Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Genes Dev ; 31(4): 383-398, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28275001

RESUMO

A critical role of circadian oscillators in orchestrating insulin secretion and islet gene transcription has been demonstrated recently. However, these studies focused on whole islets and did not explore the interplay between α-cell and ß-cell clocks. We performed a parallel analysis of the molecular properties of α-cell and ß-cell oscillators using a mouse model expressing three reporter genes: one labeling α cells, one specific for ß cells, and a third monitoring circadian gene expression. Thus, phase entrainment properties, gene expression, and functional outputs of the α-cell and ß-cell clockworks could be assessed in vivo and in vitro at the population and single-cell level. These experiments showed that α-cellular and ß-cellular clocks are oscillating with distinct phases in vivo and in vitro. Diurnal transcriptome analysis in separated α and ß cells revealed that a high number of genes with key roles in islet physiology, including regulators of glucose sensing and hormone secretion, are differentially expressed in these cell types. Moreover, temporal insulin and glucagon secretion exhibited distinct oscillatory profiles both in vivo and in vitro. Altogether, our data indicate that differential entrainment characteristics of circadian α-cell and ß-cell clocks are an important feature in the temporal coordination of endocrine function and gene expression.


Assuntos
Relógios Circadianos/fisiologia , Regulação da Expressão Gênica , Células Secretoras de Glucagon/fisiologia , Glucagon/metabolismo , Células Secretoras de Insulina/fisiologia , Insulina/metabolismo , Animais , Células Cultivadas , Relógios Circadianos/efeitos dos fármacos , Colforsina/farmacologia , Ativadores de Enzimas/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Glucagon/sangue , Células Secretoras de Glucagon/efeitos dos fármacos , Insulina/sangue , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos , Modelos Animais , Análise de Sequência de RNA , Fatores de Tempo
2.
Nat Methods ; 18(10): 1192-1195, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34594030

RESUMO

DeepImageJ is a user-friendly solution that enables the generic use of pre-trained deep learning models for biomedical image analysis in ImageJ. The deepImageJ environment gives access to the largest bioimage repository of pre-trained deep learning models (BioImage Model Zoo). Hence, nonexperts can easily perform common image processing tasks in life-science research with deep learning-based tools including pixel and object classification, instance segmentation, denoising or virtual staining. DeepImageJ is compatible with existing state of the art solutions and it is equipped with utility tools for developers to include new models. Very recently, several training frameworks have adopted the deepImageJ format to deploy their work in one of the most used softwares in the field (ImageJ). Beyond its direct use, we expect deepImageJ to contribute to the broader dissemination and reuse of deep learning models in life sciences applications and bioimage informatics.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Software , Disciplinas das Ciências Biológicas , Redes Neurais de Computação
3.
Bioinformatics ; 38(11): 3146-3148, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35435214

RESUMO

MOTIVATION: Rotated template matching is an efficient and versatile algorithm to analyze microscopy images, as it automates the detection of stereotypical structures, such as organelles that can appear at any orientation. Its performance however quickly degrades in noisy image data. RESULTS: We introduce Steer'n'Detect, an ImageJ plugin implementing a recently published algorithm to detect patterns of interest at any orientation with high accuracy from a single template in 2D images. Steer'n'Detect provides a faster and more robust substitute to template matching. By adapting to the statistics of the image background, it guarantees accurate results even in the presence of noise. The plugin comes with an intuitive user interface facilitating results analysis and further post-processing. AVAILABILITY AND IMPLEMENTATION: https://github.com/Biomedical-Imaging-Group/Steer-n-Detect. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Microscopia , Software , Algoritmos , Coleta de Dados
4.
Nat Methods ; 16(1): 71-74, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30559430

RESUMO

Determining the structure and composition of macromolecular assemblies is a major challenge in biology. Here we describe ultrastructure expansion microscopy (U-ExM), an extension of expansion microscopy that allows the visualization of preserved ultrastructures by optical microscopy. This method allows for near-native expansion of diverse structures in vitro and in cells; when combined with super-resolution microscopy, it unveiled details of ultrastructural organization, such as centriolar chirality, that could otherwise be observed only by electron microscopy.


Assuntos
Microscopia Eletrônica/métodos , Microscopia de Fluorescência/métodos , Microtúbulos/metabolismo , Estereoisomerismo
5.
Nat Methods ; 16(5): 387-395, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30962624

RESUMO

With the widespread uptake of two-dimensional (2D) and three-dimensional (3D) single-molecule localization microscopy (SMLM), a large set of different data analysis packages have been developed to generate super-resolution images. In a large community effort, we designed a competition to extensively characterize and rank the performance of 2D and 3D SMLM software packages. We generated realistic simulated datasets for popular imaging modalities-2D, astigmatic 3D, biplane 3D and double-helix 3D-and evaluated 36 participant packages against these data. This provides the first broad assessment of 3D SMLM software and provides a holistic view of how the latest 2D and 3D SMLM packages perform in realistic conditions. This resource allows researchers to identify optimal analytical software for their experiments, allows 3D SMLM software developers to benchmark new software against the current state of the art, and provides insight into the current limits of the field.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imagem Individual de Molécula/métodos , Software , Algoritmos
6.
Nat Methods ; 16(6): 561, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31097821

RESUMO

In the version of this paper originally published, Figure 4a contained errors that were introduced during typesetting. The bottom 11° ThunderSTORM image is an xz view but was incorrectly labeled as xy, and the low x-axis value in the four line profiles was incorrectly set as -60 instead of -50. These errors have been corrected in the PDF and HTML versions of the paper.

7.
Opt Lett ; 47(11): 2618-2621, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35648888

RESUMO

Optical projection tomography (OPT) is a powerful tool for three-dimensional (3D) imaging of mesoscopic samples. While it is able to achieve resolution of a few tens of microns over a sample volume of several cubic centimeters, the reconstructed images often suffer from artifacts caused by inaccurate calibration. In this work, we focus on the refractive-index mismatch between the sample and the surrounding medium. We derive a 3D cone-beam forward model of OPT that approximates the effect of refractive-index mismatch. We then implement a fast and efficient reconstruction method to correct for the induced seagull-shaped artifacts on experimental images of fluorescent beads.


Assuntos
Artefatos , Tomografia Óptica , Algoritmos , Refratometria , Tomografia Óptica/métodos
8.
Appl Opt ; 61(9): F34-F46, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35333224

RESUMO

Lensless inline holography can produce high-resolution images over a large field of view (FoV). In a previous work [Appl. Opt.60, B38 (2021)APOPAI0003-693510.1364/AO.414976], we showed that (i) the actual FoV can be extrapolated outside of the camera FoV and (ii) the effective resolution of the setup can be several times higher than the resolution of the camera. In this paper, we present a reconstruction method to recover high resolution with an extrapolated FoV image of the phase and the amplitude of a sample from aliased intensity measurements taken at a lower resolution.

9.
J Mammary Gland Biol Neoplasia ; 26(2): 101-112, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33999331

RESUMO

Patient-Derived Xenografts (PDXs) are the preclinical models which best recapitulate inter- and intra-patient complexity of human breast malignancies, and are also emerging as useful tools to study the normal breast epithelium. However, data analysis generated with such models is often confounded by the presence of host cells and can give rise to data misinterpretation. For instance, it is important to discriminate between xenografted and host cells in histological sections prior to performing immunostainings. We developed Single Cell Classifier (SCC), a data-driven deep learning-based computational tool that provides an innovative approach for automated cell species discrimination based on a multi-step process entailing nuclei segmentation and single cell classification. We show that human and murine cell contextual features, more than cell-intrinsic ones, can be exploited to discriminate between cell species in both normal and malignant tissues, yielding up to 96% classification accuracy. SCC will facilitate the interpretation of H&E- and DAPI-stained histological sections of xenografted human-in-mouse tissues and it is open to new in-house built models for further applications. SCC is released as an open-source plugin in ImageJ/Fiji available at the following link: https://github.com/Biomedical-Imaging-Group/SingleCellClassifier .


Assuntos
Neoplasias da Mama/patologia , Xenoenxertos/patologia , Processamento de Imagem Assistida por Computador/métodos , Animais , Aprendizado Profundo , Feminino , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Opt Express ; 28(3): 3905-3921, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32122051

RESUMO

Optical diffraction tomography is an effective tool to estimate the refractive indices of unknown objects. It proceeds by solving an ill-posed inverse problem for which the wave equation governs the scattering events. The solution has traditionally been derived by the minimization of an objective function in which the data-fidelity term encourages measurement consistency while the regularization term enforces prior constraints. In this work, we propose to train a convolutional neural network (CNN) as the projector in a projected-gradient-descent method. We iteratively produce high-quality estimates and ensure measurement consistency, thus keeping the best of CNN-based and regularization-based worlds. Our experiments on two-dimensional-simulated and real data show an improvement over other conventional or deep-learning-based methods. Furthermore, our trained CNN projector is general enough to accommodate various forward models for the handling of multiple-scattering events.

11.
J Comput Appl Math ; 368: 112503, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32255895

RESUMO

In this paper, we formally investigate two mathematical aspects of Hermite splines that are relevant to practical applications. We first demonstrate that Hermite splines are maximally localized, in the sense that the size of their support is minimal among pairs of functions with identical reproduction properties. Then, we precisely quantify the approximation power of Hermite splines for the reconstruction of functions and their derivatives. It is known that the Hermite and B-spline approximation schemes have the same approximation order. More precisely, their approximation error vanishes as O ( T 4 ) when the step size T goes to zero. In this work, we show that they actually have the same asymptotic approximation error constants, too. Therefore, they have identical asymptotic approximation properties. Hermite splines combine optimal localization and excellent approximation power, while retaining interpolation properties and closed-form expression, in contrast to existing similar functions. These findings shed a new light on the convenience of Hermite splines in the context of computer graphics and geometrical design.

12.
Bioinformatics ; 34(3): 538-540, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29029024

RESUMO

Motivation: We introduce a formulation for the general task of finding diverse shortest paths between two end-points. Our approach is not linked to a specific biological problem and can be applied to a large variety of images thanks to its generic implementation as a user-friendly ImageJ/Fiji plugin. It relies on the introduction of additional layers in a Viterbi path graph, which requires slight modifications to the standard Viterbi algorithm rules. This layered graph construction allows for the specification of various constraints imposing diversity between solutions. Results: The software allows obtaining a collection of diverse shortest paths under some user-defined constraints through a convenient and user-friendly interface. It can be used alone or be integrated into larger image analysis pipelines. Availability and implementation: http://bigwww.epfl.ch/algorithms/diversepathsj. Contact: michael.unser@epfl.ch or fred.hamprecht@iwr.uni-heidelberg.de. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Software , Algoritmos , Animais , Bactérias/citologia
13.
Methods ; 136: 17-23, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29162547

RESUMO

Phase imaging provides intensity contrast to visualize transparent samples such as found in biology without any staining. Among them, digital holographic microscopy (DHM) is a well-known quantitative phase method. Lensfree implementations of DHMs offer the added advantage to provide large field of views (several mm2 compared to several hundred µm2) and more compact setups that traditional DHM which have high quality microscope objectives. In this article, a lensfree DHM is presented using a side illumination technique in order to further reduce the device size. Its practical use is described and results on a transparent (phase only) sample are shown.


Assuntos
Holografia/métodos , Lentes , Microscopia/métodos , Humanos , Processamento de Imagem Assistida por Computador
14.
J Struct Biol ; 204(3): 543-554, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30261282

RESUMO

We present a multiscale reconstruction framework for single-particle analysis (SPA). The representation of three-dimensional (3D) objects with scaled basis functions permits the reconstruction of volumes at any desired scale in the real-space. This multiscale approach generates interesting opportunities in SPA for the stabilization of the initial volume problem or the 3D iterative refinement procedure. In particular, we show that reconstructions performed at coarse scale are more robust to angular errors and permit gains in computational speed. A key component of the proposed iterative scheme is its fast implementation. The costly step of reconstruction, which was previously hindering the use of advanced iterative methods in SPA, is formulated as a discrete convolution with a cost that does not depend on the number of projection directions. The inclusion of the contrast transfer function inside the imaging matrix is also done at no extra computational cost. By permitting full 3D regularization, the framework is by itself a robust alternative to direct methods for performing reconstruction in adverse imaging conditions (e.g., heavy noise, large angular misassignments, low number of projections). We present reconstructions obtained at different scales from a dataset of the 2015/2016 EMDataBank Map Challenge. The algorithm has been implemented in the Scipion package.


Assuntos
Algoritmos , Microscopia Crioeletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Tamanho da Partícula , Imagens de Fantasmas , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/ultraestrutura
15.
Nat Methods ; 12(8): 717-24, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26076424

RESUMO

The quality of super-resolution images obtained by single-molecule localization microscopy (SMLM) depends largely on the software used to detect and accurately localize point sources. In this work, we focus on the computational aspects of super-resolution microscopy and present a comprehensive evaluation of localization software packages. Our philosophy is to evaluate each package as a whole, thus maintaining the integrity of the software. We prepared synthetic data that represent three-dimensional structures modeled after biological components, taking excitation parameters, noise sources, point-spread functions and pixelation into account. We then asked developers to run their software on our data; most responded favorably, allowing us to present a broad picture of the methods available. We evaluated their results using quantitative and user-interpretable criteria: detection rate, accuracy, quality of image reconstruction, resolution, software usability and computational resources. These metrics reflect the various tradeoffs of SMLM software packages and help users to choose the software that fits their needs.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia/métodos , Software , Algoritmos , Animais , Células COS , Chlorocebus aethiops , Biologia Computacional/métodos , Desenho de Equipamento , Corantes Fluorescentes/química , Imageamento Tridimensional/métodos , Microtúbulos/química , Reprodutibilidade dos Testes , Processos Estocásticos , Tubulina (Proteína)/química
16.
Opt Express ; 26(3): 2749-2763, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29401811

RESUMO

Taking benefit from recent advances in both phase retrieval and estimation of refractive indices from holographic measurements, we propose a unified framework to reconstruct them from intensity-only measurements. Our method relies on a generic and versatile formulation of the inverse problem and includes sparsity constraints. Its modularity enables the use of a variety of forward models, from simple linear ones to more sophisticated nonlinear ones, as well as various regularizers. We present reconstructions that deploy either the beam-propagation method or the iterative Lippmann-Schwinger model, combined with total-variation regularization. They suggest that our proposed (intensity-only) method can reach the same performance as reconstructions from holographic (complex) data. This is of particular interest from a practical point of view because it allows one to simplify the acquisition setup.

17.
Methods ; 115: 28-41, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28057586

RESUMO

Images in fluorescence microscopy are inherently blurred due to the limit of diffraction of light. The purpose of deconvolution microscopy is to compensate numerically for this degradation. Deconvolution is widely used to restore fine details of 3D biological samples. Unfortunately, dealing with deconvolution tools is not straightforward. Among others, end users have to select the appropriate algorithm, calibration and parametrization, while potentially facing demanding computational tasks. To make deconvolution more accessible, we have developed a practical platform for deconvolution microscopy called DeconvolutionLab. Freely distributed, DeconvolutionLab hosts standard algorithms for 3D microscopy deconvolution and drives them through a user-oriented interface. In this paper, we take advantage of the release of DeconvolutionLab2 to provide a complete description of the software package and its built-in deconvolution algorithms. We examine several standard algorithms used in deconvolution microscopy, notably: Regularized inverse filter, Tikhonov regularization, Landweber, Tikhonov-Miller, Richardson-Lucy, and fast iterative shrinkage-thresholding. We evaluate these methods over large 3D microscopy images using simulated datasets and real experimental images. We distinguish the algorithms in terms of image quality, performance, usability and computational requirements. Our presentation is completed with a discussion of recent trends in deconvolution, inspired by the results of the Grand Challenge on deconvolution microscopy that was recently organized.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Software , Algoritmos , Animais , Células Eucarióticas/ultraestrutura , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Microscopia Confocal/instrumentação , Microscopia de Fluorescência/instrumentação , Razão Sinal-Ruído
18.
J Cell Sci ; 128(4): 741-54, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25501816

RESUMO

The Schizosaccharomyces pombe septation initiation network (SIN) regulates cytokinesis, and asymmetric association of SIN proteins with the mitotic spindle pole bodies (SPBs) is important for its regulation. Here, we have used semi-automated image analysis to study SIN proteins in large numbers of wild-type and mutant cells. Our principal conclusions are: first, that the association of Cdc7p with the SPBs in early mitosis is frequently asymmetric, with a bias in favour of the new SPB; second, that the early association of Cdc7p-GFP to the SPB depends on Plo1p but not Spg1p, and is unaffected by mutations that influence its asymmetry in anaphase; third, that Cdc7p asymmetry in anaphase B is delayed by Pom1p and by activation of the spindle assembly checkpoint, and is promoted by Rad24p; and fourth, that the length of the spindle, expressed as a fraction of the length of the cell, at which Cdc7p becomes asymmetric is similar in cells dividing at different sizes. These data reveal that multiple regulatory mechanisms control the SIN in mitosis and lead us to propose a two-state model to describe the SIN.


Assuntos
GTP Fosfo-Hidrolases/genética , Pontos de Checagem da Fase M do Ciclo Celular/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas de Schizosaccharomyces pombe/genética , Fuso Acromático/genética , Corpos Polares do Fuso/genética , Proteínas de Ciclo Celular/genética , Citocinese/genética , Proteínas de Fluorescência Verde/genética , Processamento de Imagem Assistida por Computador , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mitose/genética , Proteínas Quinases/genética , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento , Fuso Acromático/fisiologia
19.
Bioinformatics ; 32(8): 1278-80, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-26656569

RESUMO

MOTIVATION: SpotCaliper is a novel wavelet-based image-analysis software providing a fast automatic detection scheme for circular patterns (spots), combined with the precise estimation of their size. It is implemented as an ImageJ plugin with a friendly user interface. The user is allowed to edit the results by modifying the measurements (in a semi-automated way), extract data for further analysis. The fine tuning of the detections includes the possibility of adjusting or removing the original detections, as well as adding further spots. RESULTS: The main advantage of the software is its ability to capture the size of spots in a fast and accurate way. AVAILABILITY AND IMPLEMENTATION: http://bigwww.epfl.ch/algorithms/spotcaliper/ CONTACT: zsuzsanna.puspoki@epfl.ch SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Software , Algoritmos , Interface Usuário-Computador
20.
Opt Express ; 25(18): 21786-21800, 2017 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-29041472

RESUMO

Optical diffraction tomography relies on solving an inverse scattering problem governed by the wave equation. Classical reconstruction algorithms are based on linear approximations of the forward model (Born or Rytov), which limits their applicability to thin samples with low refractive-index contrasts. More recent works have shown the benefit of adopting nonlinear models. They account for multiple scattering and reflections, improving the quality of reconstruction. To reduce the complexity and memory requirements of these methods, we derive an explicit formula for the Jacobian matrix of the nonlinear Lippmann-Schwinger model which lends itself to an efficient evaluation of the gradient of the data-fidelity term. This allows us to deploy efficient methods to solve the corresponding inverse problem subject to sparsity constraints.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA