, and 8% and PM2.5 by 9.2, 14, and 5.3%, respectively. ALW mass concentrations decrease by 10 and 35% in response to the removal of NOX and SO2 emissions. This work contributes chemical insight into ancillary benefits of Federal NOX and SO2 rules that concurrently reduce organic PM2.5 mass.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Aerossóis , Humanos , Material Particulado
13.
Environ Sci Technol ; 51(9): 5026-5034, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28394569

RESUMO

The lack of statistically robust relationships between IEPOX (isoprene epoxydiol)-derived SOA (IEPOX SOA) and aerosol liquid water and pH observed during the 2013 Southern Oxidant and Aerosol Study (SOAS) emphasizes the importance of modeling the whole system to understand the controlling factors governing IEPOX SOA formation. We present a mechanistic modeling investigation predicting IEPOX SOA based on Community Multiscale Air Quality (CMAQ) model algorithms and a recently introduced photochemical box model, simpleGAMMA. We aim to (1) simulate IEPOX SOA tracers from the SOAS Look Rock ground site, (2) compare the two model formulations, (3) determine the limiting factors in IEPOX SOA formation, and (4) test the impact of a hypothetical sulfate reduction scenario on IEPOX SOA. The estimated IEPOX SOA mass variability is in similar agreement (r2 ∼ 0.6) with measurements. Correlations of the estimated and measured IEPOX SOA tracers with observed aerosol surface area (r2 ∼ 0.5-0.7), rate of particle-phase reaction (r2 ∼ 0.4-0.7), and sulfate (r2 ∼ 0.4-0.5) suggest an important role of sulfate in tracer formation via both physical and chemical mechanisms. A hypothetical 25% reduction of sulfate results in ∼70% reduction of IEPOX SOA formation, reaffirming the importance of aqueous phase chemistry in IEPOX SOA production.


Assuntos
Aerossóis , Atmosfera , Poluentes Atmosféricos , Oxidantes , Sulfatos , Água
14.
Proc Natl Acad Sci U S A ; 111(29): 10473-8, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-25002466

RESUMO

Secondary organic aerosol (SOA) formed from the atmospheric oxidation of nonmethane organic gases (NMOG) is a major contributor to atmospheric aerosol mass. Emissions and smog chamber experiments were performed to investigate SOA formation from gasoline vehicles, diesel vehicles, and biomass burning. About 10-20% of NMOG emissions from these major combustion sources are not routinely speciated and therefore are currently misclassified in emission inventories and chemical transport models. The smog chamber data demonstrate that this misclassification biases model predictions of SOA production low because the unspeciated NMOG produce more SOA per unit mass than the speciated NMOG. We present new source-specific SOA yield parameterizations for these unspeciated emissions. These parameterizations and associated source profiles are designed for implementation in chemical transport models. Box model calculations using these new parameterizations predict that NMOG emissions from the top six combustion sources form 0.7 Tg y(-1) of first-generation SOA in the United States, almost 90% of which is from biomass burning and gasoline vehicles. About 85% of this SOA comes from unspeciated NMOG, demonstrating that chemical transport models need improved treatment of combustion emissions to accurately predict ambient SOA concentrations.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Compostos Orgânicos/análise , Atmosfera/química , Metano/análise , Smog/análise , Estados Unidos , Emissões de Veículos/análise
15.
Proc Natl Acad Sci U S A ; 110(17): 6718-23, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23553832

RESUMO

Isoprene is a substantial contributor to the global secondary organic aerosol (SOA) burden, with implications for public health and the climate system. The mechanism by which isoprene-derived SOA is formed and the influence of environmental conditions, however, remain unclear. We present evidence from controlled smog chamber experiments and field measurements that in the presence of high levels of nitrogen oxides (NO(x) = NO + NO2) typical of urban atmospheres, 2-methyloxirane-2-carboxylic acid (methacrylic acid epoxide, MAE) is a precursor to known isoprene-derived SOA tracers, and ultimately to SOA. We propose that MAE arises from decomposition of the OH adduct of methacryloylperoxynitrate (MPAN). This hypothesis is supported by the similarity of SOA constituents derived from MAE to those from photooxidation of isoprene, methacrolein, and MPAN under high-NOx conditions. Strong support is further derived from computational chemistry calculations and Community Multiscale Air Quality model simulations, yielding predictions consistent with field observations. Field measurements taken in Chapel Hill, North Carolina, considered along with the modeling results indicate the atmospheric significance and relevance of MAE chemistry across the United States, especially in urban areas heavily impacted by isoprene emissions. Identification of MAE implies a major role of atmospheric epoxides in forming SOA from isoprene photooxidation. Updating current atmospheric modeling frameworks with MAE chemistry could improve the way that SOA has been attributed to isoprene based on ambient tracer measurements, and lead to SOA parameterizations that better capture the dependency of yield on NO(x).


Assuntos
Aerossóis/química , Poluentes Atmosféricos/análise , Atmosfera/análise , Butadienos/química , Compostos de Epóxi/química , Hemiterpenos/química , Modelos Químicos , Óxidos de Nitrogênio/química , Pentanos/química , Butadienos/efeitos da radiação , Simulação por Computador , Hemiterpenos/efeitos da radiação , Luz , Metacrilatos/química , North Carolina , Oxirredução , Pentanos/efeitos da radiação , Fotoquímica
16.
Environ Sci Technol ; 49(24): 14195-203, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26544021

RESUMO

Organic nitrates are an important aerosol constituent in locations where biogenic hydrocarbon emissions mix with anthropogenic NOx sources. While regional and global chemical transport models may include a representation of organic aerosol from monoterpene reactions with nitrate radicals (the primary source of particle-phase organic nitrates in the Southeast United States), secondary organic aerosol (SOA) models can underestimate yields. Furthermore, SOA parametrizations do not explicitly take into account organic nitrate compounds produced in the gas phase. In this work, we developed a coupled gas and aerosol system to describe the formation and subsequent aerosol-phase partitioning of organic nitrates from isoprene and monoterpenes with a focus on the Southeast United States. The concentrations of organic aerosol and gas-phase organic nitrates were improved when particulate organic nitrates were assumed to undergo rapid (τ = 3 h) pseudohydrolysis resulting in nitric acid and nonvolatile secondary organic aerosol. In addition, up to 60% of less oxidized-oxygenated organic aerosol (LO-OOA) could be accounted for via organic nitrate mediated chemistry during the Southern Oxidants and Aerosol Study (SOAS). A 25% reduction in nitrogen oxide (NO + NO2) emissions was predicted to cause a 9% reduction in organic aerosol for June 2013 SOAS conditions at Centreville, Alabama.


Assuntos
Aerossóis/análise , Aerossóis/química , Poluentes Atmosféricos/análise , Nitratos/análise , Alabama , Butadienos/química , Hemiterpenos/química , Modelos Químicos , Modelos Teóricos , Monoterpenos/química , Nitratos/química , Óxidos de Nitrogênio/análise , Óxidos de Nitrogênio/química , Pentanos/química , Sudeste dos Estados Unidos
17.
Environ Sci Technol ; 48(1): 464-73, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24245475

RESUMO

Ambient measurements of 78 source-specific tracers of primary and secondary carbonaceous fine particulate matter collected at four midwestern United States locations over a full year (March 2004-February 2005) provided an unprecedented opportunity to diagnostically evaluate the results of a numerical air quality model. Previous analyses of these measurements demonstrated excellent mass closure for the variety of contributing sources. In this study, a carbon-apportionment version of the Community Multiscale Air Quality (CMAQ) model was used to track primary organic and elemental carbon emissions from 15 independent sources such as mobile sources and biomass burning in addition to four precursor-specific classes of secondary organic aerosol (SOA) originating from isoprene, terpenes, aromatics, and sesquiterpenes. Conversion of the source-resolved model output into organic tracer concentrations yielded a total of 2416 data pairs for comparison with observations. While emission source contributions to the total model bias varied by season and measurement location, the largest absolute bias of -0.55 µgC/m(3) was attributed to insufficient isoprene SOA in the summertime CMAQ simulation. Biomass combustion was responsible for the second largest summertime model bias (-0.46 µgC/m(3) on average). Several instances of compensating errors were also evident; model underpredictions in some sectors were masked by overpredictions in others.


Assuntos
Poluentes Atmosféricos/análise , Ar/normas , Carbono/análise , Monitoramento Ambiental/métodos , Compostos Orgânicos/análise , Material Particulado/análise , Aerossóis , Biomassa , Meio-Oeste dos Estados Unidos , Modelos Teóricos , Estações do Ano
18.
Environ Sci Technol ; 48(18): 10607-13, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25144365

RESUMO

Cerium oxide nanoparticles (nCe) are used as a fuel-borne catalyst in diesel engines to reduce particulate emissions, yet the environmental and human health impacts of the exhaust particles are not well understood. To bridge the gap between emission measurements and ambient impacts, size-resolved measurements of particle composition and mass concentration have been performed in Newcastle-upon-Tyne, United Kingdom, where buses have used an nCe additive since 2005. These observations show that the noncrustal cerium fraction thought to be associated with the use of nCe has a mass concentration ∼ 0.3 ng m(-3) with a size distribution peaking at 100-320 nm in aerodynamic diameter. Simulations with a near-roadway multicomponent sectional aerosol dynamic model predict that the use of nCe additives increases the number concentration of nuclei mode particles (<50 nm in diameter) while decreasing the total mass concentration. The near-road model predicts a downwind mass size distribution of cerium-containing particles peaking at 150 nm in aerodynamic diameter, a value similar to that measured for noncrustal cerium in Newcastle. This work shows that both the emission and atmospheric transformation of cerium-containing particles needs to be taken into account by regional modelers, exposure scientists, and policymakers when determining potential environmental and human health impacts.


Assuntos
Poluentes Atmosféricos/análise , Cério/análise , Monitoramento Ambiental/métodos , Gasolina/análise , Material Particulado/análise , Emissões de Veículos/análise , Aerossóis , Humanos , Modelos Teóricos , Veículos Automotores , Nanopartículas , Tamanho da Partícula , Reino Unido
19.
ACS EST Air ; 1(6): 451-463, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38884197

RESUMO

Atmospheric nitrate, including nitric acid (HNO3), particulate nitrate (pNO3), and organic nitrate (RONO2), is a key atmosphere component with implications for air quality, nutrient deposition, and climate. However, accurately representing atmospheric nitrate concentrations within atmospheric chemistry models is a persistent challenge. A contributing factor to this challenge is the intricate chemical transformations involving HNO3 formation, which can be difficult for models to replicate. Here, we present a novel model framework that utilizes the oxygen stable isotope anomaly (Δ17O) to quantitatively depict ozone (O3) involvement in precursor nitrogen oxides N O x = N O + N O 2 photochemical cycling and HNO3 formation. This framework has been integrated into the US EPA Community Multiscale Air Quality (CMAQ) modeling system to facilitate a comprehensive assessment of NO x oxidation and HNO3 formation. In application across the northeastern US, the model Δ17O compares well with recently conducted diurnal Δ17O(NO2) and spatiotemporal Δ17O(HNO3) observations, with a root mean square error between model and observations of 2.6 ‰ for Δ17O(HNO3). The model indicates the major formation pathways of annual HNO3 production within the northeastern US are NO+OH (46 %), N2O5 hydrolysis (34 %), and organic nitrate hydrolysis (12 %). This model can evaluate NO x chemistry in CMAQ in future air quality and deposition studies involving reactive nitrogen.

20.
ACS EST Air ; 1(6): 511-524, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38884193

RESUMO

Secondary organic aerosol (SOA) from acid-driven reactive uptake of isoprene epoxydiols (IEPOX) contributes up to 40% of organic aerosol (OA) mass in fine particulate matter. Previous work showed that IEPOX substantially converts particulate inorganic sulfates to surface-active organosulfates (OSs). This decreases aerosol acidity and creates a viscous organic-rich shell that poses as a diffusion barrier, inhibiting additional reactive uptake of IEPOX. To account for this "self-limiting" effect, we developed a phase-separation box model to evaluate parameterizations of IEPOX reactive uptake against time-resolved chamber measurements of IEPOX-SOA tracers, including 2-methyltetrols (2-MT) and methyltetrol sulfates (MTS), at ~ 50% relative humidity. The phase-separation model was most sensitive to the mass accommodation coefficient, IEPOX diffusivity in the organic shell, and ratio of the third-order reaction rate constants forming 2-MT and MTS ( k M T / k M T S ). In particular, k M T / k M T S had to be lower than 0.1 to bring model predictions of 2-MT and MTS in closer agreement with chamber measurements; prior studies reported values larger than 0.71. The model-derived rate constants favor more particulate MTS formation due to 2-MT likely off-gassing at ambient-relevant OA loadings. Incorporating this parametrization into chemical transport models is expected to predict lower IEPOX-SOA mass and volatility due to the predominance of OSs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA