Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
1.
Cell ; 149(4): 912-22, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22559943

RESUMO

Gene duplication is an important source of phenotypic change and adaptive evolution. We leverage a haploid hydatidiform mole to identify highly identical sequences missing from the reference genome, confirming that the cortical development gene Slit-Robo Rho GTPase-activating protein 2 (SRGAP2) duplicated three times exclusively in humans. We show that the promoter and first nine exons of SRGAP2 duplicated from 1q32.1 (SRGAP2A) to 1q21.1 (SRGAP2B) ∼3.4 million years ago (mya). Two larger duplications later copied SRGAP2B to chromosome 1p12 (SRGAP2C) and to proximal 1q21.1 (SRGAP2D) ∼2.4 and ∼1 mya, respectively. Sequence and expression analyses show that SRGAP2C is the most likely duplicate to encode a functional protein and is among the most fixed human-specific duplicate genes. Our data suggest a mechanism where incomplete duplication created a novel gene function-antagonizing parental SRGAP2 function-immediately "at birth" 2-3 mya, which is a time corresponding to the transition from Australopithecus to Homo and the beginning of neocortex expansion.


Assuntos
Evolução Molecular , Proteínas Ativadoras de GTPase/genética , Primatas/genética , Duplicações Segmentares Genômicas , Animais , Variações do Número de Cópias de DNA , Feminino , Genética Médica , Humanos , Mola Hidatiforme/genética , Hibridização in Situ Fluorescente , Mamíferos/genética , Dados de Sequência Molecular , Gravidez
2.
Cell ; 149(3): 525-37, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22521361

RESUMO

Balanced chromosomal abnormalities (BCAs) represent a relatively untapped reservoir of single-gene disruptions in neurodevelopmental disorders (NDDs). We sequenced BCAs in patients with autism or related NDDs, revealing disruption of 33 loci in four general categories: (1) genes previously associated with abnormal neurodevelopment (e.g., AUTS2, FOXP1, and CDKL5), (2) single-gene contributors to microdeletion syndromes (MBD5, SATB2, EHMT1, and SNURF-SNRPN), (3) novel risk loci (e.g., CHD8, KIRREL3, and ZNF507), and (4) genes associated with later-onset psychiatric disorders (e.g., TCF4, ZNF804A, PDE10A, GRIN2B, and ANK3). We also discovered among neurodevelopmental cases a profoundly increased burden of copy-number variants from these 33 loci and a significant enrichment of polygenic risk alleles from genome-wide association studies of autism and schizophrenia. Our findings suggest a polygenic risk model of autism and reveal that some neurodevelopmental genes are sensitive to perturbation by multiple mutational mechanisms, leading to variable phenotypic outcomes that manifest at different life stages.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Aberrações Cromossômicas , Transtorno Autístico/diagnóstico , Transtorno Autístico/genética , Criança , Transtornos Globais do Desenvolvimento Infantil/diagnóstico , Quebra Cromossômica , Deleção Cromossômica , Variações do Número de Cópias de DNA , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Sistema Nervoso/crescimento & desenvolvimento , Esquizofrenia/genética , Análise de Sequência de DNA , Transdução de Sinais
3.
Hum Genet ; 140(11): 1619-1624, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34287710

RESUMO

Microarray analysis is an efficient approach for screening and identifying cytogenetic imbalances in humans. SNP arrays, in particular, are a powerful way to identify copy-number gains and losses representing aneuploidy and aneusomy, but moreover, allow for the direct assessment of individual genotypes in known disease loci. Using these approaches, trisomies, monosomies, and mosaicism of whole chromosomes have been identified in human microarray studies. For canines, this approach is not widely used in clinical laboratory diagnostic practice. In our laboratory, we have implemented the use of a proprietary SNP array that represents approximately 650,000 loci across the domestic dog genome. During the validation of this microarray prior to clinical use, we identified three cases of aneuploidy after screening 2053 dogs of various breeds including monosomy X, trisomy X, and an apparent mosaic trisomy of canine chromosome 38 (CFA38). This study represents the first use of microarrays for copy-number evaluation to identify cytogenetic anomalies in canines. As microarray analysis becomes more routine in canine genetic testing, more cases of chromosome aneuploidy are likely to be uncovered.


Assuntos
Aneuploidia , Transtornos Cromossômicos/veterinária , Doenças do Cão/genética , Cães/genética , Animais , Transtornos Cromossômicos/genética , Cromossomos Humanos X/genética , Feminino , Masculino , Análise em Microsséries , Mosaicismo , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Aberrações dos Cromossomos Sexuais/veterinária , Transtornos do Cromossomo Sexual no Desenvolvimento Sexual/genética , Transtornos do Cromossomo Sexual no Desenvolvimento Sexual/veterinária , Trissomia/genética , Síndrome de Turner/genética , Síndrome de Turner/veterinária
4.
Hum Genet ; 140(11): 1517-1523, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34599367

RESUMO

Hair length can be a highly variable trait within the Felis catus species, varying between and within different cat breeds. Previous research has demonstrated this variability is due to recessive mutations within the fibroblast growth factor 5 (FGF5) gene. Following a genetic screen, four longhaired Maine Coons were identified that had only one copy of a known FGF5 mutation. We performed DNA sequencing on samples from two of these Maine Coons and identified a missense mutation in FGF5 c.577G > A p.Ala193Thr. Genetic screening via restriction digest was then performed on samples from the other two Maine Coons and an additional 273 cats of various breeds. This screening found that only the two additional Maine Coons were heterozygous for the novel variant. Furthermore, the novel variant was not identified after in silico analysis of 68 whole genome cat sequences from various breeds, demonstrating that this novel mutation is most likely a breed-specific variant for the Maine Coon, contributing to the longhair phenotype in about 3% of these cats.


Assuntos
Pelo Animal/anatomia & histologia , Gatos/genética , Fator 5 de Crescimento de Fibroblastos/genética , Mutação de Sentido Incorreto , Animais , Gatos/anatomia & histologia , Feminino , Fator 5 de Crescimento de Fibroblastos/química , Heterozigoto , Masculino , Linhagem
5.
Hum Genet ; 140(11): 1525-1534, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34406467

RESUMO

The unique appearance of Scottish Fold cats is caused by a single gene variant in TRPV4, which impacts the development of cartilage. This results in the ears folding forward and variable effects on articular cartilage and bone. While some find this appearance desirable, early work demonstrated that homozygous cats with two copies of this variant develop severe radiographic consequences. Subsequent breeding programs have mated heterozygous cats with straight-eared cats to ensure an equal mix of heterozygous (fold) and wild-type (nonfolded) offspring, in the hope of raising healthy cats. More recent radiological surveys suggest that these heterozygous cats may also have medical problems consisting of deformed distal extremities in the worst cases and accelerated onset of osteoarthritis. However, these previous studies were undermined by selection biases, lack of controls, unblinded assessment and lack of known genotypes. Our aim was to determine if heterozygous cats exhibit radiological abnormalities when controlling for these limitations. Specifically, DNA and radiographs were acquired for 22 Scottish Fold cats. Four reviewers, blinded to the ear phenotype, assessed the lateral radiographs. Genotyping showed that all 10 folded-ear cats were heterozygous, and none of the straight-ear cats (n = 12) had the abnormal TRPV4 variant. Although each reviewer, on average, gave a numerically worse 'severity score' to folded-ear cats relative to straight-ear cats, the images in heterozygous cats showed much milder radiological signs than previously published. This study provides additional information to be considered in the complicated debate as to whether cats with the TRPV4 variant should be bred for folded ears given the potential comorbidities.


Assuntos
Doenças do Gato/diagnóstico por imagem , Gatos/genética , Osteocondrodisplasias/veterinária , Canais de Cátion TRPV/genética , Animais , Doenças do Gato/genética , Orelha Externa/anatomia & histologia , Feminino , Heterozigoto , Membro Posterior/diagnóstico por imagem , Masculino , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/genética , Fenótipo , Radiografia
6.
Hum Genet ; 140(11): 1581-1591, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34370083

RESUMO

One of the most unique coat color patterns in the domestic dog is merle (also known as dapple in the dachshund breed), characterized by patches of normal pigmentation surrounded by diluted eumelanin pigment. In dogs, this striking variegated pattern is caused by an insertion of a SINE element into the PMEL gene. Differences in the length of the SINE insertion [due to a variable-length poly(A)-tail] has been associated with variation in the merle coat color and patterning. We previously performed a systematic evaluation of merle in 175 Australian shepherds and related breeds and correlated the length of the merle insertion variants with four broad phenotypic clusters designated as "cryptic", "atypical", "classic", and "harlequin" merle. In this study, we evaluated the SINE insertions in 140 dachshunds and identified the same major merle phenotypic clusters with only slight variation between breeds. Specifically, we identified numerous cases of true "hidden" merle in dachshunds with light/red (pheomelanin) coats with little to no black/brown pigment (eumelanin) and thus minimal or no observable merle phenotype. In addition, we identified somatic and gonadal mosaicism, with one dog having a large insertion in the harlequin size range of M281 that had no merle phenotype and unintentionally produced a double merle puppy with anophthalmia. The frequent identification of cryptic, hidden, and mosaic merle variants, which can be undetectable by phenotypic inspection, should be of particular concern to breeders and illustrates the critical need for genetic testing for merle prior to breeding to avoid producing dogs with serious health problems.


Assuntos
Pelo Animal/anatomia & histologia , Cães/genética , Testes Genéticos/veterinária , Cor de Cabelo/genética , Antígeno gp100 de Melanoma/genética , Alelos , Animais , Cruzamento , Cães/anatomia & histologia , Feminino , Estudos de Associação Genética , Genótipo , Masculino , Melaninas/genética , Mosaicismo , Mutação , Linhagem , Fenótipo , Elementos Nucleotídeos Curtos e Dispersos
7.
Hum Genet ; 138(5): 501-508, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30982136

RESUMO

There is currently no oversight for canine clinical genetic testing laboratories. We published an initial set of standards and guidelines with the goal of providing a basis for which canine testing laboratories could evaluate their quality assurance programs. To further those standards and guidelines, we have developed a checklist that can be used as a self-evaluation to identify gaps in their programs for continual quality improvement over time. Because there is currently no organization willing to oversee an external proficiency program, the checklist provides the first step toward an internal, self-assessment that can be used periodically to monitor improvements. In addition, we attempt to address concerns from the canine community regarding rare or private mutations, genetic screening using array-based technologies, non-peer reviewed tests that are being offered, and the clinical validity of certain mutations in particular breeds. Through coordination, conversation and hard work, the canine genetic testing community can strive to organize to improve testing and to provide more transparency to consumers and better outcomes for dogs.


Assuntos
Experimentação Animal/normas , Testes Genéticos/veterinária , Guias como Assunto , Controle de Qualidade , Animais , Lista de Checagem , Modelos Animais de Doenças , Cães , Técnicas de Diagnóstico Molecular/normas , Mutação/genética
8.
Hum Genet ; 138(5): 493-499, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30426199

RESUMO

This publication represents a proposed approach to quality standards and guidelines for canine clinical genetic testing laboratories. Currently, there are no guidelines for laboratories performing clinical testing on dogs. Thus, there is no consensus set of protocols that set the minimal standards of quality among these laboratories, potentially causing variable results between laboratories, inconsistencies in reporting, and the inability to share information that could impact testing among organizations. A minimal standard for quality in testing is needed as breeders use the information from genetic testing to make breeding choices and irreversible decisions regarding spay, neuter or euthanasia. Incorrect results can have significant impact on the health of the dogs being tested and on their subsequent progeny. Because of the potentially serious consequences of an incorrect result or incorrect interpretation, results should be reviewed by and reported by individuals who meet a minimum standard of qualifications. Quality guidelines for canine genetic testing laboratories should include not only the analytical phase, but also the preanalytical and postanalytical phases, as this document attempts to address.


Assuntos
Experimentação Animal/normas , Testes Genéticos/veterinária , Guias como Assunto , Controle de Qualidade , Animais , Modelos Animais de Doenças , Cães
9.
Cytogenet Genome Res ; 156(1): 22-34, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30071510

RESUMO

Merle is a distinct coat color and pattern found in numerous species, including the domestic dog, characterized by patches of diluted eumelanin (black pigment) interspersed among areas of normal pigmentation. In dogs, this variegated pattern is caused by an insertion of a SINE element into the canine PMEL gene. Although variation in the length of the SINE insertion - due to a variable-length poly(A) tail - has been observed to be associated with variation in merle coat color and patterning, no systematic evaluation of this correlation has been conducted and published in the scientific literature. We performed high-resolution analysis of the SINE insertion lengths in 175 dogs (99 Australian shepherds, 45 miniature Australian shepherds, and 31 miniature American shepherds) and compared the genotypes with the coat phenotypes (when available). SINE insertion lengths varied from 201 to 277 bp, indicating that merle insertion variants can occur in virtually any size along the entire continuum. Genotype-phenotype correlation of 126 dogs with only a single SINE insertion (m/M) identified at least 4 major phenotypic clusters designated as "cryptic," "atypical," "classic," and "harlequin" merle. However, we found several phenotypic outliers that did not cluster within these major groupings, suggesting that insertion size is not the only factor responsible for merle phenotypic variability. In addition, we detected 25 dogs with 2 SINE insertions (M/M) and 24 dogs with more than 2 PMEL (merle) alleles, indicating mosaicism. Genotype-phenotype correlation of M/M dogs suggests that cryptic merle alleles often act like non-merle (m) alleles when combined with atypical, classic, and harlequin-sized alleles. The finding of mosaicism has important implications for the dog's phenotype and the ability to potentially transmit various alleles to its offspring. Furthermore, we identified examples of the SINE insertion poly(A)-tail expansion and contraction between generations, which also has important implications for breeding practices and determining mating pairs to avoid producing double merle dogs. These data demonstrate that there is a continuum of merle insertion lengths associated with a spectrum of coat color and patterns and that genotype-phenotype exceptions and overlap make it difficult to strictly assign certain insertion sizes with an expected coat color, although some generalizations are possible.

10.
Am J Hum Genet ; 95(5): 490-508, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25307298

RESUMO

Neurodevelopmental disorders (NDDs) are caused by mutations in diverse genes involved in different cellular functions, although there can be crosstalk, or convergence, between molecular pathways affected by different NDDs. To assess molecular convergence, we generated human neural progenitor cell models of 9q34 deletion syndrome, caused by haploinsufficiency of EHMT1, and 18q21 deletion syndrome, caused by haploinsufficiency of TCF4. Using next-generation RNA sequencing, methylation sequencing, chromatin immunoprecipitation sequencing, and whole-genome miRNA analysis, we identified several levels of convergence. We found mRNA and miRNA expression patterns that were more characteristic of differentiating cells than of proliferating cells, and we identified CpG clusters that had similar methylation states in both models of reduced gene dosage. There was significant overlap of gene targets of TCF4 and EHMT1, whereby 8.3% of TCF4 gene targets and 4.2% of EHMT1 gene targets were identical. These data suggest that 18q21 and 9q34 deletion syndromes show significant molecular convergence but distinct expression and methylation profiles. Common intersection points might highlight the most salient features of disease and provide avenues for similar treatments for NDDs caused by different genetic mutations.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Transtornos Cromossômicos/genética , Anormalidades Craniofaciais/genética , Evolução Molecular , Haploinsuficiência/genética , Cardiopatias Congênitas/genética , Histona-Lisina N-Metiltransferase/genética , Deficiência Intelectual/genética , Células-Tronco Neurais , Fatores de Transcrição/genética , Células Cultivadas , Imunoprecipitação da Cromatina , Deleção Cromossômica , Cromossomos Humanos Par 18/genética , Cromossomos Humanos Par 9/genética , Metilação de DNA , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , MicroRNAs/genética , Microscopia Confocal , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Fator de Transcrição 4
11.
Cytogenet Genome Res ; 153(4): 198-204, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29421799

RESUMO

Genetic diseases occur in breeds used for law enforcement. As important team members, dogs are expected to operate at peak performance for several years and are significant investments for both the initial purchase and extensive, specialized training. Previous studies have not focused on causes for retirement or euthanasia as genetic (inherited) versus acquired (environmental). We performed direct mutational analysis for breed-specific conditions on samples from 304 dogs including 267 law enforcement (122 US, 87 Israeli, and 58 Polish) and 37 search and rescue dogs. Genetic testing identified 29% (n = 89) of the dogs tested to be carriers of a genetic mutation and 6% (n = 19) to be at risk for a debilitating inherited condition that may eventually impair the dog's ability to work. At-risk dogs included Labrador Retrievers (n = 4) with exercise-induced collapse, Bloodhounds (n = 2) with degenerative myelopathy (DM), and German Shepherd dogs with DM (n = 12) or leukocyte adhesion deficiency, type III (n = 1). A substantial number of working dogs were shown to be at risk for genetic conditions that may shorten the dog's career. The loss of dogs, due to early retirement or euthanasia, as a result of preventable genetic conditions has an emotional cost to handlers and financial cost to service organizations that can be avoided with genetic screening prior to breeding, buying, or training.


Assuntos
Doenças do Cão/epidemiologia , Cães/genética , Doenças Genéticas Inatas/veterinária , Animais , Cruzamento , Doenças do Cão/genética , Triagem de Portadores Genéticos , Doenças Genéticas Inatas/epidemiologia , Doenças Genéticas Inatas/genética , Predisposição Genética para Doença , Genótipo , Inquéritos Epidemiológicos , Israel/epidemiologia , Polônia/epidemiologia , Especificidade da Espécie , Estados Unidos/epidemiologia
12.
Am J Med Genet A ; 173(2): 395-406, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27759917

RESUMO

We performed whole-genome sequencing on an individual from a family with variable psychiatric phenotypes that had a sensory processing disorder, apraxia, and autism. The proband harbored a maternally inherited balanced translocation (46,XY,t(11;14)(p12;p12)mat) that disrupted LRRC4C, a member of the highly specialized netrin G family of axon guidance molecules. The proband also inherited a paternally derived chromosomal inversion that disrupted DPP6, a potassium channel interacting protein. Copy Number (CN) analysis in 14,077 cases with neurodevelopmental disorders and 8,960 control subjects revealed that 60% of cases with exonic deletions in LRRC4C had a second clinically recognizable syndrome associated with variable clinical phenotypes, including 16p11.2, 1q44, and 2q33.1 CN syndromes, suggesting LRRC4C deletion variants may be modifiers of neurodevelopmental disorders. In vitro, functional assessments modeling patient deletions in LRRC4C suggest a negative regulatory role of these exons found in the untranslated region of LRRC4C, which has a single, terminal coding exon. These data suggest that the proband's autism may be due to the inheritance of disruptions in both DPP6 and LRRC4C, and may highlight the importance of the netrin G family and potassium channel interacting molecules in neurodevelopmental disorders. © 2016 Wiley Periodicals, Inc.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Estudos de Associação Genética , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Canais de Potássio/genética , Receptores de Superfície Celular/genética , Regiões 5' não Traduzidas , Adolescente , Adulto , Apraxias/diagnóstico , Apraxias/genética , Transtorno Autístico/diagnóstico , Transtorno Autístico/genética , Criança , Pré-Escolar , Pontos de Quebra do Cromossomo , Inversão Cromossômica , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Cariótipo , Masculino , Pessoa de Meia-Idade , Família Multigênica , Linhagem , Translocação Genética , Adulto Jovem
13.
PLoS Genet ; 10(1): e1004139, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24497845

RESUMO

Inverted duplications are a common type of copy number variation (CNV) in germline and somatic genomes. Large duplications that include many genes can lead to both neurodevelopmental phenotypes in children and gene amplifications in tumors. There are several models for inverted duplication formation, most of which include a dicentric chromosome intermediate followed by breakage-fusion-bridge (BFB) cycles, but the mechanisms that give rise to the inverted dicentric chromosome in most inverted duplications remain unknown. Here we have combined high-resolution array CGH, custom sequence capture, next-generation sequencing, and long-range PCR to analyze the breakpoints of 50 nonrecurrent inverted duplications in patients with intellectual disability, autism, and congenital anomalies. For half of the rearrangements in our study, we sequenced at least one breakpoint junction. Sequence analysis of breakpoint junctions reveals a normal-copy disomic spacer between inverted and non-inverted copies of the duplication. Further, short inverted sequences are present at the boundary of the disomic spacer and the inverted duplication. These data support a mechanism of inverted duplication formation whereby a chromosome with a double-strand break intrastrand pairs with itself to form a "fold-back" intermediate that, after DNA replication, produces a dicentric inverted chromosome with a disomic spacer corresponding to the site of the fold-back loop. This process can lead to inverted duplications adjacent to terminal deletions, inverted duplications juxtaposed to translocations, and inverted duplication ring chromosomes.


Assuntos
Transtorno Autístico/genética , Variações do Número de Cópias de DNA/genética , Deficiência Intelectual/genética , Duplicações Segmentares Genômicas/genética , Transtorno Autístico/patologia , Pontos de Quebra do Cromossomo , Hibridização Genômica Comparativa , Replicação do DNA/genética , Amplificação de Genes , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hibridização in Situ Fluorescente , Deficiência Intelectual/patologia
15.
Am J Hum Genet ; 92(5): 681-95, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23623388

RESUMO

Arthrogryposis multiplex congenita (AMC) is caused by heterogeneous pathologies leading to multiple antenatal joint contractures through fetal akinesia. Understanding the pathophysiology of this disorder is important for clinical care of the affected individuals and genetic counseling of the families. We thus aimed to establish the genetic basis of an AMC subtype that is associated with multiple dysmorphic features and intellectual disability (ID). We used haplotype analysis, next-generation sequencing, array comparative genomic hybridization, and chromosome breakpoint mapping to identify the pathogenic mutations in families and simplex cases. Suspected disease variants were verified by cosegregation analysis. We identified disease-causing mutations in the zinc-finger gene ZC4H2 in four families affected by X-linked AMC plus ID and one family affected by cerebral palsy. Several heterozygous females were also affected, but to a lesser degree. Furthermore, we found two ZC4H2 deletions and one rearrangement in two female and one male unrelated simplex cases, respectively. In mouse primary hippocampal neurons, transiently produced ZC4H2 localized to the postsynaptic compartment of excitatory synapses, and the altered protein influenced dendritic spine density. In zebrafish, antisense-morpholino-mediated zc4h2 knockdown caused abnormal swimming and impaired α-motoneuron development. All missense mutations identified herein failed to rescue the swimming defect of zebrafish morphants. We conclude that ZC4H2 point mutations, rearrangements, and small deletions cause a clinically variable broad-spectrum neurodevelopmental disorder of the central and peripheral nervous systems in both familial and simplex cases of both sexes. Our results highlight the importance of ZC4H2 for genetic testing of individuals presenting with ID plus muscle weakness and minor or major forms of AMC.


Assuntos
Anormalidades Múltiplas/genética , Artrogripose/genética , Proteínas de Transporte/genética , Predisposição Genética para Doença/genética , Deficiência Intelectual/genética , Plasticidade Neuronal/genética , Dedos de Zinco/genética , Anormalidades Múltiplas/patologia , Animais , Artrogripose/patologia , Células Cultivadas , Pontos de Quebra do Cromossomo , Hibridização Genômica Comparativa , Feminino , Haplótipos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Immunoblotting , Hibridização In Situ , Deficiência Intelectual/patologia , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Mutação/genética , Proteínas Nucleares , Linhagem , Sinapses/genética , Peixe-Zebra
16.
Proc Natl Acad Sci U S A ; 110(37): 14990-4, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23980137

RESUMO

Obesity is a highly heritable condition and a risk factor for other diseases, including type 2 diabetes, cardiovascular disease, hypertension, and cancer. Recently, genomic copy number variation (CNV) has been implicated in cases of early onset obesity that may be comorbid with intellectual disability. Here, we describe a recurrent CNV that causes a syndrome associated with intellectual disability, seizures, macrocephaly, and obesity. This unbalanced chromosome translocation leads to duplication of over 100 genes on chromosome 12, including the obesity candidate gene G protein ß3 (GNB3). We generated a transgenic mouse model that carries an extra copy of GNB3, weighs significantly more than its wild-type littermates, and has excess intraabdominal fat accumulation. GNB3 is highly expressed in the brain, consistent with G-protein signaling involved in satiety and/or metabolism. These functional data connect GNB3 duplication and overexpression to elevated body mass index and provide evidence for a genetic syndrome caused by a recurrent CNV.


Assuntos
Duplicação Gênica , Proteínas Heterotriméricas de Ligação ao GTP/genética , Obesidade Infantil/genética , Adolescente , Adulto , Animais , Encéfalo/metabolismo , Criança , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 12/genética , Cromossomos Humanos Par 8/genética , Modelos Animais de Doenças , Feminino , Proteínas de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Obesidade Infantil/metabolismo , Obesidade Infantil/patologia , Linhagem , Síndrome , Translocação Genética
17.
Nat Genet ; 39(9): 1071-3, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17704777

RESUMO

We have identified a recurrent de novo pericentromeric deletion in 16p11.2-p12.2 in four individuals with developmental disabilities by microarray-based comparative genomic hybridization analysis. The identification of common clinical features in these four individuals along with the characterization of complex segmental duplications flanking the deletion regions suggests that nonallelic homologous recombination mediated these rearrangements and that deletions in 16p11.2-p12.2 constitute a previously undescribed syndrome.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 16/genética , Adolescente , Criança , Pré-Escolar , Aberrações Cromossômicas , Transtornos Cromossômicos/genética , Transtornos Cromossômicos/patologia , Feminino , Genoma Humano , Humanos , Hibridização in Situ Fluorescente , Hibridização de Ácido Nucleico/métodos , Síndrome
18.
Hum Mol Genet ; 22(9): 1816-25, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23376982

RESUMO

The nonsense-mediated mRNA decay (NMD) pathway functions not only to degrade transcripts containing premature termination codons (PTC), but also to regulate the transcriptome. UPF3B and RBM8A, important components of NMD, have been implicated in various forms of intellectual disability (ID) and Thrombocytopenia with Absent Radius (TAR) syndrome, which is also associated with ID. To gauge the contribution of other NMD factors to ID, we performed a comprehensive search for copy number variants (CNVs) of 18 NMD genes among individuals with ID and/or congenital anomalies. We identified 11 cases with heterozygous deletions of the genomic region encompassing UPF2, which encodes for a direct interacting protein of UPF3B. Using RNA-Seq, we showed that the genome-wide consequence of reduced expression of UPF2 is similar to that seen in patients with UPF3B mutations. Out of the 1009 genes found deregulated in patients with UPF2 deletions by at least 2-fold, majority (95%) were deregulated similarly in patients with UPF3B mutations. This supports the major role of deletion of UPF2 in ID. Furthermore, we found that four other NMD genes, UPF3A, SMG6, EIF4A3 and RNPS1 are frequently deleted and/or duplicated in the patients. We postulate that dosage imbalances of these NMD genes are likely to be the causes or act as predisposing factors for neuro-developmental disorders. Our findings further emphasize the importance of NMD pathway(s) in learning and memory.


Assuntos
Variações do Número de Cópias de DNA , Deficiências do Desenvolvimento/genética , Neurônios/citologia , Degradação do RNAm Mediada por Códon sem Sentido/genética , RNA Mensageiro/genética , Adolescente , Estudos de Casos e Controles , Criança , Códon sem Sentido , Biologia Computacional , RNA Helicases DEAD-box/genética , Deficiências do Desenvolvimento/patologia , Fator de Iniciação 4A em Eucariotos/genética , Feminino , Deleção de Genes , Dosagem de Genes , Predisposição Genética para Doença , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Masculino , Neurônios/patologia , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas/genética , Análise de Sequência de RNA , Telomerase/genética , Fatores de Transcrição/genética , Transcriptoma
19.
Annu Rev Med ; 64: 441-50, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23020879

RESUMO

In the past decade, we have witnessed a flood of reports about mutations that cause or contribute to intellectual disability (ID). This rapid progress has been driven in large part by the implementation of chromosomal microarray analysis and next-generation sequencing methods. The findings have revealed extensive genetic heterogeneity for ID, as well as examples of a common genetic etiology for ID and other neurobehavioral/psychiatric phenotypes. Clinical diagnostic application of these new findings is already well under way, despite incomplete understanding of non-Mendelian transmission patterns that are sometimes observed.


Assuntos
DNA/genética , Predisposição Genética para Doença/genética , Deficiência Intelectual/genética , Mutação , Humanos , Fenótipo
20.
Am J Hum Genet ; 91(6): 1128-34, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23217328

RESUMO

Large intergenic noncoding (linc) RNAs represent a newly described class of ribonucleic acid whose importance in human disease remains undefined. We identified a severely developmentally delayed 16-year-old female with karyotype 46,XX,t(2;11)(p25.1;p15.1)dn in the absence of clinically significant copy number variants (CNVs). DNA capture followed by next-generation sequencing of the translocation breakpoints revealed disruption of a single noncoding gene on chromosome 2, LINC00299, whose RNA product is expressed in all tissues measured, but most abundantly in brain. Among a series of additional, unrelated subjects referred for clinical diagnostic testing who showed CNV affecting this locus, we identified four with exon-crossing deletions in association with neurodevelopmental abnormalities. No disruption of the LINC00299 coding sequence was seen in almost 14,000 control subjects. Together, these subjects with disruption of LINC00299 implicate this particular noncoding RNA in brain development and raise the possibility that, as a class, abnormalities of lincRNAs may play a significant role in human developmental disorders.


Assuntos
Deficiências do Desenvolvimento/genética , Mutação , RNA Longo não Codificante/genética , Adolescente , Processamento Alternativo , Sequência de Bases , Pontos de Quebra do Cromossomo , Cromossomos Humanos Par 11 , Cromossomos Humanos Par 2 , Feminino , Ordem dos Genes , Humanos , Linfócitos/metabolismo , Dados de Sequência Molecular , Células-Tronco Neurais/metabolismo , Translocação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA