Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
PLoS Pathog ; 20(6): e1011883, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38838057

RESUMO

ATP-binding cassette (ABC) transport systems are crucial for bacteria to ensure sufficient uptake of nutrients that are not produced de novo or improve the energy balance. The cell surface of the pathobiont Streptococcus pneumoniae (pneumococcus) is decorated with a substantial array of ABC transporters, critically influencing nasopharyngeal colonization and invasive infections. Given the auxotrophic nature of pneumococci for certain amino acids, the Ami ABC transporter system, orchestrating oligopeptide uptake, becomes indispensable in host compartments lacking amino acids. The system comprises five exposed Oligopeptide Binding Proteins (OBPs) and four proteins building the ABC transporter channel. Here, we present a structural analysis of all the OBPs in this system. Multiple crystallographic structures, capturing both open and closed conformations along with complexes involving chemically synthesized peptides, have been solved at high resolution providing insights into the molecular basis of their diverse peptide specificities. Mass spectrometry analysis of oligopeptides demonstrates the unexpected remarkable promiscuity of some of these proteins when expressed in Escherichia coli, displaying affinity for a wide range of peptides. Finally, a model is proposed for the complete Ami transport system in complex with its various OBPs. We further disclosed, through in silico modelling, some essential structural changes facilitating oligopeptide transport into the cellular cytoplasm. Thus, the structural analysis of the Ami system provides valuable insights into the mechanism and specificity of oligopeptide binding by the different OBPs, shedding light on the intricacies of the uptake mechanism and the in vivo implications for this human pathogen.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Bactérias , Oligopeptídeos , Streptococcus pneumoniae , Streptococcus pneumoniae/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Oligopeptídeos/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Cristalografia por Raios X , Modelos Moleculares , Lipoproteínas
2.
Proteomics ; : e2300294, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37772677

RESUMO

In proteomics, fast, efficient, and highly reproducible sample preparation is of utmost importance, particularly in view of fast scanning mass spectrometers enabling analyses of large sample series. To address this need, we have developed the web application MassSpecPreppy that operates on the open science OT-2 liquid handling robot from Opentrons. This platform can prepare up to 96 samples at once, performing tasks like BCA protein concentration determination, sample digestion with normalization, reduction/alkylation and peptide elution into vials or loading specified peptide amounts onto Evotips in an automated and flexible manner. The performance of the developed workflows using MassSpecPreppy was compared with standard manual sample preparation workflows. The BCA assay experiments revealed an average recovery of 101.3% (SD: ± 7.82%) for the MassSpecPreppy workflow, while the manual workflow had a recovery of 96.3% (SD: ± 9.73%). The species mix used in the evaluation experiments showed that 94.5% of protein groups for OT-2 digestion and 95% for manual digestion passed the significance thresholds with comparable peptide level coefficient of variations. These results demonstrate that MassSpecPreppy is a versatile and scalable platform for automated sample preparation, producing injection-ready samples for proteomics research.

3.
Blood ; 138(22): 2256-2268, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34587242

RESUMO

SARS-CoV-2 vaccine ChAdOx1 nCoV-19 (AstraZeneca) causes a thromboembolic complication termed vaccine-induced immune thrombotic thrombocytopenia (VITT). Using biophysical techniques, mouse models, and analysis of VITT patient samples, we identified determinants of this vaccine-induced adverse reaction. Super-resolution microscopy visualized vaccine components forming antigenic complexes with platelet factor 4 (PF4) on platelet surfaces to which anti-PF4 antibodies obtained from VITT patients bound. PF4/vaccine complex formation was charge-driven and increased by addition of DNA. Proteomics identified substantial amounts of virus production-derived T-REx HEK293 proteins in the ethylenediaminetetraacetic acid (EDTA)-containing vaccine. Injected vaccine increased vascular leakage in mice, leading to systemic dissemination of vaccine components known to stimulate immune responses. Together, PF4/vaccine complex formation and the vaccine-stimulated proinflammatory milieu trigger a pronounced B-cell response that results in the formation of high-avidity anti-PF4 antibodies in VITT patients. The resulting high-titer anti-PF4 antibodies potently activated platelets in the presence of PF4 or DNA and polyphosphate polyanions. Anti-PF4 VITT patient antibodies also stimulated neutrophils to release neutrophil extracellular traps (NETs) in a platelet PF4-dependent manner. Biomarkers of procoagulant NETs were elevated in VITT patient serum, and NETs were visualized in abundance by immunohistochemistry in cerebral vein thrombi obtained from VITT patients. Together, vaccine-induced PF4/adenovirus aggregates and proinflammatory reactions stimulate pathologic anti-PF4 antibody production that drives thrombosis in VITT. The data support a 2-step mechanism underlying VITT that resembles the pathogenesis of (autoimmune) heparin-induced thrombocytopenia.


Assuntos
Complexo Antígeno-Anticorpo/imunologia , Autoanticorpos/imunologia , COVID-19/prevenção & controle , Proteínas do Capsídeo/efeitos adversos , ChAdOx1 nCoV-19/efeitos adversos , Contaminação de Medicamentos , Vetores Genéticos/efeitos adversos , Células HEK293/imunologia , Imunoglobulina G/imunologia , Fator Plaquetário 4/imunologia , Púrpura Trombocitopênica Idiopática/etiologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/efeitos adversos , Adenoviridae/imunologia , Animais , Complexo Antígeno-Anticorpo/ultraestrutura , Autoanticorpos/biossíntese , Síndrome de Vazamento Capilar/etiologia , Proteínas do Capsídeo/imunologia , Linhagem Celular Transformada , ChAdOx1 nCoV-19/química , ChAdOx1 nCoV-19/imunologia , ChAdOx1 nCoV-19/toxicidade , Difusão Dinâmica da Luz , Epitopos/química , Epitopos/imunologia , Armadilhas Extracelulares/imunologia , Extravasamento de Materiais Terapêuticos e Diagnósticos/etiologia , Vetores Genéticos/imunologia , Células HEK293/química , Humanos , Imageamento Tridimensional , Imunoglobulina G/biossíntese , Inflamação , Camundongos , Microscopia/métodos , Ativação Plaquetária , Proteômica , Púrpura Trombocitopênica Idiopática/sangue , Púrpura Trombocitopênica Idiopática/imunologia , Trombose dos Seios Intracranianos/diagnóstico por imagem , Trombose dos Seios Intracranianos/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Cultura de Vírus
4.
J Bacteriol ; 204(1): e0018421, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34633872

RESUMO

Staphylococcus aureus is an opportunistic pathogen that can cause life-threatening infections, particularly in immunocompromised individuals. The high-level virulence of S. aureus largely relies on its diverse and variable collection of virulence factors and immune evasion proteins, including the six serine protease-like proteins SplA to SplF. Spl proteins are expressed by most clinical isolates of S. aureus, but little is known about the molecular mechanisms by which these proteins modify the host's immune response for the benefit of the bacteria. Here, we identify SplB as a protease that inactivates central human complement proteins, i.e., C3, C4, and the activation fragments C3b and C4b, by preferentially cleaving their α-chains. SplB maintained its proteolytic activity in human serum, degrading C3 and C4. SplB further cleaved the components of the terminal complement pathway, C5, C6, C7, C8, and C9. In contrast, the important soluble human complement regulators factor H and C4b-binding protein (C4BP), as well as C1q, were left intact. Thereby, SplB reduced C3b-mediated opsonophagocytosis by human neutrophils as well as C5b-9 deposition on the bacterial surface. In conclusion, we identified the first physiological substrates of the S. aureus extracellular protease SplB. This enzyme inhibits all three complement pathways and blocks opsonophagocytosis. Thus, SplB can be considered a novel staphylococcal complement evasion protein. IMPORTANCE The success of bacterial pathogens in immunocompetent humans depends on the control and inactivation of host immunity. S. aureus, like many other pathogens, efficiently blocks host complement attack early in infection. Aiming to understand the role of the S. aureus-encoded orphan proteases of the Spl operon, we asked whether these proteins play a role in immune escape. We found that SplB inhibits all three complement activation pathways as well as the lytic terminal complement pathway. This blocks the opsonophagocytosis of the bacteria by neutrophils. We also clarified the molecular mechanisms: SplB cleaves the human complement proteins C3, C4, C5, C6, C7, C8, and C9 as well as factor B but not the complement inhibitors factor H and C4BP. Thus, we identify the first physiological substrates of the extracellular protease SplB of S. aureus and characterize SplB as a novel staphylococcal complement evasion protein.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas do Sistema Complemento/metabolismo , Opsonização/fisiologia , Peptídeo Hidrolases/metabolismo , Staphylococcus aureus/enzimologia , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Humanos , Peptídeo Hidrolases/genética , Staphylococcus aureus/metabolismo
5.
Haematologica ; 107(4): 947-957, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35045692

RESUMO

Vector-based SARS-CoV-2 vaccines have been associated with vaccine- induced thrombosis with thrombocytopenia syndrome (VITT/TTS), but the causative factors are still unresolved. We comprehensively analyzed the ChAdOx1 nCoV-19 (AstraZeneca) and Ad26.COV2.S (Johnson and Johnson) vaccines. ChAdOx1 nCoV-19 contains significant amounts of host cell protein impurities, including functionally active proteasomes, and adenoviral proteins. A much smaller amount of impurities was found in Ad26.COV2.S. Platelet factor 4 formed complexes with ChAdOx1 nCoV-19 constituents, but not with purified virions from ChAdOx1 nCoV-19 or with Ad26.COV2.S. Vascular hyperpermeability was induced by ChAdOx nCoV-19 but not by Ad26.COV2.S. These differences in impurities together with EDTAinduced capillary leakage might contribute to the higher incidence rate of VITT associated with ChAdOx1 nCoV-19 compared to Ad26.COV2.S.


Assuntos
COVID-19 , Vacinas , Ad26COVS1 , Vacinas contra COVID-19/efeitos adversos , ChAdOx1 nCoV-19 , Humanos , SARS-CoV-2
6.
Environ Microbiol ; 22(8): 3266-3286, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32419322

RESUMO

The Gram-positive bacterium Bacillus subtilis is frequently exposed to hyperosmotic conditions. In addition to the induction of genes involved in the accumulation of compatible solutes, high salinity exerts widespread effects on B. subtilis physiology, including changes in cell wall metabolism, induction of an iron limitation response, reduced motility and suppression of sporulation. We performed a combined whole-transcriptome and proteome analysis of B. subtilis 168 cells continuously cultivated at low or high (1.2 M NaCl) salinity. Our study revealed significant changes in the expression of more than one-fourth of the protein-coding genes and of numerous non-coding RNAs. New aspects in understanding the impact of high salinity on B. subtilis include a sustained low-level induction of the SigB-dependent general stress response and strong repression of biofilm formation under high-salinity conditions. The accumulation of compatible solutes such as glycine betaine aids the cells to cope with water stress by maintaining physiologically adequate levels of turgor and also affects multiple cellular processes through interactions with cellular components. Therefore, we additionally analysed the global effects of glycine betaine on the transcriptome and proteome of B. subtilis and revealed that it influences gene expression not only under high-salinity, but also under standard growth conditions.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Betaína/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Proteoma , Salinidade , Cloreto de Sódio/farmacologia
7.
Genome Res ; 27(2): 289-299, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27965289

RESUMO

Understanding cellular life requires a comprehensive knowledge of the essential cellular functions, the components involved, and their interactions. Minimized genomes are an important tool to gain this knowledge. We have constructed strains of the model bacterium, Bacillus subtilis, whose genomes have been reduced by ∼36%. These strains are fully viable, and their growth rates in complex medium are comparable to those of wild type strains. An in-depth multi-omics analysis of the genome reduced strains revealed how the deletions affect the transcription regulatory network of the cell, translation resource allocation, and metabolism. A comparison of gene counts and resource allocation demonstrates drastic differences in the two parameters, with 50% of the genes using as little as 10% of translation capacity, whereas the 6% essential genes require 57% of the translation resources. Taken together, the results are a valuable resource on gene dispensability in B. subtilis, and they suggest the roads to further genome reduction to approach the final aim of a minimal cell in which all functions are understood.


Assuntos
Bacillus subtilis/genética , Genoma Bacteriano/genética , Transcrição Gênica , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Genes Essenciais/genética
8.
Environ Microbiol ; 19(9): 3700-3720, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28752945

RESUMO

The ProJ and ProH enzymes of Bacillus subtilis catalyse together with ProA (ProJ-ProA-ProH), osmostress-adaptive synthesis of the compatible solute proline. The proA-encoded gamma-glutamyl phosphate reductase is also used for anabolic proline synthesis (ProB-ProA-ProI). Transcription of the proHJ operon is osmotically inducible whereas that of the proBA operon is not. Targeted and quantitative proteome analysis revealed that the amount of ProA is not limiting for the interconnected anabolic and osmostress-responsive proline production routes. A key player for enhanced osmostress-adaptive proline production is the osmotically regulated proHJ promoter. We used site-directed mutagenesis to study the salient features of this stress-responsive promoter. Two important features were identified: (i) deviations of the proHJ promoter from the consensus sequence of SigA-type promoters serve to keep transcription low under non-inducing growth conditions, while still allowing a finely tuned induction of transcriptional activity when the external osmolarity is increased and (ii) a suboptimal spacer length for SigA-type promoters of either 16-bp (the natural proHJ promoter), or 18-bp (a synthetic promoter variant) is strictly required to allow regulation of promoter activity in proportion to the external salinity. Collectively, our data suggest that changes in the local DNA structure at the proHJ promoter are important determinants for osmostress-inducibility of transcription.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Prolina/biossíntese , Pirrolina Carboxilato Redutases/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Bacteriano/genética , Glutamato-5-Semialdeído Desidrogenase/genética , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Mutação Puntual/genética , Regiões Promotoras Genéticas/genética , delta-1-Pirrolina-5-Carboxilato Redutase
9.
Proteomics ; 16(20): 2667-2677, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27324828

RESUMO

Staphylococcus aureus is a frequent commensal but also a dangerous pathogen, causing many forms of infection ranging from mild to life-threatening conditions. Among its virulence factors are lipoproteins, which are anchored in the bacterial cell membrane. Lipoproteins perform various functions in colonization, immune evasion, and immunomodulation. These proteins are potent activators of innate immune receptors termed Toll-like receptors 2 and 6. This study addressed the specific B-cell and T-cell responses directed to lipoproteins in human S. aureus carriers and non-carriers. 2D immune proteomics and ELISA approaches revealed that titers of antibodies (IgG) binding to S. aureus lipoproteins were very low. Proliferation assays and cytokine profiling data showed only subtle responses of T cells; some lipoproteins did not elicit proliferation. Hence, the robust activation of the innate immune system by S. aureus lipoproteins does not translate into a strong adaptive immune response. Reasons for this may include inaccessibility of lipoproteins for B cells as well as ineffective processing and presentation of the antigens to T cells.


Assuntos
Imunidade Adaptativa , Linfócitos B/imunologia , Proteínas de Bactérias/imunologia , Lipoproteínas/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Linfócitos T/imunologia , Adulto , Linfócitos B/microbiologia , Células Cultivadas , Citocinas/imunologia , Feminino , Regulação da Expressão Gênica , Voluntários Saudáveis , Humanos , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , Proteoma/imunologia , Proteômica , Infecções Estafilocócicas/microbiologia , Linfócitos T/microbiologia , Fatores de Virulência/imunologia , Adulto Jovem
10.
Basic Res Cardiol ; 111(5): 53, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27412778

RESUMO

Immunoadsorption with subsequent immunoglobulin substitution (IA/IgG) represents a therapeutic approach for patients with dilated cardiomyopathy (DCM). Here, we studied which molecular cardiac alterations are initiated after this treatment. Transcription profiling of endomyocardial biopsies with Affymetrix whole genome arrays was performed on 33 paired samples of DCM patients collected before and 6 months after IA/IgG. Therapy-related effects on myocardial protein levels were analysed by label-free proteome profiling for a subset of 23 DCM patients. Data were analysed regarding therapy-associated differences in gene expression and protein levels by comparing responders (defined by improvement of left ventricular ejection fraction ≥20 % relative and ≥5 % absolute) and non-responders. Responders to IA/IgG showed a decrease in serum N-terminal proBNP levels in comparison with baseline which was accompanied by a decreased expression of heart failure markers, such as angiotensin converting enzyme 2 or periostin. However, despite clinical improvement even in responders, IA/IgG did not trigger general inversion of DCM-associated molecular alterations in myocardial tissue. Transcriptome profiling revealed reduced gene expression for connective tissue growth factor, fibronectin, and collagen type I in responders. In contrast, in non-responders after IA/IgG, fibrosis-associated genes and proteins showed elevated levels, whereas values were reduced or maintained in responders. Thus, improvement of LV function after IA/IgG seems to be related to a reduced gene expression of heart failure markers and pro-fibrotic molecules as well as reduced fibrosis progression.


Assuntos
Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/terapia , Imunoglobulina G/uso terapêutico , Adulto , Feminino , Humanos , Técnicas de Imunoadsorção , Masculino , Pessoa de Meia-Idade , Miocárdio/metabolismo , Miocárdio/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Projetos Piloto , Proteômica , Transcriptoma
11.
J Infect Dis ; 212(5): 830-8, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25737563

RESUMO

INTRODUCTION: Though Staphylococcus aureus is a major pathogen, vaccine trials have failed. In contrast, class-switched antibodies specific to S. aureus are common, implying immune memory formation and suggesting a large pool of S. aureus-reactive helper T-cells. OBJECTIVE: To elucidate the cellular arm of S. aureus-specific immune memory, the T-cell response in humans was characterized. METHODS: The proliferative response of human peripheral blood mononuclear cells (PBMCs) to S. aureus antigens and the frequency of S. aureus-specific T-cells were quantified by (3)H-thymidine incorporation; cytokine release was measured by flow cytometry. RESULTS: Staphylococcus aureus particles and extracellular proteins elicited pronounced proliferation in PBMCs of healthy adults. This reflected a memory response with high frequencies of T-cells being activated by single S. aureus antigens. The whole S. aureus-specific T-cell pool was estimated to comprise 3.6% of T-cells with 35-fold differences between individuals (range, 0.2%-5.7%). When exposed to S. aureus antigens, the T-cells released predominantly but not solely T helper (Th)1/Th17 cytokines. CONCLUSIONS: The large number of S. aureus antigen-reactive memory T-lymphocytes is likely to influence the course of S. aureus infection. To enable rational vaccine design, the naturally acquired human T-cell memory needs to be explored at high priority.


Assuntos
Memória Imunológica , Staphylococcus aureus/imunologia , Linfócitos T/imunologia , Adulto , Antígenos de Bactérias/imunologia , Proliferação de Células , Citocinas/metabolismo , Citometria de Fluxo , Humanos , Marcação por Isótopo , Leucócitos Mononucleares/imunologia
12.
Proteomics ; 14(16): 1857-67, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24888718

RESUMO

Staphylococcus aureus is one of the major causative agents of severe infections, and is responsible for a high burden of morbidity and mortality. Strains of increased virulence have emerged (e.g. USA300) that can infect healthy individuals in the community and are difficult to treat. To add to the knowledge about the pathophysiology of S. aureus, the adaption to iron restriction, an important in vivo stressor, was studied and the corresponding immune response of the human host characterized. Using a combination of 1D and 2D immune proteomics, the human antibody response to the exoproteomes of S. aureus USA300Δspa grown under iron restriction or with excess iron was compared. Human antibody binding to the altered exoproteome under iron restriction showed a 2.7- to 6.2-fold increase in overall signal intensity, and new antibody specificities appeared. Quantification of the secreted bacterial proteins by gel-free proteomics showed the expected strong increase in level of proteins involved in iron acquisition during iron-restricted growth compared to iron access. This was accompanied by decreased levels of superantigens and hemolysins. The latter was corroborated by functional peripheral blood mononuclear cell proliferation assays. The present data provide a comprehensive view of S. aureus exoproteome adaptation to iron restriction. Adults have high concentrations of serum antibodies specific for some of the newly induced proteins. We conclude that iron restriction is a common feature of the microenvironment, where S. aureus interacts with the immune system of its human host.


Assuntos
Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/imunologia , Imunoglobulina G/imunologia , Ferro/metabolismo , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/fisiologia , Adulto , Proteínas de Bactérias/metabolismo , Feminino , Interações Hospedeiro-Patógeno , Humanos , Masculino , Pessoa de Meia-Idade , Proteômica , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/imunologia , Adulto Jovem
13.
Environ Microbiol ; 16(6): 1898-917, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24571712

RESUMO

The Gram-positive bacterium Bacillus subtilis encounters nutrient limitations and osmotic stress in its natural soil ecosystem. To ensure survival and sustain growth, highly integrated adaptive responses are required. Here, we investigated the system-wide response of B. subtilis to different, simultaneously imposed stresses. To address the anticipated complexity of the cellular response networks, we combined chemostat experiments under conditions of carbon limitation, salt stress and osmoprotection with multi-omics analyses of the transcriptome, proteome, metabolome and fluxome. Surprisingly, the flux through central carbon and energy metabolism is very robust under all conditions studied. The key to achieve this robustness is the adjustment of the biocatalytic machinery to compensate for solvent-induced impairment of enzymatic activities during osmotic stress. Specifically, increased production of several enzymes of central carbon metabolism compensates for their reduced activity in the presence of high salt. A major response of the cell during osmotic stress is the production of the compatible solute proline. This is achieved through the concerted adjustment of multiple reactions around the 2-oxoglutarate node, which drives metabolism towards the proline precursor glutamate. The fine-tuning of the transcriptional and metabolic networks involves functional modules that overarch the individual pathways.


Assuntos
Bacillus subtilis/metabolismo , Tolerância ao Sal , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Betaína/metabolismo , Metabolismo dos Carboidratos , Análise por Conglomerados , Metabolismo Energético , Regulação Bacteriana da Expressão Gênica , Análise do Fluxo Metabólico , Redes e Vias Metabólicas , Pressão Osmótica , Proteoma/genética , Proteoma/metabolismo , Transcriptoma
14.
Methods ; 61(3): 244-50, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23643866

RESUMO

The development of a mass spectrometric workflow for the sensitive identification and quantitation of the kinetics of changes in metaproteomes, or in particular bacterial pathogens after internalization by host cells, is described. This procedure employs three essential stages: (i) SILAC pulse-chase labeling and infection assay; (ii) isolation of bacteria by GFP-assisted cell sorting; (iii) mass spectrometry-based proteome analysis. This approach displays greater sensitivity than techniques relying on conventional cell sorting and protein separation, due to an efficient combination of a filtration-based purification and an on-membrane digestion. We exemplary describe the use of the workflow for the identification and quantitation of the proteome of 106 cells of Staphylococcus aureus after internalization by S9 human bronchial epithelial cells. With minor modifications, the workflow described can be applied for the characterization of other host-pathogen pairs, permitting identification and quantitation of hundreds of bacterial proteins over a time range of several hours post infection.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Brônquios/microbiologia , Células Epiteliais/microbiologia , Peptídeos/isolamento & purificação , Proteômica/métodos , Staphylococcus aureus/química , Adaptação Fisiológica , Arginina/química , Arginina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Brônquios/química , Brônquios/citologia , Isótopos de Carbono , Linhagem Celular , Células Epiteliais/química , Células Epiteliais/citologia , Interações Hospedeiro-Patógeno , Humanos , Marcação por Isótopo , Lisina/química , Lisina/metabolismo , Espectrometria de Massas , Peptídeos/química , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/metabolismo , Fatores de Tempo
15.
Eur Heart J ; 34(9): 666-75, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23100283

RESUMO

AIMS: Immunoadsorption with subsequent immunoglobulin G substitution (IA/IgG) represents a novel therapeutic approach in the treatment of dilated cardiomyopathy (DCM) which leads to the improvement of left ventricular ejection fraction (LVEF). However, response to this therapeutic intervention shows wide inter-individual variability. In this pilot study, we tested the value of clinical, biochemical, and molecular parameters for the prediction of the response of patients with DCM to IA/IgG. METHODS AND RESULTS: Forty DCM patients underwent endomyocardial biopsies (EMBs) before IA/IgG. In eight patients with normal LVEF (controls), EMBs were obtained for clinical reasons. Clinical parameters, negative inotropic activity (NIA) of antibodies on isolated rat cardiomyocytes, and gene expression profiles of EMBs were analysed. Dilated cardiomyopathy patients displaying improvement of LVEF (≥20 relative and ≥5% absolute) 6 months after IA/IgG were considered responders. Compared with non-responders (n = 16), responders (n = 24) displayed shorter disease duration (P = 0.006), smaller LV internal diameter in diastole (P = 0.019), and stronger NIA of antibodies. Antibodies obtained from controls were devoid of NIA. Myocardial gene expression patterns were different in responders and non-responders for genes of oxidative phosphorylation, mitochondrial dysfunction, hypertrophy, and ubiquitin-proteasome pathway. The integration of scores of NIA and expression levels of four genes allowed robust discrimination of responders from non-responders at baseline (BL) [sensitivity of 100% (95% CI 85.8-100%); specificity up to 100% (95% CI 79.4-100%); cut-off value: -0.28] and was superior to scores derived from antibodies, gene expression, or clinical parameters only. CONCLUSION: Combined assessment of NIA of antibodies and gene expression patterns of DCM patients at BL predicts response to IA/IgG therapy and may enable appropriate selection of patients who benefit from this therapeutic intervention.


Assuntos
Autoanticorpos/metabolismo , Cardiomiopatia Dilatada/terapia , Expressão Gênica/imunologia , Imunoglobulina G/imunologia , Técnicas de Imunoadsorção , Miocárdio/patologia , Biópsia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/imunologia , Estudos de Casos e Controles , Feminino , Expressão Gênica/genética , Hemodinâmica/genética , Hemodinâmica/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Miocárdio/metabolismo , Projetos Piloto , Volume Sistólico/genética , Volume Sistólico/imunologia , Transcriptoma , Resultado do Tratamento , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/imunologia , Disfunção Ventricular Esquerda/terapia
16.
Front Immunol ; 15: 1352704, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38895118

RESUMO

Background: Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin disease with skin barrier defects and a misdirected type 2 immune response against harmless antigens. The skin microbiome in AD is characterized by a reduction in microbial diversity with a dominance of staphylococci, including Staphylococcus epidermidis (S. epidermidis). Objective: To assess whether S. epidermidis antigens play a role in AD, we screened for candidate allergens and studied the T cell and humoral immune response against the extracellular serine protease (Esp). Methods: To identify candidate allergens, we analyzed the binding of human serum IgG4, as a surrogate of IgE, to S. epidermidis extracellular proteins using 2-dimensional immunoblotting and mass spectrometry. We then measured serum IgE and IgG1 binding to recombinant Esp by ELISA in healthy and AD individuals. We also stimulated T cells from AD patients and control subjects with Esp and measured the secreted cytokines. Finally, we analyzed the proteolytic activity of Esp against IL-33 and determined the cleavage sites by mass spectrometry. Results: We identified Esp as the dominant candidate allergen of S. epidermidis. Esp-specific IgE was present in human serum; AD patients had higher concentrations than controls. T cells reacting to Esp were detectable in both AD patients and healthy controls. The T cell response in healthy adults was characterized by IL-17, IL-22, IFN-γ, and IL-10, whereas the AD patients' T cells lacked IL-17 production and released only low amounts of IL-22, IFN-γ, and IL-10. In contrast, Th2 cytokine release was higher in T cells from AD patients than from healthy controls. Mature Esp cleaved and activated the alarmin IL-33. Conclusion: The extracellular serine protease Esp of S. epidermidis can activate IL-33. As an antigen, Esp elicits a type 2-biased antibody and T cell response in AD patients. This suggests that S. epidermidis can aggravate AD through the allergenic properties of Esp.


Assuntos
Dermatite Atópica , Imunoglobulina E , Serina Proteases , Staphylococcus epidermidis , Humanos , Staphylococcus epidermidis/imunologia , Dermatite Atópica/imunologia , Dermatite Atópica/microbiologia , Serina Proteases/imunologia , Serina Proteases/metabolismo , Adulto , Masculino , Feminino , Imunoglobulina E/imunologia , Imunoglobulina E/sangue , Proteínas de Bactérias/imunologia , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Citocinas/metabolismo , Citocinas/imunologia , Linfócitos T/imunologia , Alérgenos/imunologia , Interleucina-33/imunologia , Pessoa de Meia-Idade
17.
J Bacteriol ; 195(3): 510-22, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23175650

RESUMO

Glycine betaine is an effective osmoprotectant for Bacillus subtilis. Its import into osmotically stressed cells led to the buildup of large pools, whose size was sensitively determined by the degree of the osmotic stress imposed. The amassing of glycine betaine caused repression of the formation of an osmostress-adaptive pool of proline, the only osmoprotectant that B. subtilis can synthesize de novo. The ABC transporter OpuA is the main glycine betaine uptake system of B. subtilis. Expression of opuA was upregulated in response to both sudden and sustained increases in the external osmolarity. Nonionic osmolytes exerted a stronger inducing effect on transcription than ionic osmolytes, and this was reflected in the development of corresponding OpuA-mediated glycine betaine pools. Primer extension analysis and site-directed mutagenesis pinpointed the osmotically controlled opuA promoter. Deviations from the consensus sequence of SigA-type promoters serve to keep the transcriptional activity of the opuA promoter low in the absence of osmotic stress. opuA expression was downregulated in a finely tuned manner in response to increases in the intracellular glycine betaine pool, regardless of whether this osmoprotectant was imported or was newly synthesized from choline. Such an effect was also exerted by carnitine, an effective osmoprotectant for B. subtilis that is not a substrate for the OpuA transporter. opuA expression was upregulated in a B. subtilis mutant that was unable to synthesize proline in response to osmotic stress. Collectively, our data suggest that the intracellular solute pool is a key determinant for the osmotic control of opuA expression.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Betaína/farmacologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Prolina/farmacologia , Transportadores de Cassetes de Ligação de ATP/genética , Bacillus subtilis/classificação , Bacillus subtilis/efeitos dos fármacos , Proteínas de Bactérias/genética , Betaína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Família Multigênica , Mutagênese Sítio-Dirigida , Concentração Osmolar , Pressão Osmótica , Plasmídeos , Prolina/metabolismo , Cloreto de Sódio
18.
Proteome Sci ; 11: 29, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23816347

RESUMO

BACKGROUND: A.BY/SnJ mice are used to study pathological alterations in the heart due to enteroviral infections. Since age is a well-known factor influencing the susceptibility of mice to infection, response to stress and manifestation of cardiovascular diseases, the myocardial proteome of A.BY/SnJ mice aged 1 and 4 months was comparatively studied using two dimensional-differential in-gel electrophoresis (2D-DIGE) and liquid chromatography tandem mass spectrometry (LC-MS/MS). RESULTS: Complementary analyses by 2D-DIGE and gel-free LC-MS/MS revealed 96 distinct proteins displaying age associated alterations in their levels. Proteins related to protein transport, and transport chain, lipid metabolism and fatty acid transport showed significant changes in 4 months old mouse hearts compared to juvenile hearts. Proteins involved in lipid metabolism and transport were identified at significantly higher levels in older mice and dysregulation of proteins of the respiratory transport chain were observed. CONCLUSION: The current proteomics study discloses age dependent changes occurring in the hearts already in young mice of the strain A.BY/SnJ. Besides alterations in protein transport, we provide evidence that a decrease of ATP synthase in murine hearts starts already in the first months of life, leading to well-known low expression levels manifested in old mice thereby raising the possibility of reduced energy supply. In the first few months of murine life this seems to be compensated by an increased lipid metabolism. The functional alterations described should be considered during experimental setups in disease related studies.

19.
Microbiol Spectr ; 11(6): e0177823, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37819116

RESUMO

IMPORTANCE: In the expanding market of recombinant proteins, microbial cell factories such as Bacillus subtilis are key players. Microbial cell factories experience secretion stress during high-level production of secreted proteins, which can negatively impact product yield and cell viability. The CssRS two-component system and CssRS-regulated quality control proteases HtrA and HtrB play critical roles in the secretion stress response. HtrA has a presumptive dual function in protein quality control by exerting both chaperone-like and protease activities. However, its potential role as a chaperone has not been explored in B. subtilis. Here, we describe for the first time the beneficial effects of proteolytically inactive HtrA on α-amylase yields and overall bacterial fitness.


Assuntos
Proteínas de Bactérias , Peptídeo Hidrolases , Peptídeo Hidrolases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Chaperonas Moleculares/metabolismo
20.
Microbiology (Reading) ; 158(Pt 3): 696-707, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22174379

RESUMO

The structure of the SigB-dependent general stress regulon of Bacillus subtilis has previously been characterized by proteomics approaches as well as DNA array-based expression studies. However, comparing the SigB targets published in three previous major transcriptional profiling studies it is obvious that although each of them identified well above 100 target genes, only 67 were identified in all three studies. These substantial differences can likely be attributed to the different strains, growth conditions, microarray platforms and experimental setups used in the studies. In order to gain a better understanding of the structure of this important regulon, a targeted DNA microarray analysis covering most of the known SigB-inducing conditions was performed, and the changes in expression kinetics of 252 potential members of the SigB regulon and appropriate control genes were recorded. Transcriptional data for the B. subtilis wild-type strain 168 and its isogenic sigB mutant BSM29 were analysed using random forest, a machine learning algorithm, by incorporating the knowledge from previous studies. This analysis revealed a strictly SigB-dependent expression pattern for 166 genes following ethanol, butanol, osmotic and oxidative stress, low-temperature growth and heat shock, as well as limitation of oxygen or glucose. Kinetic analysis of the data for the wild-type strain identified 30 additional members of the SigB regulon, which were also subject to control by additional transcriptional regulators, thus displaying atypical SigB-independent induction patterns in the mutant strain under some of the conditions tested. For 19 of these 30 SigB regulon members, published reports support control by secondary regulators along with SigB. Thus, this microarray-based study assigns a total of 196 genes to the SigB-dependent general stress regulon of B. subtilis.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Perfilação da Expressão Gênica , Regulon , Fator sigma/metabolismo , Estresse Fisiológico , Bacillus subtilis/fisiologia , Proteínas de Bactérias/genética , Deleção de Genes , Análise em Microsséries , Fator sigma/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA