Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 147: 107417, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701596

RESUMO

Marine natural products play an important role in biopesticides. Seven new secondary metabolites with different structural classes, including two cycloheptapeptides, scortide A (1) and scortide B (2), two 19-nor-diterpenoids, talascortene H (3) and talascortene I (4), two diterpenoid acids, talascortene J (5) and talascortene K (6), and one triterpenoid, talascortene L (7) were isolated and identified from the sea-anemone-derived endozoic fungus Talaromyces scorteus AS-242. Their structures were comprehensively assigned by spectroscopic data analysis, single-crystal X-ray diffraction, tandem mass spectrometry, and electronic circular dichroism (ECD) calculations. The result of the antimicrobial assay demonstrated that compounds 1 - 6 have inhibitory activity against several human, aquatic, and plant pathogens with minimum inhibitory concentration (MIC) values ranging from 1 to 64 µg/mL. Specially, compounds 2 and 4 showed significant activities against the pathogenic fungus Curvularia spicifera with the MIC value of 1 µg/mL, providing an experimental basis of 2 and 4 with the potential as lead compounds to be developed into biopesticides.


Assuntos
Testes de Sensibilidade Microbiana , Talaromyces , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Relação Dose-Resposta a Droga , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/isolamento & purificação , Estrutura Molecular , Relação Estrutura-Atividade , Talaromyces/química , Talaromyces/metabolismo , Diterpenos/química , Diterpenos/isolamento & purificação , Diterpenos/farmacologia
2.
Angew Chem Int Ed Engl ; 63(18): e202402010, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38462490

RESUMO

The cinnamoyl lipid compound youssoufene A1 (1), featuring a unique dearomatic carbon-bridged dimeric skeleton, exhibits increased inhibition against multidrug resistant Enterococcus faecalis as compared to monomeric youssoufenes. However, the formation process of this intriguing dearomatization/dimerization remains unknown. In this study, an unusual "gene-within-gene" thioesterase (TE) gene ysfF was functionally characterized. The gene was found to naturally encodes two proteins, an entire YsfF with α/ß-hydrolase and 4-hydroxybenzoyl-CoA thioesterase (4-HBT)-like enzyme domains, and a nested YsfFHBT (4-HBT-like enzyme). Using an intracellular tagged carrier-protein tracking (ITCT) strategy, in vitro reconstitution and in vivo experiments, we found that: i) both domains of YsfF displayed thioesterase activities; ii) YsfF/YsfFHBT could accomplish the 6π-electrocyclic ring closure for benzene ring formation; and iii) YsfF and cyclase YsfX together were responsible for the ACP-tethered dearomatization/dimerization process, possibly through an unprecedented Michael-type addition reaction. Moreover, site-directed mutagenesis experiments demonstrated that N301, E483 and H566 of YsfF are critical residues for both the 6π-electrocyclization and dimerization processes. This study enhances our understanding of the multifunctionality of the TE protein family.


Assuntos
Lipídeos , Tioléster Hidrolases , Dimerização , Tioléster Hidrolases/química , Mutagênese Sítio-Dirigida
3.
J Org Chem ; 88(13): 9004-9025, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37306475

RESUMO

An efficient protocol has been established for ß-glycosylations with 2-deoxy-2-(2,4-dinitrobenzenesulfonyl)amino (2dDNsNH)-glucopyranosyl/galactopyranosyl selenoglycosides using PhSeCl/AgOTf as an activating system. The reaction features highly ß-selective glycosylation with a wide range of alcohol acceptors that are either sterically hindered or poorly nucleophilic. Thioglycoside- and selenoglycoside-based alcohols prove to be viable nucleophiles, opening up new opportunities for one-pot construction of oligosaccharides. The power of this approach is highlighted by the efficient assembly of tri-, hexa-, and nonasaccharides composed of ß-(1 → 6)-glucosaminosyl residues based on one-pot preparation of a triglucosaminosyl thioglycoside with DNs, phthaloyl, and 2,2,2-trichloroethoxycarbonyl as the protecting groups of amino groups. These glycans are potential antigens for developing glycoconjugate vaccines against microbial infections.


Assuntos
Oligossacarídeos , Tioglicosídeos , Glicosilação , Oligossacarídeos/química
4.
Rapid Commun Mass Spectrom ; 37(14): e9529, 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37125446

RESUMO

RATIONALE: Thymoma is a rare malignant tumor but it is the most common primary tumor of the anterior mediastinum. The current imaging methods for thymoma screening suffer from false positive rate problems, and thymoma pathogenesis remains elusive. Study of thymoma metabolic characteristics could provide clues for improving the diagnosis and understanding the pathogenesis of thymoma. METHODS: Metabolic profiling of plasma from thymoma and thymic hyperplasia patients was performed using ultrahigh-performance liquid chromatography combined with high-resolution mass spectrometry in both positive and negative ionization modes. After pre- and post-processing, the dataset was divided into three age groups and statistical analysis was performed to select differential metabolites of thymoma. For feature identification, experimental tandem mass spectra were matched to those of databases and available chemical standards, and also manually annotated with plausible chemical structures to ensure high identification confidence. RESULTS: A total of 47 differential metabolites were identified in thymoma. Significantly higher levels of histidine, sphinganine 1-phosphate, lactic acid dimer, phenylacetylglutamine, LPC (18:3) and LPC (16:1), and significantly lower levels of phenylalanine, indole-3-propionic acid (IPA), hippuric acid and mesobilirubinogen were associated with thymoma. Tryptophan level in thymoma-associated myasthenia gravis (TAMG) was significantly lower than that of the MG(-) group. IPA and hippuric acid abundances exhibited increasing trends from indolent to aggressive thymoma. CONCLUSIONS: Our study revealed aberrant aromatic amino acid metabolism and fatty acid oxidation might be associated with thymoma. The identified unique metabolic characteristics of thymoma may provide valuable information for study of the molecular mechanism of thymoma pathogenesis, and improvement of diagnosis and discovery of new therapeutic strategies for thymoma.


Assuntos
Timoma , Hiperplasia do Timo , Neoplasias do Timo , Humanos , Timoma/complicações , Timoma/diagnóstico , Timoma/patologia , Hiperplasia do Timo/complicações , Hiperplasia do Timo/patologia , Neoplasias do Timo/complicações , Neoplasias do Timo/diagnóstico , Neoplasias do Timo/patologia , Metabolômica , Espectrometria de Massas , Cromatografia Líquida
5.
J Cell Biochem ; 120(5): 7297-7308, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30387205

RESUMO

BACKGROUND: In this study, we evaluated the effect of rs6265 polymorphism on the expression of brain-derived neurotrophic factor (BDNF) and relevant downstream targets, as well as the involvement of this polymorphism in bladder cancer. METHOD: A computational analysis and luciferase assays were used to explore the interaction among BDNF, miR-205, and cyclin J (CCNJ). Real-time polymerase chain reaction (RT-PCR) and Western blot analysis were carried out to determine the effect of rs6265 polymorphism on the expression of BDNF and relevant downstream genes. RESULT: BDNF directly inhibited miR-205 expression but enhanced the expression of CCNJ, which was identified as a virtual target gene of miR-205. Furthermore, the inhibitory effect of BDNF carrying the Val genotype, defined as BDNF (Val), on miR-205 expression was much stronger than that of BDNF (Met), while the inductive effect of BDNF (Val) on CCNJ expression was much weaker than that of BDNF (Met). miR-205 and CCNJ small interfering RNA (siRNA) were found to reduce cell proliferation and arrest the cells in G0/G1 phase. In addition, miR-205 expression in patients carrying BDNF genotyped as Met/Met (defined as Met/Met group) was much higher than patients carrying BDNF genotyped as Val/Val and Val/Met (defined as Val/Val group and Val/Met group). As an inhibitor of CCNJ expression, the inhibitory effect of miR-205 was much higher in the Met/Met group than that in the Val/Val and Val/Met groups. CONCLUSION: In summary, we suggested that the rs6265 polymorphism in BDNF upregulates the expression of CCNJ in bladder cancer via the inhibition of miR-205 expression, which leads to the promoted proliferation of bladder cancer cells.

6.
Cell Physiol Biochem ; 47(4): 1667-1681, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29949794

RESUMO

BACKGROUND/AIMS: Genistein is a natural isoflavone enriched in soybeans. It has beneficial effects for patients with mucopolysaccharidose type III through inhibiting glycosaminoglycan biosynthesis. However, other studies indicate that genistein does not always inhibit glycosaminoglycan biosynthesis. METHODS: To understand the underlying molecular mechanisms, CHOK1, CHO3.1, CHO3.3, and HCT116 cells were treated with genistein and the monosaccharide compositions and quantity of all glycans from the cell lysate were measured after thorough acid hydrolysis followed by HPLC analysis. In addition, the glycosaminoglycan disaccharide compositions were obtained by stable isotope labeling coupled with LC/MS analysis. RESULTS: Genistein treatment reduced the amount of glycans but increased the amount of glycosaminoglycans in HCT116 cells. In contrast, genistein treatment reduced both glycan and glycosaminoglycan quantities in CHOK1, CHO3.1, and CHO3.3 cells in addition to differential changes in glycosaminoglycan disaccharide compositions. CONCLUSION: Genistein treatment reduced overall glycan quantity but glycosaminoglycan quantities were either increased or decreased in a cell type-dependent manner.


Assuntos
Genisteína/farmacologia , Glicosaminoglicanos/biossíntese , Glicosaminoglicanos/química , Animais , Células CHO , Cricetulus , Humanos
7.
J Org Chem ; 83(2): 588-603, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29261315

RESUMO

We have developed an efficient protocol for the synthesis of C-glycosylated phenanthridines. Tetrafuranos-4-yl and pentapyranos-5-yl radicals, generated from K2S2O8-mediated oxidative decarboxylation of furan- and pyranuronic acids, undergo attack to 2-isocyanodiphenyls and ensuing homolytic aromatic substitution to provide diverse C-glycosylated phenanthridines in satisfactory yields without resort to transition metals. This reaction tolerates various functional groups, and enables ready synthesis of complex oligosaccharide-based phenanthridines. The C-glycosylated phenanthridine derived from ß-cyclodextrin has been prepared, which might be potential in medicinal and biological chemistry due to its flexible conformation.

8.
Cell Physiol Biochem ; 43(3): 1220-1234, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28982096

RESUMO

BACKGROUND/AIMS: Bleomycin is a clinically used anti-cancer drug that produces DNA breaks once inside of cells. However, bleomycin is a positively charged molecule and cannot get inside of cells by free diffusion. We previously reported that the cell surface negatively charged glycosaminoglycans (GAGs) may be involved in the cellular uptake of bleomycin. We also observed that a class of positively charged small molecules has Golgi localization once inside of the cells. We therefore hypothesized that bleomycin might perturb Golgi-operated GAG biosynthesis. METHODS: We used stable isotope labeling coupled with LC/MS analysis of GAG disaccharides simultaneously from bleomycin-treated and non-treated cancer cells. To further understand the cytotoxicity of bleomycin and its relationship to GAGs, we used sodium chlorate to inhibit GAG sulfation and commercially available GAGs to compete for cell surface GAG/bleomycin interactions in seven cell lines including CHO745 defective in both heparan sulfate and chondroitin sulfate biosynthesis. RESULTS: we discovered that heparan sulfate GAG was significantly undersulfated and the quantity and disaccharide compositions of GAGs were changed in bleomycin-treated cells in a concentration- and time-dependent manner. We revealed that bleomycin-induced cytotoxicity was directly related to cell surface GAGs. CONCLUSION: GAGs were targeted by bleomycin both at cell surface and at Golgi. Thus, GAGs might be the biological relevant molecules that might be related to the bleomycin-induced fibrosis in certain cancer patients, a severe side effect with largely unknown molecular mechanism.


Assuntos
Bleomicina/química , Sulfatos de Condroitina/química , Heparitina Sulfato/química , Animais , Antipirina/análogos & derivados , Antipirina/química , Bleomicina/toxicidade , Células CHO , Sulfatos de Condroitina/análise , Sulfatos de Condroitina/metabolismo , Cromatografia Líquida de Alta Pressão , Cricetinae , Cricetulus , Deutério/química , Edaravone , Células HCT116 , Células HT29 , Heparitina Sulfato/análise , Heparitina Sulfato/metabolismo , Humanos , Marcação por Isótopo , Espectrometria de Massas
9.
Arch Virol ; 162(12): 3611-3618, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28803371

RESUMO

Porcine epidemic diarrhea virus (PEDV) is a causative agent of porcine intestinal disease, which causes vomiting, diarrhea, and dehydration in piglets. PEDV is associated with the most severe pathogenesis in one-week-old piglets, with mortality rates reaching 100%. A PEDV strain was isolated from the intestinal tract of diarrheic piglets from a pig farm in Jiangsu Province in March 2016, termed the JS201603 isolate. The isolated virus was confirmed to be PEDV via RT-PCR, electron microscopy, a cytopathic effect assay and sequence analysis. The S and ORF3 genes of the JS201603 isolate were sequenced, revealing that the S gene was associated with a 15-base insertion at 167 nt, 176 - 186 nt, and 427 - 429 nt, as well as a six-base deletion in 487 - 492 nt, indicating that it was a current epidemic variant compared with the classical strain, CV777. No deletion occurred between 245 - 293 nt of the ORF3 gene in the JS201603 isolate compared with the vaccine isolates YY2013 and SQ2014. An experimental infection model indicated that the piglets in the challenge group successively developed diarrhea, exhibiting yellow-colored loose stools with a foul odor. The piglets in the JS201603 isolate challenge group displayed reduced food consumption, lost weight, and in severe cases even died. No abnormalities were observed in the control group. The JS201603 variant isolated in this study contributes to the evolutionary analysis of diarrhea virus. The experimental infection model has established a foundation for further studies on vaccine development.


Assuntos
Infecções por Coronavirus/veterinária , Diarreia/veterinária , Genótipo , Vírus da Diarreia Epidêmica Suína/classificação , Vírus da Diarreia Epidêmica Suína/isolamento & purificação , Doenças dos Suínos/patologia , Doenças dos Suínos/virologia , Animais , China , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Efeito Citopatogênico Viral , Diarreia/patologia , Diarreia/virologia , Microscopia Eletrônica de Transmissão , Mutação , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/patogenicidade , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Suínos , Proteínas Virais/genética , Vírion/ultraestrutura , Virulência
10.
Sheng Li Xue Bao ; 68(5): 621-627, 2016 Oct 25.
Artigo em Zh | MEDLINE | ID: mdl-27778026

RESUMO

Gastrointestinal smooth muscle layer contains two kinds of interstitial cells with special differentiation, i.e., interstitial cells of Cajal (ICC) and platelet-derived growth factor receptor α-positive (PDGFRα+) cells. The ICC and PDGFRα+ cells contact with smooth muscle cells (SMCs) by gap junctions and regulate contractive function of the SMCs. Therefore, these three kinds of cells constitute a functional syncytium, i.e., the SMC, ICC and PDGFRα+ cells syncytium (SIP syncytium). Various neurotransmitters, humoral factors, endogenous bioactive molecules, as well as drugs regulate gastrointestinal motility through the SIP syncytium. In this review, we introduce the concept of SIP syncytium and summarize functions of the syncytium, as well as its physiological and pathological significances.


Assuntos
Motilidade Gastrointestinal , Músculo Liso , Células Gigantes , Humanos , Células Intersticiais de Cajal , Miócitos de Músculo Liso , Receptor alfa de Fator de Crescimento Derivado de Plaquetas
11.
Carbohydr Polym ; 332: 121883, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431404

RESUMO

Silvetia siliquosa, the only species of the family Fucaceae in China, is used as a medicine food homology. Fucoidan from S. siliquosa was extracted by hot water twice thoroughly (13 % of total yield), and a purified fucoidan SSF with a molecular weight of 93 kD was obtained. Chemical composition analysis demonstrated that SSF was primarily composed of sulfate (21.68 wt%) and fucose (84 % of all neutral monosaccharides). IR, methylation analysis, NMR and ESI-MS results indicated SSF had the backbone of mainly (1 â†’ 3)-α-L-fucopyranose and minor (1 â†’ 4)-α-L-fucopyranose, with little 1,3 and 1,4 branched ß-D-Xylp and ß-D-Galp. The in vitro immunomodulatory test on RAW 264.7 cells showed that SSF could up-regulate the expression of immune related factors and proteins in a concentration-dependent manner, but the immunomodulatory effect disappeared from desulfated SSF. This research indicated that highly sulfated fucan possessed immunomodulatory effect and the importance of sulfate groups in the activity of SSF.


Assuntos
Phaeophyceae , Polissacarídeos , Animais , Camundongos , Células RAW 264.7 , Polissacarídeos/farmacologia , Polissacarídeos/química , Sulfatos/química , Parede Celular
12.
Org Lett ; 26(18): 3997-4001, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38687048

RESUMO

The radical decarboxylative azidation of structurally diverse uronic acids has been established as an efficient approach to reverse glycosyl azides and rare sugar-derived glycosyl azides under the action of Ag2CO3, 3-pyridinesulfonyl azide, and K2S2O8. The power of this method has been highlighted by the divergent synthesis of 4'-C-azidonucleosides using Vorbrüggen glycosylation of nucleobases with 4-C-azidofuranosyl acetates. The antiviral assessment of the resulting nucleosides revealed one compound as a potential inhibitor of covalently closed circular DNA.


Assuntos
Antivirais , Azidas , Nucleosídeos , Azidas/química , Antivirais/síntese química , Antivirais/química , Antivirais/farmacologia , Estrutura Molecular , Nucleosídeos/química , Nucleosídeos/síntese química , Nucleosídeos/farmacologia , Glicosilação
13.
PeerJ ; 11: e14577, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36620746

RESUMO

Background: We quantified and evaluated the allocation of soil and water resources in the Aksu River Basin to measure the consequences of climate change on an agricultural irrigation system. Methods: We first simulated future climate scenarios in the Aksu River Basin by using a statistical downscaling model (SDSM). We then formulated the optimal allocation scheme of agricultural water as a multiobjective optimization problem and obtained the Pareto optimal solution using the multi-objective grey wolf optimizer (MOGWO). Finally, optimal allocations of water and land resources in the basin at different times were obtained using an analytic hierarchy process (AHP). Results: (1) The SDSM is able to simulate future climate change scenarios in the Aksu River Basin. Evapotranspiration (ET0) will increase significantly with variation as will the amount of available water albeit slightly. (2) To alleviate water pressure, the area of cropland should be reduced by 127.5 km2 under RCP4.5 and 377.2 km2 under RCP8.5 scenarios. (3) To be sustainable, the allocation ratio of forest land and water body should increase to 39% of the total water resource in the Aksu River Basin by 2050.


Assuntos
Mudança Climática , Água , Agricultura , Irrigação Agrícola , China
14.
J Neurogastroenterol Motil ; 29(2): 250-261, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37019869

RESUMO

Background/Aims: The gastrointestinal symptom of diabetes mellitus, chronic constipation, seriously affects patients' life. Whereas, the mechanism of chronic constipation is still ambiguous, resulting in a lack of effective therapies for this symptom. As a part of the smooth muscle cells, interstitial cells of Cajal, and platelet-derived growth factor receptor alpha-positive (PDGFRα+) cells syncytium (SIP syncytium), PDGFRα+ cells play an important role in regulating colonic motility. According to our previous study, in PDGFRα+ cells in colons of diabetic mice, the function of the P2Y1 purinergic receptor/type 3 small-conductance calcium-activated potassium (SK3) channel signaling pathway is strengthened, which may lead to colonic dysmotility. The purpose of this study is to investigate the changes in SK3 channel properties of PDGFRα+ cells in diabetic mice. Methods: Whole-cell patch clamp, Western blotting, superoxide dismutase activity measurement, and malondialdehyde measurement were main methods in the present study. Results: The present study revealed that when dialysed with low calcium ion (Ca2+) solution, the SK3 current density was significantly decreased in PDGFRα+ cells from diabetic mice. However, the SK3 current density in PDGFRα+ cells was enhanced from diabetic mice when dialysed with high Ca2+ solution. Moreover, hydrogen peroxide-treatment mimicked this phenomenon in SK3 transgenic HEK293 cells. The subunit of SK3 channels, protein kinase CK2, was up-regulated in colonic muscle layers and hydrogen peroxide-treated HEK293 cells. Additionally, protein phosphatase 2A, the subunit of SK3 channels, was not changed in streptozotocin-treated mouse colons or hydrogen peroxide-treated HEK293 cells. Conclusion: The diabetic oxidative stress-induced upregulation of CK2 contributed to modulating SK3 channel sensitivity to Ca2+ in colonic PDGFRα+ cells, which may result in colonic dysmotility in diabetic mice.

15.
Behav Brain Res ; 450: 114478, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37164190

RESUMO

Neuronal apoptosis is considered one of the hallmarks of ischemic stroke. Dual specificity phosphatase 10 (DUSP10), a member of the dual-specificity phosphatase family, which is involved in the regulation of apoptosis process. This study aimed to investigate the effect of on apoptosis in primary cortical neurons exposed to oxygen-glucose deprivation and reoxygenation (OGD/R) and mice suffered from transient middle cerebral artery occlusion and reperfusion (MCAO/R). The results showed that DUSP10 overexpression improved survival and reduced apoptosis in neurons subjected to OGD/R, which was manifested by decreased apoptotic proteins (cleaved caspase 3 and bax) and TUNEL+ cells, as well as increased the anti-apoptotic protein (bcl-2). DUSP10 overexpression inhibited the p38/JNK signaling pathway after OGD/R treatment, whilst DUSP10 knockdown had opposite effects. In addition, the p38 inhibitor SB203580 or JNK inhibitor SP600125 attenuated the increased apoptosis of OGD/R-stimulated neurons treated with DUSP10 silencing. Consistently, DUSP10 knockdown exacerbated infarct volume in MCAO/R injury. The data of Nissl staining and TUNEL-NeuN double staining revealed that DUSP10 interference aggravated neuronal damage in the ischemic penumbra of mice. Furthermore, DUSP10 inhibition activated the p38/JNK axis accompanied by enhanced phosphorylation of p38 and JNK in vivo. In summary, DUSP10 is a neuroprotective agent against ischemic stroke-induced neuronal damage via suppressing the p38/JNK signaling pathway.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Traumatismo por Reperfusão , Animais , Camundongos , Apoptose , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Glucose/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , AVC Isquêmico/metabolismo , Sistema de Sinalização das MAP Quinases , Neurônios/metabolismo , Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo
16.
J Inflamm Res ; 16: 977-992, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36915615

RESUMO

Purpose: This study aimed to investigate the expression of inducible T-cell co-stimulator (ICOS) and its ligand (ICOSLG), along with their association with clinicopathological features and influence on the immune profile in colorectal cancer (CRC). Patients and Methods: The Cancer Genome Atlas Colorectal Adenocarcinoma cohorts were used. We also analyzed 131 clinical samples of colon lesions, including precancerous lesions (hyperplastic polyps, low-grade dysplasia, and high-grade dysplasia) and CRC tissues. We conducted immunohistochemical (IHC) assays and multiple IHC (mIHC) of CD4+, Foxp3+ tumor-infiltrating lymphocytes (TILs), and PD-1/PD-L1 immune checkpoints in precancerous lesions and CRC samples from our patient subsets to determine changes and correlations in ICOS and ICOSLG expression during progression through the adenoma-carcinoma pathway. Results: High expression of ICOS and ICOSLG was a significant factor in CRC in multiple analyses and was positively correlated with CD4+/Foxp3+ TIL density and PD-1/PD-L1 expression, which increased with the sequential progression of lesions from precancerous tissues to carcinoma. Multivariable logistic regression analysis suggested that the location and expression level of ICOS/ICOSLG may be involved in precancerous-carcinoma progression. The co-expression status of PD-1 and ICOS/ ICOSLG could stratify patients with colorectal lesions into three groups of low, moderate, and high risk of progression. According to this classification and mIHC assays, we found a strong correlation between increased PD-1+ICOS+ or PD-1+ICOSLG+ co-expression and CRC, which might be deemed an independent factor in carcinogenesis. Conclusion: Increased ICOS/ICOSLG expression may be associated with the progressive formation of Foxp3+ TILs in the immune microenvironment and may further promote the development of the abnormal cytology of colorectal lesions from precancerous neoplasia to CRC. Our findings support the interpretation that enhanced co-expression of PD-1+ICOS+ or PD-1+ICOSLG+ contributes to the immune-active microenvironment of the colorectal adenoma-carcinoma sequence.

17.
Virus Genes ; 45(3): 542-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22923090

RESUMO

In 2009, a bovine parainfluenza virus (BPIV3), named as NM09, was isolated using MDBK cell culture from the nasal swabs of normal cattle in China. The NM09 isolate was characterized by RT-PCR and nucleotide sequence analysis. Its complete genome was 15,456 nucleotides in length. Similar to other sequenced PIV strains, the NM09 virus consisted of six non-overlapping genes, which were predicted to encode nine proteins with conserved and complementary 3' leader and 5' trailer regions, conserved gene starts, gene stops, and trinucleotide intergenic sequences. Nucleotide phylogenetic analysis of matrix and hemagglutinin-neuraminidase gene demonstrated that this NM09 isolate belonged to BPIV3 genotype A instead of the previously reported BPIV3 genotype C in China. It is implicated that the different genotypes A and C might coexist infection for a long time in China.


Assuntos
Bovinos/virologia , Genótipo , Vírus da Parainfluenza 3 Bovina/genética , Filogenia , Animais , Sequência de Bases , Linhagem Celular , China , Genes Virais , Tamanho do Genoma , Proteína HN/genética , Vírus da Parainfluenza 3 Bovina/classificação , Vírus da Parainfluenza 3 Bovina/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Análise de Sequência de DNA , Proteínas da Matriz Viral/genética , Cultura de Vírus/métodos
18.
Mar Drugs ; 10(10): 2138-2152, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23170074

RESUMO

A fucoidan extracted from Saccharina japonica was fractionated by anion exchange chromatography. The most complex fraction F0.5 was degraded by dilute sulphuric acid and then separated by use of an activated carbon column. Fraction Y1 was fractionated by anion exchange and gel filtration chromatography while Fraction Y2 was fractionated by gel filtration chromatography. The fractions were determined by ESI-MS and analyzed by ESI-CID-MS/MS. It was concluded that F0.5 had a backbone of alternating 4-linked GlcA and 2-linked Man with the first Man residue from the nonreducing end accidentally sulfated at C6. In addition, F0.5 had a 3-linked glucuronan, in accordance with a previous report by NMR. Some other structural characteristics included GlcA 1→3 Man 1→4 GlcA, Man 1→3 GlcA 1→4 GlcA, Fuc 1→4 GlcA and Fuc 1→3 Fuc. Finally, it was shown that fucose was sulfated at C2 or C4 while galactose was sulfated at C2, C4 or C6.


Assuntos
Phaeophyceae/química , Polissacarídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Configuração de Carboidratos , Cromatografia Líquida de Alta Pressão , Estrutura Molecular , Phaeophyceae/metabolismo , Polissacarídeos/metabolismo
19.
Org Lett ; 24(3): 971-976, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35045255

RESUMO

Gold(I)-catalyzed stereoselective ß-glycosylation of primary alcohols is achieved using the orthogonally protected mannosyl α-ortho-hexynylbenzoate (OABz) donors devoid of 4,6-O-tethering groups used in conventionally constructing ß-mannosidic bonds. The potential of this methodology is showcased by the first assembly of ß-1,6-tri/hexa-/nonamannosides and related sulfated congeners through a convergent strategy. The synthesis features the stereocontrolled ß-glycosylation of α-trimannosyl OABz donors and the late-stage sulfonation. This work is expected to expedite the preparation of ß-1,6-mannans and functionalized derivatives.

20.
Org Lett ; 24(43): 7944-7949, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36287193

RESUMO

An efficient approach to 6-deoxy-heptose constructs has been established by one-carbon homologation of the sugar chain of hexoses. The reaction features the formation of sugar-based α-substituted propanedinitriles and ensuing diverse oxidative transformations under mild reaction conditions that are compatible with a wide range of sugars bearing various functional/protecting groups. The applications of this method are demonstrated by a divergent assembly of Campylobacter jejuni strain 81-176 capsular trisaccharide repeating unit derivatives.


Assuntos
Campylobacter jejuni , Trissacarídeos , Carbono , Heptoses , Hexoses
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA