Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 744: 109691, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37473980

RESUMO

Ferroptosis, an iron-dependent cell death, is caused by lipid peroxidation. Noteworthily, accumulation of iron and lipid peroxidation are found in the proximity of the neuritic plaque, a hallmark of Alzheimer's disease (AD), but the relationship between ferroptosis and neuroinflammation in AD is unclear. Silibinin, extracted from the Silybum marianum, is possibly developed as an agent for AD treatment from its neuroprotective effect, but the effect of silibinin on sporadic AD that accounts for more than 95% of AD remains unclear. To determine whether silibinin alleviates the pathogenesis of sporadic AD and investigate the underlying mechanisms, STZ-treated HT22 murine hippocampal neurons and intracerebroventricular injection of streptozotocin (ICV-STZ) rats, a sporadic AD model, were used in this study. Results show that silibinin not only promotes survival of STZ-treated HT22 cells, but also ameliorates the cognitive impairment and anxiety/depression-like behavior of ICV-STZ rats. We here demonstrate that silibinin evidently inhibits the protein level of p53 as well as upregulates the protein level of cystine/glutamate antiporter SLC7A11 and ferroptosis inhibitor GPX4, but not p21, leading to the protection against STZ-induced ferroptotic damage. Immunofluorescent staining also shows that accumulation of lipid peroxidation induced by ferroptotic damage leads to increased fluorescence of 8-oxo-deoxyguanosine (8-OHDG), a maker of oxidized DNA. The oxidized DNA then leaks to the cytoplasm and upregulates the expression of the stimulator of interferon gene (STING), which triggers the production of IFN-ß and other inflammatory cascades including NF-κB/TNFα and NLRP3/caspase 1/IL-1ß. However, the treatment with silibinin blocks the above pathological changes. Moreover, in HT22 cells with/without STZ treatment, GPX4-knockdown increases the protein level of STING, indicating that the ferroptotic damage leads to the activation of STING signaling pathway. These results imply that silibinin exerts neuroprotective effect on an STZ-induced sporadic AD model by downregulating ferroptotic damage and thus the downstream STING-mediated neuroinflammation.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Ratos , Camundongos , Animais , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Silibina/farmacologia , Silibina/uso terapêutico , Regulação para Baixo , Doenças Neuroinflamatórias , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estreptozocina/efeitos adversos , Modelos Animais de Doenças
2.
Neurochem Res ; 46(9): 2317-2332, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34097239

RESUMO

Besides motor disorder, cognitive dysfunction is also common in Parkinson's disease (PD). Essentially no causal therapy for cognitive dysfunction of PD exists at present. In this study, a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD was used to analyze the neuroprotective potential of orally administered silibinin, a proverbial hepatoprotective flavonoid derived from the herb milk thistle (Silybum marianum). Results demonstrated that silibinin administration significantly attenuated MPTP-induced cognitive impairment in behavioral tests. Nissl staining results showed that MPTP injection significantly increases the loss of neurons in the hippocampus. However, these mice were protected by oral administration of silibinin, accompanying reduction in the cell apoptosis in the hippocampus. The hippocampal aggregates of α-synuclein (α-syn) appeared in MPTP-injected mice, but were significantly decreased by silibinin treatment. MPTP injection induced oxidative stress, as evidenced by increased malondialdehyde (MDA) and decreased superoxide dismutase (SOD). The oxidative stress was alleviated by silibinin treatment. Mitochondrial disorder including the decline of mitochondrial membrane potential (MMP) was another signature in the hippocampus of MPTP-treated mice, accompanying increased mitochondrial fission and decreased fusion. Silibinin administration restored these mitochondrial disorders, as expected for the protection against MPTP injury. These findings suggest that silibinin has a potential to be further developed as a therapeutic candidate for cognitive dysfunction in PD.


Assuntos
Mitocôndrias/efeitos dos fármacos , Doenças Mitocondriais/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Transtornos Parkinsonianos/tratamento farmacológico , Silibina/uso terapêutico , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Administração Oral , Animais , Apoptose/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Memantina/uso terapêutico , Camundongos Endogâmicos C57BL , Doenças Mitocondriais/induzido quimicamente , Doenças Mitocondriais/patologia , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Teste de Campo Aberto/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Silibina/administração & dosagem , alfa-Sinucleína/metabolismo
3.
Phytomedicine ; 109: 154594, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36610115

RESUMO

BACKGROUND: Over-activation of N-methyl-D-aspartate receptors (NMDARs) is involved in sporadic Alzheimer's disease. Silibinin, a natural flavonoid gained from the seeds of Silybum marianum, exerts neuroprotective effects on sporadic AD models, but its impacts on NMDARs remain unknown. PURPOSE: To study silibinin's regulatory effects on NMDARs pathway in sporadic AD models. METHODS: MTT assay, western blotting, confocal microscopy, flow cytometry, RT-PCR, and siRNA transfection etc. were used for cellular and molecular studies. The direct interactions between silibinin and NMDAR subunits were evaluated by computational molecular docking, drug affinity responsive target stability (DARTS) assay and cellular thermal shift assay (CETSA). Y maze test, novel objects recognition test and Morris water maze test were conducted to examine the learning and memory ability of rats. RESULTS: An in vitro AD model was established by treating HT22 murine hippocampal neurons with streptozotocin (STZ), as evidenced by the amyloid ß (Aß) deposition and hyperphosphorylation of tau proteins. Silibinin shows protection of neurons against STZ-induced cell damage. It is noteworthy that STZ-induced cellular calcium influx is inhibited by silibinin-treatment, indicating the possible modulation of calcium channels. Studies on NMDARs, the most widely distributed calcium channel, by using molecular docking, DARTS and CESTA, reveal that the GluN2B subunit, but not GluN2A, is the potential target of silibinin. Further studies using the pharmacological agonist (NMDA) and the GluN2B-specific inhibitor (Ifenprodil) or siRNA, indicate that the protection by silibinin treatment from STZ-induced cytotoxicity is medicated through interference with GluN2B-containing NMDARs, followed by the upregulation of CaMKIIα/ BDNF/ TrkB signaling pathway and improved levels of synaptic proteins (SYP and PSD-95). The results in vivo using rats intracerebroventricularly injected with STZ (ICV-STZ), a well-established sporadic AD model, confirm that silibinin improves learning and memory ability in association with modulation of the GluN2B/CaMKIIα/ BDNF/TrkB signaling pathway. CONCLUSION: Inhibiting over-activation of GluN2B-containing NMDARs is involved in the neuroprotective effect of silibinin on STZ-induced sporadic AD models.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Ratos , Camundongos , Animais , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Receptores de N-Metil-D-Aspartato/metabolismo , Peptídeos beta-Amiloides/metabolismo , Silibina/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estreptozocina , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Simulação de Acoplamento Molecular , Modelos Animais de Doenças
4.
Behav Brain Res ; 440: 114260, 2023 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-36535433

RESUMO

Excessive physical exercise (overtraining, OT) charactered by long-term and excessive training results in the damage of multiple vital tissues including hippocampus which plays a critical role in learning and memory. A combination of dasatinib (D) plus quercetin (Q) (D+Q) belongs to senolytic drugs which selectively kill senescent cells in vitro and vivo. In this study, the rats that suffered a five-week excessive swimming training were subjected to the oral administration of D+Q. D+Q alleviated the decline in exercise performance of OT rats during the swimming training, and prevented learning and memory deficits in Morris water maze, Y-maze and novel object recognition tests after excessive swimming training. Analytical results by SA-ß-gal staining and western blotting showed that D+Q significantly reduced senescent cells with repressed expression of senescence-related proteins, p53 and p21, in hippocampus. Nissl and immunohistochemical staining showed that D+Q significantly attenuated neuronal loss caused by apoptosis. Interestingly, we observed elevated level of cleaved caspase 3, an apoptosis executor protein, in p21 positive hippocampus cells by D+Q treatment in immunofluorescent staining, suggesting that senescent cells were induced to apoptosis in D+Q-treated rats. The positive control drug, silibinin, showed similar protective effect against OT, but did not induce the apoptosis of senescent cells, suggesting a difference in the protective mechanisms. These results indicated that D+Q alleviates overtraining-induced deficits in learning and memory through elimination of senescent cells and reduction of apoptotic cell number.


Assuntos
Apoptose , Quercetina , Ratos , Animais , Quercetina/farmacologia , Dasatinibe/farmacologia , Dasatinibe/metabolismo , Aprendizagem em Labirinto , Senescência Celular , Hipocampo/metabolismo
5.
Physiol Behav ; 241: 113593, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34536434

RESUMO

Depression and anxiety are common neuropsychiatric symptom of Parkinson's disease (PD), reflecting reduced quality of life in patients with PD. Silibinin (silybin), a flavonoid extracted and isolated from the fruit of Silybum marianum (L.) Gaertn, is widely used for the treatment of hepatic diseases. We report here that silibinin shows anti-depressant and anti-anxiety effects on 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced model mice with PD. All the results of open field test, elevated plus maze test, tail suspension test and forced swimming test demonstrated that silibinin administration significantly attenuated MPTP-induced depression/anxiety. Hematoxylin-eosin (HE) staining and Nissl staining results showed that MPTP injection caused the damage of hippocampal neurons, but this was ameliorated by oral administration of silibinin. Silibinin significantly restored hippocampal levels of 5-hydroxyptramine (5-HT) and noradrenaline (NA), two important neurotransmitters for regulating mood, which decreased in MPTP-injected mice. Neuroinflammation, as reflected by the increased expressions of IL-1ß, TNFα and IFN-ß, was marked in the hippocampus of MPTP-treated mice, accompanying increased stimulator of interferon genes (STING) and interferon regulatory factor-3 (IRF3). Silibinin administration, however, down-regulated the levels of IL-1ß, TNFα and IFN-ß, as well as STING and IRF3, protecting MPTP-induced PD model mice. These findings indicate that silibinin has a potential of being further developed as a therapeutic for depression and anxiety in PD.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Ansiedade/tratamento farmacológico , Ansiedade/etiologia , Depressão/tratamento farmacológico , Depressão/etiologia , Modelos Animais de Doenças , Humanos , Fator Regulador 3 de Interferon , Camundongos , Camundongos Endogâmicos C57BL , Doença de Parkinson/complicações , Doença de Parkinson/tratamento farmacológico , Qualidade de Vida , Silibina
6.
Physiol Behav ; 239: 113510, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34181930

RESUMO

Silybum marianum (L.) Gaertn has been widely used to obtain a drug for the treatment of hepatic diseases. Silibinin (silybin), a flavonoid extracted and isolated from the fruit of S. marianumis investigated in our study to explore its motor protective potential on Parkinson's disease (PD) model mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). PD is a neurodegenerative disease that causes a debilitating movement disorder, characterized by a progressive loss of nigrostriatal (substantia nigra and striatum) dopaminergic neurons. Several studies have proven that neurodegeneration is aggravated by neuroinflammation, oxidative stress and/or the presence of α-synuclein (α-syn) aggregation. Essentially no causal therapy for PD exists at present. Our results demonstrate that silibinin significantly attenuates MPTP-induced movement disorder in behavioral tests. Immunohistochemical analysis shows that MPTP injection results in the loss of dopaminergic neurons in the substantia nigra, and the decrease of the striatal tyrosine hydroxylase. However, MPTP-injected mice were protected against dopaminergic neuronal loss by oral administration of silibinin (280 mg/kg) that increased expressions of PTEN-induced putative kinase 1 (PINK1) and Parkin, suggesting mitophagy activation. The neuroprotective mechanism of silibinin involves not only reduction of mitochondrial damage by repressing proinflammatory response and α-syn aggregation, but also enhancement of oxidative defense system. Namely, protection of dopaminergic nerves is due to promotion of mitophagy, leading to clearance of the toxic effects of damaged mitochondria. These findings suggest that silibinin has a potential to be further developed as a therapeutic candidate for PD.


Assuntos
Doenças Neurodegenerativas , Fármacos Neuroprotetores , Doença de Parkinson , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Camundongos , Camundongos Endogâmicos C57BL , Mitofagia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo , Silibina/farmacologia , Substância Negra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA