Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioinformatics ; 37(14): 2058-2060, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-33135060

RESUMO

SUMMARY: Antimicrobial peptides (AMPs) are promising alternative antimicrobial agents. Currently, however, portable, user-friendly and efficient methods for predicting AMP sequences from genome-scale data are not readily available. Here we present amPEPpy, an open-source, multi-threaded command-line application for predicting AMP sequences using a random forest classifier. AVAILABILITY AND IMPLEMENTATION: amPEPpy is implemented in Python 3 and is freely available through GitHub (https://github.com/tlawrence3/amPEPpy). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genoma , Software , Proteínas Citotóxicas Formadoras de Poros
2.
Plant Physiol ; 187(4): 2262-2278, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34890456

RESUMO

Under anaerobic stress, Arabidopsis thaliana induces the expression of a collection of core hypoxia genes that encode proteins for an adaptive response. Among these genes is NIP2;1, which encodes a member of the "Nodulin 26-like Intrinsic Protein" (NIP) subgroup of the aquaporin superfamily of membrane channel proteins. NIP2;1 expression is limited to the "anoxia core" region of the root stele under normal growth conditions, but shows substantial induction (up to 1,000-fold by 2-4 h of hypoxia) by low oxygen stress, and accumulation in all root tissues. During hypoxia, NIP2;1-GFP accumulates predominantly on the plasma membrane by 2 h, is distributed between the plasma and internal membranes during sustained hypoxia, and remains elevated in root tissues through 4 h of reoxygenation recovery. In response to hypoxia challenge, T-DNA insertion mutant nip2;1 plants exhibit elevated lactic acid within root tissues, reduced efflux of lactic acid, and reduced acidification of the external medium compared to wild-type plants. Previous biochemical evidence demonstrates that NIP2;1 has lactic acid channel activity, and our work supports the hypothesis that NIP2;1 prevents lactic acid toxicity by facilitating release of cellular lactic acid from the cytosol to the apoplast, supporting eventual efflux to the rhizosphere. In evidence, nip2;1 plants demonstrate poorer survival during argon-induced hypoxia stress. Expressions of the ethanolic fermentation transcript Alcohol Dehydrogenase1 and the core hypoxia-induced transcript Alanine Aminotransferase1 are elevated in nip2;1, and expression of the Glycolate Oxidase3 transcript is reduced, suggesting NIP2;1 lactic acid efflux regulates other pyruvate and lactate metabolism pathways.


Assuntos
Adaptação Fisiológica/genética , Aquaporinas/genética , Aquaporinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Hipóxia/metabolismo , Ácido Láctico/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hipóxia/genética , Plantas Geneticamente Modificadas
3.
Front Fungal Biol ; 3: 808578, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37746234

RESUMO

The role of lipo-chitooligosaccharides (LCOs) as signaling molecules that mediate the establishment of symbiotic relationships between fungi and plants is being redefined. New evidence suggests that the production of these molecular signals may be more of a common trait in fungi than what was previously thought. LCOs affect different aspects of growth and development in fungi. For the ectomycorrhizal forming fungi, Laccaria bicolor, the production and effects of LCOs have always been studied with a symbiotic plant partner; however, there is still no scientific evidence describing the effects that these molecules have on this organism. Here, we explored the physiological, molecular, and metabolomic changes in L. bicolor when grown in the presence of exogenous sulfated and non-sulfated LCOs, as well as the chitooligomers, chitotetraose (CO4), and chitooctaose (CO8). Physiological data from 21 days post-induction showed reduced fungal growth in response to CO and LCO treatments compared to solvent controls. The underlying molecular changes were interrogated by proteomics, which revealed substantial alterations to biological processes related to growth and development. Moreover, metabolite data showed that LCOs and COs caused a downregulation of organic acids, sugars, and fatty acids. At the same time, exposure to LCOs resulted in the overproduction of lactic acid in L. bicolor. Altogether, these results suggest that these signals might be fungistatic compounds and contribute to current research efforts investigating the emerging impacts of these molecules on fungal growth and development.

4.
Front Fungal Biol ; 2: 716511, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37744103

RESUMO

Natural products derived from microbes are crucial innovations that would help in reaching sustainability development goals worldwide while achieving bioeconomic growth. Trichoderma species are well-studied model fungal organisms used for their biocontrol properties with great potential to alleviate the use of agrochemicals in agriculture. However, identifying and characterizing effective natural products in novel species or strains as biological control products remains a meticulous process with many known challenges to be navigated. Integration of recent advancements in various "omics" technologies, next generation biodesign, machine learning, and artificial intelligence approaches could greatly advance bioprospecting goals. Herein, we propose a roadmap for assessing the potential impact of already known or newly discovered Trichoderma species for biocontrol applications. By screening publicly available Trichoderma genome sequences, we first highlight the prevalence of putative biosynthetic gene clusters and antimicrobial peptides among genomes as an initial step toward predicting which organisms could increase the diversity of natural products. Next, we discuss high-throughput methods for screening organisms to discover and characterize natural products and how these findings impact both fundamental and applied research fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA