Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Comput Aided Mol Des ; 37(5-6): 227-244, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37060492

RESUMO

The dopamine D1 receptor (D1R), is a class A G protein coupled-receptor (GPCR) which has been a promising drug target for psychiatric and neurological disorders such as Parkinson's disease (PD). Previous studies have suggested that therapeutic effects can be realized by targeting the ß-arrestin signaling pathway of dopamine receptors, while overactivation of the G protein-dependent pathways leads to side effects, such as dyskinesias. Therefore, it is highly desirable to develop a D1R ligand that selectively regulates the ß-arrestin pathway. Currently, most D1R agonists are signaling-balanced and stimulate both G protein and ß-arrestin pathways, with a few reports of G protein biased ligands. However, identification and characterization of ß-arrestin biased D1R agonists has been a challenge thus far. In this study, we implemented Gaussian accelerated molecular dynamics (GaMD) simulations to provide valuable computational insights into the possible underlying molecular mechanism of the different signaling properties of two catechol and two non-catechol D1R agonists that are either G protein biased or signaling-balanced. Dynamic network analysis further identified critical residues in the allosteric signaling network of D1R for each ligand at different conformational or binding states. Some of these residues are crucial for G protein or arrestin signals of GPCRs based on previous studies. Finally, we provided a molecular design strategy which can be utilized by medicinal chemists to develop potential ß-arrestin biased D1R ligands. The proposed hypotheses are experimentally testable and can guide the development of safer and more effective medications for a variety of CNS disorders.


Assuntos
Proteínas de Ligação ao GTP , Transdução de Sinais , beta-Arrestinas/metabolismo , Ligantes , Proteínas de Ligação ao GTP/metabolismo , Agonistas de Dopamina/química , Agonistas de Dopamina/farmacologia , Receptores de Dopamina D1/metabolismo
2.
J Neurochem ; 158(4): 960-979, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33991113

RESUMO

In Parkinson's disease, dopamine-containing nigrostriatal neurons undergo profound degeneration. Tyrosine hydroxylase (TH) is the rate-limiting enzyme in dopamine biosynthesis. TH increases in vitro formation of reactive oxygen species, and previous animal studies have reported links between cytosolic dopamine build-up and oxidative stress. To examine effects of increased TH activity in catecholaminergic neurons in vivo, we generated TH-over-expressing mice (TH-HI) using a BAC-transgenic approach that results in over-expression of TH with endogenous patterns of expression. The transgenic mice were characterized by western blot, qPCR, and immunohistochemistry. Tissue contents of dopamine, its metabolites, and markers of oxidative stress were evaluated. TH-HI mice had a 3-fold increase in total and phosphorylated TH levels and an increased rate of dopamine synthesis. Coincident with elevated dopamine turnover, TH-HI mice showed increased striatal production of H2 O2 and reduced glutathione levels. In addition, TH-HI mice had elevated striatal levels of the neurotoxic dopamine metabolites 3,4-dihydroxyphenylacetaldehyde and 5-S-cysteinyl-dopamine and were more susceptible than wild-type mice to the effects of amphetamine and methamphetamine. These results demonstrate that increased TH alone is sufficient to produce oxidative stress in vivo, build up autotoxic dopamine metabolites, and augment toxicity.


Assuntos
Anfetamina/farmacologia , Catecolaminas/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Estresse Oxidativo , Tirosina 3-Mono-Oxigenase/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/análogos & derivados , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Dopamina/análogos & derivados , Dopamina/metabolismo , Feminino , Dosagem de Genes , Glutationa/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/genética
3.
Addict Biol ; 25(6): e12823, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31441201

RESUMO

Psychostimulants and opioids increase dopamine (DA) neurotransmission, activating D1 and D2 G protein-coupled receptors. ß-arrestin2 (ßarr2) desensitizes and internalizes these receptors and initiates G protein-independent signaling. Previous work revealed that mice with a global or cell-specific knockout of ßarr2 have altered responses to certain drugs; however, the effects of ßarr2 on the excitability of medium spiny neurons (MSNs), and its role in mediating the rewarding effects of drugs of abuse are unknown. D1-Cre and D2-Cre transgenic mice were crossed with floxed ßarr2 mice to eliminate ßarr2 specifically in cells containing either D1 (D1ßarr2-KO ) or D2 (D2ßarr2-KO ) receptors. We used slice electrophysiology to characterize the role of ßarr2 in modulating D1 and D2 nucleus accumbens MSN intrinsic excitability in response to DA and tested the locomotor-activating and rewarding effects of cocaine and morphine in these mice. Eliminating ßarr2 attenuated the ability of DA to inhibit D2-MSNs and altered the DA-induced maximum firing rate in D1-MSNs. While D1ßarr2-KO mice had mostly normal drug responses, D2ßarr2-KO mice showed dose-dependent reductions in acute locomotor responses to cocaine and morphine, attenuated locomotor sensitization to cocaine, and blunted cocaine reward measured with conditioned place preference. Both D2ßarr2-KO and D1ßarr2-KO mice displayed an enhanced conditioned place preference for the highest dose of morphine. These results indicate that D1- and D2-derived ßarr2 functionally contribute to DA-induced changes in MSN intrinsic excitability and behavioral responses to psychostimulants and opioids dose-dependently.


Assuntos
Analgésicos Opioides/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Receptores de Dopamina D2/metabolismo , Recompensa , beta-Arrestina 2/metabolismo , Analgésicos Opioides/administração & dosagem , Animais , Estimulantes do Sistema Nervoso Central/administração & dosagem , Cocaína/administração & dosagem , Cocaína/farmacologia , Feminino , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfina/administração & dosagem , Morfina/farmacologia , Núcleo Accumbens/fisiopatologia , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética
4.
Proc Natl Acad Sci U S A ; 113(50): E8178-E8186, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27911814

RESUMO

The current dopamine (DA) hypothesis of schizophrenia postulates striatal hyperdopaminergia and cortical hypodopaminergia. Although partial agonists at DA D2 receptors (D2Rs), like aripiprazole, were developed to simultaneously target both phenomena, they do not effectively improve cortical dysfunction. In this study, we investigate the potential for newly developed ß-arrestin2 (ßarr2)-biased D2R partial agonists to simultaneously target hyper- and hypodopaminergia. Using neuron-specific ßarr2-KO mice, we show that the antipsychotic-like effects of a ßarr2-biased D2R ligand are driven through both striatal antagonism and cortical agonism of D2R-ßarr2 signaling. Furthermore, ßarr2-biased D2R agonism enhances firing of cortical fast-spiking interneurons. This enhanced cortical agonism of the biased ligand can be attributed to a lack of G-protein signaling and elevated expression of ßarr2 and G protein-coupled receptor (GPCR) kinase 2 in the cortex versus the striatum. Therefore, we propose that ßarr2-biased D2R ligands that exert region-selective actions could provide a path to develop more effective antipsychotic therapies.


Assuntos
Antipsicóticos/farmacologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/metabolismo , beta-Arrestina 2/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Antagonistas dos Receptores de Dopamina D2/farmacologia , Feminino , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Interneurônios/metabolismo , Ligantes , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenciclidina/toxicidade , Transdução de Sinais/efeitos dos fármacos
5.
Synapse ; 72(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28941296

RESUMO

The "brain-gut" peptide ghrelin, which mediates food-seeking behaviors, is recognized as a very strong endogenous modulator of dopamine (DA) signaling. Ghrelin binds the G protein-coupled receptor GHSR1a, and administration of ghrelin increases the rewarding properties of psychostimulants while ghrelin receptor antagonists decrease them. In addition, the GHSR1a signals through ßarrestin-2 to regulate actin/stress fiber rearrangement, suggesting ßarrestin-2 participation in the regulation of actin-mediated synaptic plasticity for addictive substances like cocaine. The effects of ghrelin receptor ligands on reward strongly suggest that modulation of ghrelin signaling could provide an effective strategy to ameliorate undesirable behaviors arising from addiction. To investigate this possibility, we tested the effects of ghrelin receptor antagonism in a cocaine behavioral sensitization paradigm using DA neuron-specific ßarrestin-2 KO mice. Our results show that these mice sensitize to cocaine as well as wild-type littermates. The ßarrestin-2 KO mice, however, no longer respond to the locomotor attenuating effects of the GHSR1a antagonist YIL781. The data presented here suggest that the separate stages of addictive behavior differ in their requirements for ßarrestin-2 and show that pharmacological inhibition of ßarrestin-2 function through GHSR1a antagonism is not equivalent to the loss of ßarrestin-2 function achieved by genetic ablation. These data support targeting GHSR1a signaling in addiction therapy but indicate that using signaling biased compounds that modulate ßarrestin-2 activity differentially from G protein activity may be required.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/metabolismo , Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Atividade Motora/efeitos dos fármacos , Receptores de Grelina/antagonistas & inibidores , beta-Arrestina 2/metabolismo , Animais , Linhagem Celular Tumoral , Fármacos do Sistema Nervoso Central , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Feminino , Grelina/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/fisiologia , Piperidinas/farmacologia , Quinazolinonas/farmacologia , Receptores de Grelina/metabolismo , beta-Arrestina 2/genética
6.
Proc Natl Acad Sci U S A ; 112(22): 7097-102, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25964346

RESUMO

The neuromodulator dopamine signals through the dopamine D2 receptor (D2R) to modulate central nervous system functions through diverse signal transduction pathways. D2R is a prominent target for drug treatments in disorders where dopamine function is aberrant, such as schizophrenia. D2R signals through distinct G-protein and ß-arrestin pathways, and drugs that are functionally selective for these pathways could have improved therapeutic potential. How D2R signals through the two pathways is still not well defined, and efforts to elucidate these pathways have been hampered by the lack of adequate tools for assessing the contribution of each pathway independently. To address this, Evolutionary Trace was used to produce D2R mutants with strongly biased signal transduction for either the G-protein or ß-arrestin interactions. These mutants were used to resolve the role of G proteins and ß-arrestins in D2R signaling assays. The results show that D2R interactions with the two downstream effectors are dissociable and that G-protein signaling accounts for D2R canonical MAP kinase signaling cascade activation, whereas ß-arrestin only activates elements of this cascade under certain conditions. Nevertheless, when expressed in mice in GABAergic medium spiny neurons of the striatum, the ß-arrestin-biased D2R caused a significant potentiation of amphetamine-induced locomotion, whereas the G protein-biased D2R had minimal effects. The mutant receptors generated here provide a molecular tool set that should enable a better definition of the individual roles of G-protein and ß-arrestin signaling pathways in D2R pharmacology, neurobiology, and associated pathologies.


Assuntos
Arrestinas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Modelos Moleculares , Receptores de Dopamina D2/metabolismo , Animais , Arrestinas/química , Corpo Estriado/citologia , Cristalografia , Proteínas de Ligação ao GTP/química , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Mutagênese , Neurônios/metabolismo , Conformação Proteica , Receptores de Dopamina D2/química , Receptores de Dopamina D2/genética , Análise de Regressão , beta-Arrestinas
7.
Proc Natl Acad Sci U S A ; 112(19): E2517-26, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25918399

RESUMO

Parkinson's disease (PD) is characterized by severe locomotor deficits and is commonly treated with the dopamine (DA) precursor l-3,4-dihydroxyphenylalanine (L-DOPA), but its prolonged use causes dyskinesias referred to as L-DOPA-induced dyskinesias (LIDs). Recent studies in animal models of PD have suggested that dyskinesias are associated with the overactivation of G protein-mediated signaling through DA receptors. ß-Arrestins desensitize G protein signaling at DA receptors (D1R and D2R) in addition to activating their own G protein-independent signaling events, which have been shown to mediate locomotion. Therefore, targeting ß-arrestins in PD L-DOPA therapy might prove to be a desirable approach. Here we show in a bilateral DA-depletion mouse model of Parkinson's symptoms that genetic deletion of ß-arrestin2 significantly limits the beneficial locomotor effects while markedly enhancing the dyskinesia-like effects of acute or chronic L-DOPA treatment. Viral rescue or overexpression of ß-arrestin2 in knockout or control mice either reverses or protects against LIDs and its key biochemical markers. In other more conventional animal models of DA neuron loss and PD, such as 6-hydroxydopamine-treated mice or rats and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated nonhuman primates, ß-arrestin2 overexpression significantly reduced dyskinesias while maintaining the therapeutic effect of L-DOPA. Considerable efforts are being spent in the pharmaceutical industry to identify therapeutic approaches to block LIDs in patients with PD. Our results point to a potential therapeutic approach, whereby development of either a genetic or pharmacological intervention to enhance ß-arrestin2- or limit G protein-dependent D1/D2R signaling could represent a more mechanistically informed strategy.


Assuntos
Arrestinas/metabolismo , Discinesias/metabolismo , Levodopa/química , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/química , Animais , Arrestinas/genética , Comportamento Animal , Modelos Animais de Doenças , Dopamina/metabolismo , Discinesia Induzida por Medicamentos/metabolismo , Deleção de Genes , Macaca , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Oxidopamina/química , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Regulação para Cima , beta-Arrestinas
8.
J Biol Chem ; 289(48): 33442-55, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25261469

RESUMO

The G protein-coupled ghrelin receptor GHSR1a is a potential pharmacological target for treating obesity and addiction because of the critical role ghrelin plays in energy homeostasis and dopamine-dependent reward. GHSR1a enhances growth hormone release, appetite, and dopamine signaling through G(q/11), G(i/o), and G(12/13) as well as ß-arrestin-based scaffolds. However, the contribution of individual G protein and ß-arrestin pathways to the diverse physiological responses mediated by ghrelin remains unknown. To characterize whether a signaling bias occurs for GHSR1a, we investigated ghrelin signaling in a number of cell-based assays, including Ca(2+) mobilization, serum response factor response element, stress fiber formation, ERK1/2 phosphorylation, and ß-arrestin translocation, utilizing intracellular second loop and C-tail mutants of GHSR1a. We observed that GHSR1a and ß-arrestin rapidly form metastable plasma membrane complexes following exposure to an agonist, but replacement of the GHSR1a C-tail by the tail of the vasopressin 2 receptor greatly stabilizes them, producing complexes observable on the plasma membrane and also in endocytic vesicles. Mutations of the contiguous conserved amino acids Pro-148 and Leu-149 in the GHSR1a intracellular second loop generate receptors with a strong bias to G protein and ß-arrestin, respectively, supporting a role for conformation-dependent signaling bias in the wild-type receptor. Our results demonstrate more balance in GHSR1a-mediated ERK signaling from G proteins and ß-arrestin but uncover an important role for ß-arrestin in RhoA activation and stress fiber formation. These findings suggest an avenue for modulating drug abuse-associated changes in synaptic plasticity via GHSR1a and indicate the development of GHSR1a-biased ligands as a promising strategy for selectively targeting downstream signaling events.


Assuntos
Arrestina/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Receptores de Grelina/metabolismo , Arrestina/genética , Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Plasticidade Neuronal/fisiologia , Estabilidade Proteica , Estrutura Secundária de Proteína , Transporte Proteico/fisiologia , Receptores de Grelina/genética , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/metabolismo
9.
J Biol Chem ; 289(17): 11715-11724, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24619418

RESUMO

Striatal dopamine D2 receptor (D2R) relies upon G protein- and ß-arrestin-dependent signaling pathways to convey its action on motor control and behavior. Considering that D2R activation inhibits Akt in the striatum and that huntingtin physiological functions are affected by Akt phosphorylation, we sought to investigate whether D2R-mediated signaling could regulate huntingtin phosphorylation. We demonstrate that D2R activation decreases huntingtin phosphorylation on its Akt site. This dephosphorylation event depends upon the Gαi-dependent engagement of specific members of the protein phosphatase metallo-dependent (PPM/PP2C) family and is independent of ß-arrestin 2. These observations identify the PPM/PP2C family as a mediator of G protein-coupled receptor signaling and thereby suggest a novel mechanism of dopaminergic signaling.


Assuntos
Fosfoproteínas Fosfatases/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Células HEK293 , Humanos , Proteína Huntingtina , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso , Proteínas Nucleares , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo
10.
Proc Natl Acad Sci U S A ; 109(50): 20732-7, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23188793

RESUMO

Several studies in rodent models have shown that glycogen synthase kinase 3 ß (GSK3ß) plays an important role in the actions of antispychotics and mood stabilizers. Recently it was demonstrated that GSK3ß through a ß-arrestin2/protein kinase B (PKB or Akt)/protein phosphatase 2A (PP2A) signaling complex regulates dopamine (DA)- and lithium-sensitive behaviors and is required to mediate endophenotypes of mania and depression in rodents. We have previously shown that atypical antipsychotics antagonize DA D2 receptor (D2R)/ß-arrestin2 interactions more efficaciously than G-protein-dependent signaling, whereas typical antipsychotics inhibit both pathways with similar efficacy. To elucidate the site of action of GSK3ß in regulating DA- or lithium-sensitive behaviors, we generated conditional knockouts of GSK3ß, where GSK3ß was deleted in either DA D1- or D2-receptor-expressing neurons. We analyzed these mice for behaviors commonly used to test antipsychotic efficacy or behaviors that are sensitive to lithium treatment. Mice with deletion of GSK3ß in D2 (D2GSK3ß(-/-)) but not D1 (D1GSK3ß(-/-)) neurons mimic antipsychotic action. However, haloperidol (HAL)-induced catalepsy was unchanged in either D2GSK3ß(-/-) or D1GSK3ß(-/-) mice compared with control mice. Interestingly, genetic stabilization of ß-catenin, a downstream target of GSK3ß, in D2 neurons did not affect any of the behaviors tested. Moreover, D2GSK3ß(-/-) or D1GSK3ß(-/-) mice showed similar responses to controls in the tail suspension test (TST) and dark-light emergence test, behaviors which were previously shown to be ß-arrestin2- and GSK3ß-dependent and sensitive to lithium treatment. Taken together these studies suggest that selective deletion of GSK3ß but not stabilization of ß-catenin in D2 neurons mimics antipsychotic action without affecting signaling pathways involved in catalepsy or certain mood-related behaviors.


Assuntos
Antipsicóticos/farmacologia , Arrestinas/fisiologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/fisiologia , Quinase 3 da Glicogênio Sintase/deficiência , Lítio/farmacologia , Receptores de Dopamina D2/fisiologia , Animais , Aripiprazol , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Técnicas de Inativação de Genes , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/fisiologia , Glicogênio Sintase Quinase 3 beta , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Piperazinas/farmacologia , Quinolonas/farmacologia , Transdução de Sinais , beta Catenina/fisiologia , beta-Arrestinas
11.
J Neurosci ; 33(46): 18125-33, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24227722

RESUMO

Several studies have reported the coupling of dopamine signaling to phospholipase C ß (PLCß) both in vitro and in vivo. However, the precise physiological relevance of this signaling pathway in mediating dopamine behaviors is still unclear. Here we report that stimulation of dopamine receptor signaling in vivo with systemic administration of apomorphine, amphetamine, and cocaine leads to increased production of inositol triphosphate (IP3) in the mouse striatum. Using selective antagonists and dopamine D1 and D2 receptor knock-out animals, we show that the production of IP3 is mediated by the D1 receptor, but not the D2 receptor. A selective blocker of PLCß, U73122, was used to assess the physiological relevance of D1-mediated IP3 production. We show that U73122 inhibits the locomotor-stimulating effects of apomorphine, amphetamine, cocaine, and SKF81297. Furthermore, U73122 also suppresses the spontaneous hyperactivity exhibited by dopamine transporter knock-out mice. Importantly, the effects of U73122 are selective to dopamine-mediated hyperactivity, as this compound does not affect hyperactivity induced by the glutamate NMDA receptor antagonist MK801. Finally, we present evidence showing that an imbalance of D1- and D2-mediated signaling following U73122 treatment modifies the locomotor output of animals from horizontal locomotor activity to vertical activity, further highlighting the importance of the PLCß pathway in the regulation of forward locomotion via dopamine receptors.


Assuntos
Atividade Motora/fisiologia , Fosfolipase C beta/metabolismo , Receptores de Dopamina D1/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica/fisiologia
12.
Res Sq ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38559083

RESUMO

Parkinson's disease (PD) is characterized by a decades-long prodrome, consisting of a collection of non-motor symptoms that emerges prior to the motor manifestation of the disease. Of these non-motor symptoms, gastrointestinal dysfunction and deficits attributed to central norepinephrine (NE) loss, including mood changes and sleep disturbances, are frequent in the PD population and emerge early in the disease. Evidence is mounting that injury and inflammation in the gut and locus coeruleus (LC), respectively, underlie these symptoms, and the injury of these systems is central to the progression of PD. In this study, we generate a novel two-hit mouse model that captures both features, using dextran sulfate sodium (DSS) to induce gut inflammation and N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) to lesion the LC. We first confirmed the specificity of DSP-4 for central NE using neurochemical methods and fluorescence light-sheet microscopy of cleared tissue, and established that DSS-induced outcomes in the periphery, including weight loss, gross indices of gut injury and systemic inflammation, the loss of tight junction proteins in the colonic epithelium, and markers of colonic inflammation, were unaffected with DSP-4 pre-administration. We then measured alterations in neuroimmune gene expression in the ventral midbrain in response to DSS treatment alone as well as the extent to which prior LC injury modified this response. In this two-hit model we observed that DSS-induced colitis activates the expression of key cytokines and chemokines in the ventral midbrain only in the presence of LC injury and the typical DSS-associated neuroimmune is blunted by pre-LC lesioning with DSP-4. In all, this study supports the growing appreciation for the LC as neuroprotective against inflammation-induced brain injury and draws attention to the potential for NEergic interventions to exert disease-modifying effects under conditions where peripheral inflammation may compromise ventral midbrain dopaminergic neurons and increase the risk for development of PD.

13.
bioRxiv ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38405709

RESUMO

Parkinson's disease (PD) is characterized by a decades-long prodrome, consisting of a collection of non-motor symptoms that emerges prior to the motor manifestation of the disease. Of these non-motor symptoms, gastrointestinal dysfunction and deficits attributed to central norepinephrine (NE) loss, including mood changes and sleep disturbances, are frequent in the PD population and emerge early in the disease. Evidence is mounting that injury and inflammation in the gut and locus coeruleus (LC), respectively, underlie these symptoms, and the injury of these systems is central to the progression of PD. In this study, we generate a novel two-hit mouse model that captures both features, using dextran sulfate sodium (DSS) to induce gut inflammation and N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) to lesion the LC. We first confirmed the specificity of DSP-4 for central NE using neurochemical methods and fluorescence light-sheet microscopy of cleared tissue, and established that DSS-induced outcomes in the periphery, including weight loss, gross indices of gut injury and systemic inflammation, the loss of tight junction proteins in the colonic epithelium, and markers of colonic inflammation, were unaffected with DSP-4 pre-administration. We then measured alterations in neuroimmune gene expression in the ventral midbrain in response to DSS treatment alone as well as the extent to which prior LC injury modified this response. In this two-hit model we observed that DSS-induced colitis activates the expression of key cytokines and chemokines in the ventral midbrain only in the presence of LC injury and the typical DSS-associated neuroimmune is blunted by pre-LC lesioning with DSP-4. In all, this study supports the growing appreciation for the LC as neuroprotective against inflammation-induced brain injury and draws attention to the potential for NEergic interventions to exert disease-modifying effects under conditions where peripheral inflammation may compromise ventral midbrain dopaminergic neurons and increase the risk for development of PD.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38698264

RESUMO

The catecholamine neuromodulators dopamine and norepinephrine are implicated in motor function, motivation, and cognition. Although roles for striatal dopamine in these aspects of behavior are well established, the specific roles for cortical catecholamines in regulating striatal dopamine dynamics and behavior are less clear. We recently showed that elevating cortical dopamine but not norepinephrine suppresses hyperactivity in dopamine transporter knockout (DAT-KO) mice, which have elevated striatal dopamine levels. In contrast, norepinephrine transporter knockout (NET-KO) mice have a phenotype distinct from DAT-KO mice, as they show elevated extracellular cortical catecholamines but reduced baseline striatal dopamine levels. Here we evaluated the consequences of altered catecholamine levels in NET-KO mice on cognitive flexibility and striatal dopamine dynamics. In a probabilistic reversal learning task, NET-KO mice showed enhanced reversal learning, which was consistent with larger phasic dopamine transients (dLight) in the dorsomedial striatum (DMS) during reward delivery and reward omission, compared to WT controls. Selective depletion of dorsal medial prefrontal cortex (mPFC) norepinephrine in WT mice did not alter performance on the reversal learning task but reduced nestlet shredding. Surprisingly, NET-KO mice did not show altered breakpoints in a progressive ratio task, suggesting intact food motivation. Collectively, these studies show novel roles of cortical catecholamines in the regulation of tonic and phasic striatal dopamine dynamics and cognitive flexibility, updating our current views on dopamine regulation and informing future therapeutic strategies to counter multiple psychiatric disorders.

15.
Cell Metab ; 36(2): 393-407.e7, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38242133

RESUMO

Food is a powerful natural reinforcer that guides feeding decisions. The vagus nerve conveys internal sensory information from the gut to the brain about nutritional value; however, the cellular and molecular basis of macronutrient-specific reward circuits is poorly understood. Here, we monitor in vivo calcium dynamics to provide direct evidence of independent vagal sensing pathways for the detection of dietary fats and sugars. Using activity-dependent genetic capture of vagal neurons activated in response to gut infusions of nutrients, we demonstrate the existence of separate gut-brain circuits for fat and sugar sensing that are necessary and sufficient for nutrient-specific reinforcement. Even when controlling for calories, combined activation of fat and sugar circuits increases nigrostriatal dopamine release and overeating compared with fat or sugar alone. This work provides new insights into the complex sensory circuitry that mediates motivated behavior and suggests that a subconscious internal drive to consume obesogenic diets (e.g., those high in both fat and sugar) may impede conscious dieting efforts.


Assuntos
Carboidratos , Açúcares , Humanos , Açúcares/metabolismo , Encéfalo/metabolismo , Dieta , Hiperfagia/metabolismo
16.
Cells ; 12(2)2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36672204

RESUMO

The dopamine transporter (DAT) regulates the dimension and duration of dopamine transmission. DAT expression, its trafficking, protein-protein interactions, and its activity are conventionally studied in the CNS and within the context of neurological diseases such as Parkinson's Diseases and neuropsychiatric diseases such as drug addiction, attention deficit hyperactivity and autism. However, DAT is also expressed at the plasma membrane of peripheral immune cells such as monocytes, macrophages, T-cells, and B-cells. DAT activity via an autocrine/paracrine signaling loop regulates macrophage responses to immune stimulation. In a recent study, we identified an immunosuppressive function for DAT, where blockade of DAT activity enhanced LPS-mediated production of IL-6, TNF-α, and mitochondrial superoxide levels, demonstrating that DAT activity regulates macrophage immune responses. In the current study, we tested the hypothesis that in the DAT knockout mice, innate and adaptive immunity are perturbed. We found that genetic deletion of DAT (DAT-/-) results in an exaggerated baseline inflammatory phenotype in peripheral circulating myeloid cells. In peritoneal macrophages obtained from DAT-/- mice, we identified increased MHC-II expression and exaggerated phagocytic response to LPS-induced immune stimulation, suppressed T-cell populations at baseline and following systemic endotoxemia and exaggerated memory B cell expansion. In DAT-/- mice, norepinephrine and dopamine levels are increased in spleen and thymus, but not in circulating serum. These findings in conjunction with spleen hypoplasia, increased splenic myeloid cells, and elevated MHC-II expression, in DAT-/- mice further support a critical role for DAT activity in peripheral immunity. While the current study is only focused on identifying the role of DAT in peripheral immunity, our data point to a much broader implication of DAT activity than previously thought. This study is dedicated to the memory of Dr. Marc Caron who has left an indelible mark in the dopamine transporter field.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Dopamina , Camundongos , Animais , Dopamina/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Knockout , Imunidade
17.
Sci Rep ; 12(1): 3129, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210489

RESUMO

Psychostimulants have a paradoxical calming effect in the treatment of attention deficit hyperactivity disorder (ADHD), but their mechanism of action is unclear. Studies using dopamine (DA) transporter (DAT) knockout (KO) mice have suggested that the paradoxical calming effect of psychostimulants might occur through actions on serotonin (5-HT) neurotransmission. However, newer non-stimulant drugs, such as atomoxetine and guanfacine, suggest that targeting the norepinephrine (NE) system in the prefrontal cortex (PFC) might explain this paradoxical calming effect. Thus, we sought to clarify the mechanism of this paradoxical action of psychostimulants. Our ex vivo efflux experiments reveal that the NE transporter (NET) blocker desipramine elevates both norepinephrine (NE) and dopamine (DA), but not 5-HT levels, in PFC tissue slices from wild-type (WT) and DAT-KO, but not NET-KO mice. However, the 5-HT transporter (SERT) inhibitor fluoxetine elevates only 5-HT in all three genotypes. Systemic administration of desipramine or fluoxetine inhibits hyperactivity in DAT-KO mice, whereas local PFC infusion of desipramine alone produced this same effect. In contrast, pharmacological NE depletion and DA elevation using nepicastat also inhibits hyperactivity in DAT-KO mice. Together, these data suggest elevation of PFC DA and not NE or 5-HT, as a convergent mechanism for the paradoxical effects of psychostimulants observed in ADHD therapy.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Dopamina/metabolismo , Córtex Pré-Frontal/metabolismo , Animais , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Transtorno do Deficit de Atenção com Hiperatividade/genética , Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/deficiência , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Camundongos , Camundongos Knockout
18.
ACS Chem Neurosci ; 13(12): 1818-1831, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35658399

RESUMO

Dopamine regulates normal functions such as movement, reinforcement learning, and cognition, and its dysfunction has been implicated in multiple psychiatric and neurological disorders. Dopamine acts through D1- (D1R and D5R) and D2-class (D2R, D3R, and D4R) receptors and activates both G protein- and ß-arrestin-dependent signaling pathways. Current dopamine receptor-based therapies are used to ameliorate motor deficits in Parkinson's disease or as antipsychotic medications for schizophrenia. These drugs show efficacy for ameliorating only some symptoms caused by dopamine dysfunction and are plagued by debilitating side effects. Studies in primates and rodents have shown that shifting the balance of dopamine receptor signaling toward the arrestin pathway can be beneficial for inducing normal movement, while reducing motor side effects such as dyskinesias, and can be efficacious at enhancing cognitive function compared to balanced agonists. Several structure-activity relationship (SAR) studies have embarked on discovering ß-arrestin-biased dopamine agonists, focused on D2 partial agonists, noncatechol D1 agonists, and mixed D1/D2R dopamine receptor agonists. Here, we describe an SAR study to identify novel D1R ß-arrestin-biased ligands using A-86929, a high-affinity D1R catechol agonist, as a core scaffold to identify chemical motifs responsible for ß-arrestin-biased activity at both D1 and D2Rs. Most of the A-86929 analogs screened were G protein-biased, but none of them were exclusively arrestin-biased. Additionally, various small-fragment molecular probes displayed weak bias toward the ß-arrestin pathway. Continued in-depth SFSR (structure-functional selectivity relationship) studies informed by structure determination, molecular modeling, and mutagenesis studies will facilitate the discovery of potent and efficacious arrestin-biased dopamine receptor ligands.


Assuntos
Agonistas de Dopamina , Dopamina , Animais , Dopamina/metabolismo , Agonistas de Dopamina/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Ligantes , Quinolonas , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D2/metabolismo , Tiofenos , beta-Arrestinas/metabolismo
19.
eNeuro ; 9(5)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36635920

RESUMO

The protease caspase-3 is a key mediator of apoptotic programmed cell death. But weak or transient caspase activity can contribute to neuronal differentiation, axonal pathfinding, and synaptic long-term depression. Despite the importance of sublethal, or nonapoptotic, caspase activity in neurodevelopment and neural plasticity, there has been no simple method for mapping and quantifying nonapoptotic caspase activity (NACA) in rodent brains. We therefore generated a transgenic mouse expressing a highly sensitive and specific fluorescent reporter of caspase activity, with peak signal localized to the nucleus. As a proof of concept, we first obtained evidence that NACA influences neurophysiology in an amygdalar circuit. Then focusing on the amygdala, we were able to quantify a sex-specific persistent elevation in caspase activity in females after restraint stress. This simple in vivo caspase activity reporter will facilitate systems-level studies of apoptotic and nonapoptotic phenomena in behavioral and pathologic models.


Assuntos
Apoptose , Encéfalo , Masculino , Feminino , Camundongos , Animais , Apoptose/fisiologia , Camundongos Transgênicos , Plasticidade Neuronal , Caspase 9
20.
CNS Drugs ; 35(3): 253-264, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33651366

RESUMO

Therapies for psychiatric and neurological disorders have been in the development and refinement process for the past 5 decades. Yet, most of these therapies lack optimal therapeutic efficacy and have multiple debilitating side effects. Recent advances in understanding the pathophysiological processes of psychiatric and neurological disorders have revealed an important role for ß-arrestins, which are important regulators of G-protein-coupled receptor (GPCR) function, including desensitization and intracellular signaling. These findings have pushed ß-arrestins to the forefront as potential therapeutic targets. Here, we highlight current knowledge on ß-arrestin functions in certain psychiatric and neurological disorders (schizophrenia, Parkinson's disease, and substance abuse disorders), and how this has been leveraged to develop new therapeutic strategies. Furthermore, we discuss the obstacles impacting the field of ß-arrestin-based therapeutic development and future approaches that might help advance strategies to develop optimal ß-arrestin-based therapies.


Assuntos
Transtornos Mentais/metabolismo , Doenças do Sistema Nervoso/metabolismo , beta-Arrestinas/metabolismo , Animais , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA