Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 291(25): 13271-85, 2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27129775

RESUMO

Cofactors of LIM domain proteins, CLIM1 and CLIM2, are widely expressed transcriptional cofactors that are recruited to gene regulatory regions by DNA-binding proteins, including LIM domain transcription factors. In the cornea, epithelium-specific expression of a dominant negative (DN) CLIM under the keratin 14 (K14) promoter causes blistering, wounding, inflammation, epithelial hyperplasia, and neovascularization followed by epithelial thinning and subsequent epidermal-like differentiation of the corneal epithelium. The defects in corneal epithelial differentiation and cell fate determination suggest that CLIM may regulate corneal progenitor cells and the transition to differentiation. Consistent with this notion, the K14-DN-Clim corneal epithelium first exhibits increased proliferation followed by fewer progenitor cells with decreased proliferative potential. In vivo ChIP-sequencing experiments with corneal epithelium show that CLIM binds to and regulates numerous genes involved in cell adhesion and proliferation, including limbally enriched genes. Intriguingly, CLIM associates primarily with non-LIM homeodomain motifs in corneal epithelial cells, including that of estrogen receptor α. Among CLIM targets is the noncoding RNA H19 whose deregulation is associated with Silver-Russell and Beckwith-Wiedemann syndromes. We demonstrate here that H19 negatively regulates corneal epithelial proliferation. In addition to cell cycle regulators, H19 affects the expression of multiple cell adhesion genes. CLIM interacts with estrogen receptor α at the H19 locus, potentially explaining the higher expression of H19 in female than male corneas. Together, our results demonstrate an important role for CLIM in regulating the proliferative potential of corneal epithelial progenitors and identify CLIM downstream target H19 as a regulator of corneal epithelial proliferation and adhesion.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/fisiologia , Receptor alfa de Estrogênio/metabolismo , Proteínas com Domínio LIM/metabolismo , RNA Longo não Codificante/genética , Células-Tronco/fisiologia , Fatores de Transcrição/metabolismo , Animais , Adesão Celular , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Proliferação de Células , Epitélio Corneano/citologia , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos Transgênicos , RNA Longo não Codificante/metabolismo
2.
PLoS Genet ; 10(7): e1004520, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25079073

RESUMO

Mammary gland branching morphogenesis and ductal homeostasis relies on mammary stem cell function for the maintenance of basal and luminal cell compartments. The mechanisms of transcriptional regulation of the basal cell compartment are currently unknown. We explored these mechanisms in the basal cell compartment and identified the Co-factor of LIM domains (CLIM/LDB/NLI) as a transcriptional regulator that maintains these cells. Clims act within the basal cell compartment to promote branching morphogenesis by maintaining the number and proliferative potential of basal mammary epithelial stem cells. Clim2, in a complex with LMO4, supports mammary stem cells by directly targeting the Fgfr2 promoter in basal cells to increase its expression. Strikingly, Clims also coordinate basal-specific transcriptional programs to preserve luminal cell identity. These basal-derived cues inhibit epidermis-like differentiation of the luminal cell compartment and enhance the expression of luminal cell-specific oncogenes ErbB2 and ErbB3. Consistently, basal-expressed Clims promote the initiation and progression of breast cancer in the MMTV-PyMT tumor model, and the Clim-regulated branching morphogenesis gene network is a prognostic indicator of poor breast cancer outcome in humans.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias da Mama/genética , Proteínas de Ligação a DNA/genética , Proteínas com Domínio LIM/genética , Neoplasia de Células Basais/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Fatores de Transcrição/genética , Neoplasias da Mama/metabolismo , Carcinogênese/genética , Diferenciação Celular/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Neoplasia de Células Basais/metabolismo , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Receptor ErbB-2/genética , Células-Tronco/metabolismo , Células-Tronco/patologia
3.
J Biol Chem ; 288(48): 34304-24, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24142692

RESUMO

The cornea is the clear, outermost portion of the eye composed of three layers: an epithelium that provides a protective barrier while allowing transmission of light into the eye, a collagen-rich stroma, and an endothelium monolayer. How cornea development and aging is controlled is poorly understood. Here we characterize the mouse cornea transcriptome from early embryogenesis through aging and compare it with transcriptomes of other epithelial tissues, identifying cornea-enriched genes, pathways, and transcriptional regulators. Additionally, we profiled cornea epithelium and stroma, defining genes enriched in these layers. Over 10,000 genes are differentially regulated in the mouse cornea across the time course, showing dynamic expression during development and modest expression changes in fewer genes during aging. A striking transition time point for gene expression between postnatal days 14 and 28 corresponds with completion of cornea development at the transcriptional level. Clustering classifies co-expressed, and potentially co-regulated, genes into biologically informative categories, including groups that exhibit epithelial or stromal enriched expression. Based on these findings, and through loss of function studies and ChIP-seq, we show that the Ets transcription factor EHF promotes cornea epithelial fate through complementary gene activating and repressing activities. Furthermore, we identify potential interactions between EHF, KLF4, and KLF5 in promoting cornea epithelial differentiation. These data provide insights into the mechanisms underlying epithelial development and aging, identifying EHF as a regulator of cornea epithelial identity and pointing to interactions between Ets and KLF factors in promoting epithelial fate. Furthermore, this comprehensive gene expression data set for the cornea is a powerful tool for discovery of novel cornea regulators and pathways.


Assuntos
Córnea/crescimento & desenvolvimento , Desenvolvimento Embrionário/genética , Células Epiteliais/metabolismo , Fatores de Transcrição/genética , Envelhecimento/genética , Animais , Diferenciação Celular , Linhagem da Célula , Córnea/citologia , Córnea/metabolismo , Células Epiteliais/citologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Fatores de Transcrição/metabolismo
4.
Dev Biol ; 369(2): 249-60, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22819674

RESUMO

Agr2 is a putative protein disulfide isomerase (PDI) initially identified as an estrogen-responsive gene in breast cancer cell lines. While Agr2 expression in breast cancer is positively correlated with estrogen receptor (ER) expression, it is upregulated in both hormone dependent and independent carcinomas. Several in vitro and xenograft studies have implicated Agr2 in different oncogenic features of breast cancer; however, the physiological role of Agr2 in normal mammary gland development remains to be defined. Agr2 expression is developmentally regulated in the mammary gland, with maximum expression during late pregnancy and lactation. Using a mammary gland specific knockout mouse model, we show that Agr2 facilitates normal lobuloalveolar development by regulating mammary epithelial cell proliferation; we found no effects on apoptosis in Agr2(-/-) mammary epithelial cells. Consequently, mammary glands of Agr2(-/-) females exhibit reduced expression of milk proteins, and by two weeks post-partum their pups are smaller in size. Utilizing a conditional mouse model, we show that Agr2 constitutive expression drives precocious lobuloalveolar development and increased milk protein expression in the virgin mammary gland. In vitro studies using knock down and overexpression strategies in estrogen receptor positive and negative mammary epithelial cell lines demonstrate a role for Agr2 in estradiol-induced cell proliferation. In conclusion, the estrogen-responsive Agr2, a candidate breast cancer oncogene, regulates epithelial cell proliferation and lobuloalveolar development in the mammary gland. The pro-proliferative effects of Agr2 may explain its actions in early tumorigenesis.


Assuntos
Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Mucoproteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Animais , Apoptose , Sequência de Bases , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Primers do DNA/genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Estradiol/farmacologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Glândulas Mamárias Animais/citologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mucoproteínas/deficiência , Mucoproteínas/genética , Proteínas Oncogênicas , Gravidez , Isomerases de Dissulfetos de Proteínas/deficiência , Isomerases de Dissulfetos de Proteínas/genética , Proteínas/antagonistas & inibidores , Proteínas/genética , Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética
5.
Breast Cancer Res ; 15(2): 204, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23635006

RESUMO

Initially discovered as an estrogen-responsive gene in breast cancer cell lines, anterior gradient 2 (AGR2) is a developmentally regulated gene belonging to the protein disulfide isomerase (PDI) gene family. Developmentally, AGR2 is expressed in the mammary gland in an estrogen-dependent manner, and AGR2 knockout and overexpression mouse models indicate that the gene promotes lobuloalveolar development by stimulating cell proliferation. Although AGR2 overexpression alone seems insufficient for breast tumorigenesis in mice, several lines of investigations suggest that AGR2 promotes breast tumorigenesis. Overexpression of AGR2 in several breast cancer cell lines increases cell survival in clonogenic assays and cell proliferation, whereas AGR2 loss of function leads to decreased cell cycle progression and cell death. In addition, AGR2 was shown to promote metastasis of breast epithelial cells in an in vivo metastasis assay. As a PDI, AGR2 is thought to be involved in the unfolded protein response that alleviates endoplasmic reticulum stress. Since cancer has to overcome proteotoxic stress due to excess protein production, AGR2 may be one of many pro-survival factors recruited to assist in protein folding or degradation or both. When AGR2 is secreted, it plays a role in cellular adhesion and dissemination of metastatic tumor cells. In breast cancer, AGR2 expression is associated with estrogen receptor (ER)-positive tumors; its overexpression is a predictor of poor prognosis. The AGR2 gene is directly targeted by ER-alpha, which is preferentially bound in tumors with poor outcome. Whereas aromatase inhibitor therapy decreases AGR2 expression, tamoxifen acts as an agonist of AGR2 expression in ER-positive tumors, perhaps contributing to tamoxifen resistance. AGR2 is also overexpressed in a subset of ER-negative tumors. Furthermore, AGR2 expression is associated with the dissemination of metastatic breast cancer cells and can be used as a marker to identify circulating tumor cells and metastatic cells in sentinel lymph nodes. In conclusion, AGR2 is a promising drug target in breast cancer and may serve as a useful prognostic indicator as well as a marker of breast cancer metastasis.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Terapia de Alvo Molecular , Proteínas/antagonistas & inibidores , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Feminino , Humanos , Camundongos , Mucoproteínas , Proteínas Oncogênicas , Proteínas/metabolismo
6.
Genome Med ; 14(1): 143, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36536472

RESUMO

BACKGROUND: Intratumoral heterogeneity (ITH) is a hallmark of clear cell renal cell carcinoma (ccRCC) that reflects the trajectory of evolution and influences clinical prognosis. Here, we seek to elucidate how ITH and tumor evolution during immune checkpoint inhibitor (ICI) treatment can lead to therapy resistance. METHODS: Here, we completed a single-arm pilot study to examine the safety and feasibility of neoadjuvant nivolumab in patients with localized RCC. Primary endpoints were safety and feasibility of neoadjuvant nivolumab. Then, we spatiotemporally profiled the genomic and immunophenotypic characteristics of 29 ccRCC patients, including pre- and post-therapy samples from 17 ICI-treated patients. Deep multi-regional whole-exome and transcriptome sequencing were performed on 29 patients at different time points before and after ICI therapy. T cell repertoire was also monitored from tissue and peripheral blood collected from a subset of patients to study T cell clonal expansion during ICI therapy. RESULTS: Angiogenesis, lymphocytic infiltration, and myeloid infiltration varied significantly across regions of the same patient, potentially confounding their utility as biomarkers of ICI response. Elevated ITH associated with a constellation of both genomic features (HLA LOH, CDKN2A/B loss) and microenvironmental features, including elevated myeloid expression, reduced peripheral T cell receptor (TCR) diversity, and putative neoantigen depletion. Hypothesizing that ITH may itself play a role in shaping ICI response, we derived a transcriptomic signature associated with neoantigen depletion that strongly associated with response to ICI and targeted therapy treatment in several independent clinical trial cohorts. CONCLUSIONS: These results argue that genetic and immune heterogeneity jointly co-evolve and influence response to ICI in ccRCC. Our findings have implications for future biomarker development for ICI response across ccRCC and other solid tumors and highlight important features of tumor evolution under ICI treatment. TRIAL REGISTRATION: The study was registered on ClinicalTrial.gov (NCT02595918) on November 4, 2015.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Nivolumabe , Projetos Piloto , Linfócitos T , Neoplasias Renais/genética , Microambiente Tumoral
7.
NPJ Genom Med ; 6(1): 13, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33589643

RESUMO

Colorectal cancer (CRC) is one of the most lethal malignancies. The extreme heterogeneity in survival rate is driving the need for new prognostic biomarkers. Human endogenous retroviruses (hERVs) have been suggested to influence tumor progression, oncogenesis and elicit an immune response. We examined multiple next-generation sequencing (NGS)-derived biomarkers in 114 CRC patients with paired whole-exome and whole-transcriptome sequencing (WES and WTS, respectively). First, we demonstrate that the median expression of hERVs can serve as a potential biomarker for prognosis, relapse, and resistance to chemotherapy in stage II and III CRC. We show that hERV expression and CD8+ tumor-infiltrating T-lymphocytes (TILs) synergistically stratify overall and relapse-free survival (OS and RFS): the median OS of the CD8-/hERV+ subgroup was 29.8 months compared with 37.5 months for other subgroups (HR = 4.4, log-rank P < 0.001). Combing NGS-based biomarkers (hERV/CD8 status) with clinicopathological factors provided a better prediction of patient survival compared to clinicopathological factors alone. Moreover, we explored the association between genomic and transcriptomic features of tumors with high hERV expression and establish this subtype as distinct from previously described consensus molecular subtypes of CRC. Overall, our results underscore a previously unknown role for hERVs in leading to a more aggressive subtype of CRC.

8.
Cancer Cell ; 39(5): 662-677.e6, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33861994

RESUMO

Clear cell renal cell carcinomas (ccRCCs) are highly immune infiltrated, but the effect of immune heterogeneity on clinical outcome in ccRCC has not been fully characterized. Here we perform paired single-cell RNA (scRNA) and T cell receptor (TCR) sequencing of 167,283 cells from multiple tumor regions, lymph node, normal kidney, and peripheral blood of two immune checkpoint blockade (ICB)-naïve and four ICB-treated patients to map the ccRCC immune landscape. We detect extensive heterogeneity within and between patients, with enrichment of CD8A+ tissue-resident T cells in a patient responsive to ICB and tumor-associated macrophages (TAMs) in a resistant patient. A TCR trajectory framework suggests distinct T cell differentiation pathways between patients responding and resistant to ICB. Finally, scRNA-derived signatures of tissue-resident T cells and TAMs are associated with response to ICB and targeted therapies across multiple independent cohorts. Our study establishes a multimodal interrogation of the cellular programs underlying therapeutic efficacy in ccRCC.


Assuntos
Carcinoma de Células Renais/genética , Neoplasias Renais/genética , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Humanos , Neoplasias Renais/imunologia , Ativação Linfocitária/genética , Receptor de Morte Celular Programada 1/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia
9.
Cell Rep ; 20(5): 1061-1072, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28768192

RESUMO

The epidermis is a highly regenerative barrier protecting organisms from environmental insults, including UV radiation, the main cause of skin cancer and skin aging. Here, we show that time-restricted feeding (RF) shifts the phase and alters the amplitude of the skin circadian clock and affects the expression of approximately 10% of the skin transcriptome. Furthermore, a large number of skin-expressed genes are acutely regulated by food intake. Although the circadian clock is required for daily rhythms in DNA synthesis in epidermal progenitor cells, RF-induced shifts in clock phase do not alter the phase of DNA synthesis. However, RF alters both diurnal sensitivity to UVB-induced DNA damage and expression of the key DNA repair gene, Xpa. Together, our findings indicate regulation of skin function by time of feeding and emphasize a link between circadian rhythm, food intake, and skin health.


Assuntos
Ritmo Circadiano/efeitos da radiação , Dano ao DNA , Ingestão de Alimentos/efeitos da radiação , Pele/metabolismo , Raios Ultravioleta/efeitos adversos , Animais , Masculino , Camundongos , Pele/patologia
10.
Dev Cell ; 29(1): 59-74, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24735879

RESUMO

Epithelial cells possess remarkable plasticity, having the ability to become mesenchymal cells through alterations in adhesion and motility (epithelial-to-mesenchymal transition [EMT]). However, how epithelial plasticity is kept in check in epithelial cells during tissue development and regeneration remains to be fully understood. Here we show that restricting the EMT of mammary epithelial cells by transcription factor Ovol2 is required for proper morphogenesis and regeneration. Deletion of Ovol2 blocks mammary ductal morphogenesis, depletes stem and progenitor cell reservoirs, and leads epithelial cells to undergo EMT in vivo to become nonepithelial cell types. Ovol2 directly represses myriad EMT inducers, and its absence switches response to TGF-ß from growth arrest to EMT. Furthermore, forced expression of the repressor isoform of Ovol2 is able to reprogram metastatic breast cancer cells from a mesenchymal to an epithelial state. Our findings underscore the critical importance of exquisitely regulating epithelial plasticity in development and cancer.


Assuntos
Transição Epitelial-Mesenquimal , Glândulas Mamárias Animais/crescimento & desenvolvimento , Morfogênese , Regeneração , Fatores de Transcrição/metabolismo , Animais , Reprogramação Celular , Indução Embrionária , Feminino , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Camundongos , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/metabolismo
11.
PLoS One ; 9(3): e92317, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24651522

RESUMO

BACKGROUND: Deregulation of canonical Wnt/CTNNB1 (beta-catenin) pathway is one of the earliest events in the pathogenesis of colon cancer. Mutations in APC or CTNNB1 are highly frequent in colon cancer and cause aberrant stabilization of CTNNB1, which activates the transcription of Wnt target genes by binding to chromatin via the TCF/LEF transcription factors. Here we report an integrative analysis of genome-wide chromatin occupancy of CTNNB1 by chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) and gene expression profiling by microarray analysis upon RNAi-mediated knockdown of CTNNB1 in colon cancer cells. RESULTS: We observed 3629 CTNNB1 binding peaks across the genome and a significant correlation between CTNNB1 binding and knockdown-induced gene expression change. Our integrative analysis led to the discovery of a direct Wnt target signature composed of 162 genes. Gene ontology analysis of this signature revealed a significant enrichment of Wnt pathway genes, suggesting multiple feedback regulations of the pathway. We provide evidence that this gene signature partially overlaps with the Lgr5+ intestinal stem cell signature, and is significantly enriched in normal intestinal stem cells as well as in clinical colorectal cancer samples. Interestingly, while the expression of the CTNNB1 target gene set does not correlate with survival, elevated expression of negative feedback regulators within the signature predicts better prognosis. CONCLUSION: Our data provide a genome-wide view of chromatin occupancy and gene regulation of Wnt/CTNNB1 signaling in colon cancer cells.


Assuntos
Imunoprecipitação da Cromatina , Neoplasias do Colo/genética , Perfilação da Expressão Gênica , Intestinos/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Células-Tronco/metabolismo , beta Catenina/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Cromatina/metabolismo , Retroalimentação Fisiológica , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Humanos , Estimativa de Kaplan-Meier , Reprodutibilidade dos Testes , Software , Células-Tronco/patologia , Via de Sinalização Wnt/genética
12.
Methods Mol Biol ; 763: 51-71, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21874443

RESUMO

The mammalian epidermis is a self-renewing stratified squamous epithelium. Its basal cell layer contains proliferating keratinocytes that exit the cell cycle when they move into the suprabasal compartment. These cells activate a gene differentiation program aimed at building a protective epidermal barrier as they move toward the surface, successively going through the spinous and granular layers. At the completion of this process, the keratinocytes become enucleated and form the cornified layer, the surface layer of the skin. The highly cross-linked protein-lipid envelope and extracellular lipids in the cornified layer along with cell-cell adhesions in the granular layer are required for an effective epidermal barrier. Transcriptional mechanisms are critical for the formation of the epidermal barrier, and in this chapter, we describe methods to evaluate the role of a transcription factor (TF) in epidermal differentiation. To identify direct target genes of a TF, we propose a combination of bioinformatics and experimental approaches. The ultimate goal of these approaches is to understand the mechanisms whereby a TF regulates epidermal barrier formation.


Assuntos
Diferenciação Celular/genética , Epiderme/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Queratinócitos/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica , Análise de Variância , Animais , Sítios de Ligação , Adesão Celular/genética , Proliferação de Células , Imunoprecipitação da Cromatina , Biologia Computacional , Ensaio de Desvio de Mobilidade Eletroforética , Células Epidérmicas , Genes Reporter , Queratinócitos/citologia , Luciferases/análise , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica , Software , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA