Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Cell Mol Life Sci ; 77(24): 5223-5242, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32065241

RESUMO

Endocytosis of the amyloid precursor protein (APP) is critical for generation of ß-amyloid, aggregating in Alzheimer's disease. APP endocytosis depending on the intracellular NPTY motif is well investigated, whereas involvement of the YTSI (also termed BaSS) motif remains controversial. Here, we show that APP lacking the YTSI motif (ΔYTSI) displays reduced localization to early endosomes and decreased internalization rates, similar to APP ΔNPTY. Additionally, we show that the YTSI-binding protein, PAT1a interacts with the Rab5 activator RME-6, as shown by several independent assays. Interestingly, knockdown of RME-6 decreased APP endocytosis, whereas overexpression increased the same. Similarly, APP ΔNPTY endocytosis was affected by PAT1a and RME-6 overexpression, whereas APP ΔYTSI internalization remained unchanged. Moreover, we could show that RME-6 mediated increase of APP endocytosis can be diminished upon knocking down PAT1a. Together, our data identify RME-6 as a novel player in APP endocytosis, involving the YTSI-binding protein PAT1a.


Assuntos
Doença de Alzheimer/genética , Motivos de Aminoácidos/genética , Precursor de Proteína beta-Amiloide/genética , Proteínas rab5 de Ligação ao GTP/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Proteínas de Transporte/genética , Endocitose/genética , Endossomos/genética , Humanos , Camundongos , Transporte Proteico/genética , Vesículas Transportadoras/genética
2.
Genes Dev ; 25(8): 875-88, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21498574

RESUMO

Spatial and timely coordination of cytokinesis is crucial for the maintenance of organelle inheritance and genome integrity. The mitotic exit network (MEN) pathway controls both the timely initiation of mitotic exit and cytokinesis in budding yeast. Here we identified the conserved F-BAR protein Hof1 as a substrate of the MEN kinase complex Dbf2-Mob1 during cytokinesis. We show that polo-like kinase Cdc5 first phosphorylates Hof1 to allow subsequent phosphorylation by Dbf2-Mob1. This releases Hof1 from the septin ring and facilitates Hof1 binding to the medial actomyosin ring (AMR), where Hof1 promotes AMR contraction and membrane ingression. Domain structure analysis established that the central, unstructured, region of Hof1, named the ring localization sequence (RLS), is sufficient to mediate Hof1's binding to the medial ring in a cell cycle-dependent manner. Genetic and functional data support a model in which Dbf2-Mob1 regulates Hof1 by inducing domain rearrangements, leading to the exposure of the Hof1 RLS domain during telophase.


Assuntos
Citocinese/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Western Blotting , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Citocinese/genética , Imunoprecipitação , Proteínas Associadas aos Microtúbulos/genética , Mitose/genética , Mitose/fisiologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
3.
PLoS Genet ; 9(4): e1003373, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23593011

RESUMO

Non-coding RNAs are much more common than previously thought. However, for the vast majority of non-coding RNAs, the cellular function remains enigmatic. The two long non-coding RNA (lncRNA) genes DLEU1 and DLEU2 map to a critical region at chromosomal band 13q14.3 that is recurrently deleted in solid tumors and hematopoietic malignancies like chronic lymphocytic leukemia (CLL). While no point mutations have been found in the protein coding candidate genes at 13q14.3, they are deregulated in malignant cells, suggesting an epigenetic tumor suppressor mechanism. We therefore characterized the epigenetic makeup of 13q14.3 in CLL cells and found histone modifications by chromatin-immunoprecipitation (ChIP) that are associated with activated transcription and significant DNA-demethylation at the transcriptional start sites of DLEU1 and DLEU2 using 5 different semi-quantitative and quantitative methods (aPRIMES, BioCOBRA, MCIp, MassARRAY, and bisulfite sequencing). These epigenetic aberrations were correlated with transcriptional deregulation of the neighboring candidate tumor suppressor genes, suggesting a coregulation in cis of this gene cluster. We found that the 13q14.3 genes in addition to their previously known functions regulate NF-kB activity, which we could show after overexpression, siRNA-mediated knockdown, and dominant-negative mutant genes by using Western blots with previously undescribed antibodies, by a customized ELISA as well as by reporter assays. In addition, we performed an unbiased screen of 810 human miRNAs and identified the miR-15/16 family of genes at 13q14.3 as the strongest inducers of NF-kB activity. In summary, the tumor suppressor mechanism at 13q14.3 is a cluster of genes controlled by two lncRNA genes that are regulated by DNA-methylation and histone modifications and whose members all regulate NF-kB. Therefore, the tumor suppressor mechanism in 13q14.3 underlines the role both of epigenetic aberrations and of lncRNA genes in human tumorigenesis and is an example of colocalization of a functionally related gene cluster.


Assuntos
Metilação de DNA/genética , Leucemia , RNA Longo não Codificante , Proteínas Supressoras de Tumor , Adulto , Idoso , Idoso de 80 Anos ou mais , Transformação Celular Neoplásica , Cromatina/genética , Cromossomos Humanos Par 13/genética , Regulação para Baixo , Epigênese Genética/genética , Feminino , Células HEK293 , Humanos , Leucemia/sangue , Leucemia/genética , Leucemia/fisiopatologia , Masculino , Pessoa de Meia-Idade , Mutação , NF-kappa B/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Sítio de Iniciação de Transcrição , Transferases , Proteínas Supressoras de Tumor/sangue , Proteínas Supressoras de Tumor/genética , Regulação para Cima
4.
J Cell Sci ; 125(Pt 5): 1353-62, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22349705

RESUMO

Centrioles are key structural elements of centrosomes and primary cilia. In mammals, only a few proteins including PLK4, CPAP (CENPJ), SAS6, CEP192, CEP152 and CEP135 have thus far been identified to be required for centriole duplication. STIL (SCL/TAL1 interrupting locus, also known as SIL) is a centrosomal protein that is essential for mouse and zebrafish embryonic development and mutated in primary microcephaly. Here, we show that STIL localizes to the pericentriolar material surrounding parental centrioles. Its overexpression results in excess centriole formation. siRNA-mediated depletion of STIL leads to loss of centrioles and abrogates PLK4-induced centriole overduplication. Additionally, we show that STIL is necessary for SAS6 recruitment to centrioles, suggesting that it is essential for daughter centriole formation, interacts with the centromere protein CPAP and rapidly shuttles between the cytoplasm and centrioles. Consistent with the requirement of centrioles for cilia formation, Stil(-/-) mouse embryonic fibroblasts lack primary cilia--a phenotype that can be reverted by restoration of STIL expression. These findings demonstrate that STIL is an essential component of the centriole replication machinery in mammalian cells.


Assuntos
Centríolos/metabolismo , Cílios/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/fisiologia , Linhagem Celular , Centríolos/genética , Centrossomo/fisiologia , Citoplasma/fisiologia , Células HEK293 , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA Interferente Pequeno
5.
Cell Microbiol ; 15(2): 227-36, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23051660

RESUMO

Foamy viruses (FVs), a unique type of retroviruses, are characterized by several unusual features in their replication strategy. FVs, common to all non-human primates and several other species, display an extremely broad tropism in vitro. Basically, all mammalian cells and species examined, but also cells of amphibian or bird origin, are permissive to FV glycoprotein (Env)-mediated capsid release into the cytoplasm. The nature of the broadly expressed, and potentially evolutionary conserved, FV entry receptor molecule(s) is poorly characterized. Although recent data indicate that proteoglycans serve as an important factor for FV Env-mediated target cell attachment, additional uncharacterized molecules appear to be essential for the pH-dependent fusion of viral and cellular lipid membranes after endocytic uptake of virions. Furthermore, FVs show a very special assembly strategy. Unlike other retroviruses, the FV capsid precursor protein (Gag) undergoes only very limited proteolytic processing during assembly. This results in an immature morphology of capsids found in released FV virions. In addition, the FV Gag protein appears to lack a functional membrane-targeting signal. As a consequence, FVs utilize a specific interaction between capsid and cognate viral glycoprotein for initiation of thebudding process. Genetic fusion of heterologous targeting domains for plasma but not endosomal membranes to FV Gag enables glycoprotein-independent particle egress. However, this is at the expense of normal capsid morphogenesis and infectivity. The low-level Gag precursor processing and the requirement for a reversible, artificial Gag membrane association for effective pseudotyping of FV capsids by heterologous glycoproteins strongly suggest that FVs require a transient interaction of capsids with cellular membranes for viral replication. Under natural condition, this appears to be achieved by the lack of a membrane-targeting function of the FV Gag protein and the accomplishment of capsid membrane attachment through an unusual specific interaction with the cognate glycoprotein.


Assuntos
Capsídeo/química , Produtos do Gene gag/genética , Spumavirus/química , Vírion/química , Montagem de Vírus/fisiologia , Animais , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Membrana Celular/química , Membrana Celular/virologia , Endocitose , Produtos do Gene gag/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Fusão de Membrana , Spumavirus/metabolismo , Spumavirus/ultraestrutura , Vírion/metabolismo , Vírion/ultraestrutura , Internalização do Vírus , Replicação Viral
6.
Nature ; 456(7222): 611-6, 2008 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-19052621

RESUMO

Cilia and flagella are highly conserved organelles that have diverse roles in cell motility and sensing extracellular signals. Motility defects in cilia and flagella often result in primary ciliary dyskinesia. However, the mechanisms underlying cilia formation and function, and in particular the cytoplasmic assembly of dyneins that power ciliary motility, are only poorly understood. Here we report a new gene, kintoun (ktu), involved in this cytoplasmic process. This gene was first identified in a medaka mutant, and found to be mutated in primary ciliary dyskinesia patients from two affected families as well as in the pf13 mutant of Chlamydomonas. In the absence of Ktu/PF13, both outer and inner dynein arms are missing or defective in the axoneme, leading to a loss of motility. Biochemical and immunohistochemical studies show that Ktu/PF13 is one of the long-sought proteins involved in pre-assembly of dynein arm complexes in the cytoplasm before intraflagellar transport loads them for the ciliary compartment.


Assuntos
Axonema/metabolismo , Cílios/metabolismo , Dineínas/metabolismo , Proteínas de Peixes/metabolismo , Oryzias , Proteínas/metabolismo , Animais , Axonema/química , Axonema/genética , Axonema/patologia , Chlamydomonas/genética , Chlamydomonas/metabolismo , Cílios/química , Cílios/genética , Cílios/patologia , Clonagem Molecular , Células Epiteliais/citologia , Proteínas de Peixes/genética , Genes Recessivos/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Síndrome de Kartagener/genética , Síndrome de Kartagener/patologia , Masculino , Camundongos , Dados de Sequência Molecular , Mutação/genética , Oryzias/embriologia , Oryzias/genética , Oryzias/metabolismo , Ligação Proteica , Proteínas/genética , Homologia de Sequência de Aminoácidos , Motilidade dos Espermatozoides , Testículo/citologia
7.
EMBO J ; 28(4): 315-25, 2009 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-19131969

RESUMO

The recently identified type VI secretion systems (T6SS) have a crucial function in the virulence of various proteobacteria, including the human pathogen Vibrio cholerae. T6SS are encoded by a conserved gene cluster comprising approximately 15 open reading frames, mediating the appearance of Hcp and VgrG proteins in cell culture supernatants. Here, we analysed the function of the V. cholerae T6SS member ClpV, a specialized AAA+ protein. ClpV is crucial for a functional T6SS and interacts through its N-terminal domain with the VipA/VipB complex that is composed of two conserved and essential members of T6SS. Transferring ClpV substrate specificity to a distinct AAA+ protein involved in proteolysis caused degradation of VipA but not Hcp or VgrG2, suggesting that VipA rather than Hcp/VgrG2 functions as a primary ClpV substrate. Strikingly, VipA/VipB form tubular, cogwheel-like structures that are converted by a threading activity of ClpV into small complexes. ClpV-mediated remodelling of VipA/VipB tubules represents a crucial step in T6S, illuminating an unexpected role of an ATPase component in protein secretion.


Assuntos
Adenosina Trifosfatases/fisiologia , Proteínas de Transporte/fisiologia , Vibrio cholerae/metabolismo , Proteínas de Bactérias/metabolismo , Transporte Biológico , Regulação Bacteriana da Expressão Gênica , Microscopia Eletrônica , Chaperonas Moleculares/metabolismo , Família Multigênica , Fases de Leitura Aberta , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Virulência , Fatores de Virulência/metabolismo
8.
Cancer Invest ; 31(9): 563-70, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24164297

RESUMO

We used a [(32)P] p53 sequence-specific oligodeoxynucleotide and Electrophoretic-Mobility-Shift-Assays to monitor p53 DNA sequence-specific binding with p53-R267W, a nonbinding point mutant; and p53-Δ30, a deletion-mutant which lacks the carboxy-terminus that recognizes DNA-strand-breaks. Recombinant p53 and poly(ADP-ribose)polymerase-1 (PARP-1) were incubated with labeled ßNAD(+) with/without DNA. The poly(ADP-ribosyl)ation of each protein increased with incubation-time and ßNAD(+) and p53 concentration(s). Since p53-Δ30 was efficiently labeled, poly(ADP-ribosyl)ation target site(s) of wt-p53 must reside outside its carboxy-terminal-domain. The poly(ADP-ribosyl)ation of p53-Δ30 did not diminish its DNA binding; Instead, it enhanced DNA-sequence-specific-binding. Therefore, we conclude that DNA-sequence-specific-binding and DNA-nick-sensing of mutant-p53 are differentially regulated by poly(ADP-ribosyl)ation.


Assuntos
Quebras de DNA de Cadeia Simples , DNA/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Ativação Transcricional , Proteína Supressora de Tumor p53/metabolismo , Sítios de Ligação , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , NAD/metabolismo , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Fatores de Tempo , Proteína Supressora de Tumor p53/genética , Regulação para Cima
9.
J Pathol ; 227(3): 325-35, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22262369

RESUMO

Involvement of dysregulated autophagy in cancer growth and progression has been shown in different tumour entities, including pancreatic ductal adenocarcinoma (PDA). PDA is an extremely aggressive tumour characterized by a small population of highly therapy-resistant cancer stem cells (CSCs) capable of self-renewal and migration. We examined whether autophagy might be involved in the survival of CSCs despite nutrition and oxygen deprivation typical for the hypoxic tumour microenvironment of PDA. Immunohistochemistry revealed that markers for hypoxia, CSCs and autophagy are co-expressed in patient-derived tissue of PDA. Hypoxia starvation (H/S) enhanced clonogenic survival and migration of established pancreatic cancer cells with stem-like properties (CSC(high)), while pancreatic tumour cells with fewer stem cell markers (CSC(low)) did not survive these conditions. Electron microscopy revealed more advanced autophagic vesicles in CSC(high) cells, which exhibited higher expression of autophagy-related genes under normoxic conditions and relative to CSC(low) cells, as found by RT-PCR and western blot analysis. LC3 was already fully converted to the active LC3-II form in both cell lines, as evaluated by western blot and detection of accumulated GFP-LC3 protein by fluorescence microscopy. H/S increased formation of autophagic and acid vesicles, as well as expression of autophagy-related genes, to a higher extent in CSC(high) cells. Modulation of autophagy by inhibitors and activators resensitized CSC(high) to apoptosis and diminished clonogenicity, spheroid formation, expression of CSC-related genes, migratory activity and tumourigenicity in mice. Our data suggest that enhanced autophagy levels may enable survival of CSC(high) cells under H/S. Interference with autophagy-activating or -inhibiting drugs disturbs the fine-tuned physiological balance of enhanced autophagy in CSC and switches survival signalling to suicide.


Assuntos
Autofagia , Carcinoma Ductal Pancreático/patologia , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/patologia , Microambiente Tumoral , Animais , Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Autofagia/genética , Biomarcadores Tumorais/metabolismo , Western Blotting , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/ultraestrutura , Hipóxia Celular , Linhagem Celular Tumoral , Movimento Celular , Sobrevivência Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Nus , Microscopia Eletrônica , Microscopia de Fluorescência , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/ultraestrutura , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/ultraestrutura , Reação em Cadeia da Polimerase , Fatores de Tempo , Carga Tumoral
10.
J Biol Chem ; 286(34): 30010-21, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21733841

RESUMO

Ring-forming AAA(+) ATPases act in a plethora of cellular processes by remodeling macromolecules. The specificity of individual AAA(+) proteins is achieved by direct or adaptor-mediated association with substrates via distinct recognition domains. We investigated the molecular basis of substrate interaction for Vibrio cholerae ClpV, which disassembles tubular VipA/VipB complexes, an essential step of type VI protein secretion and bacterial virulence. We identified the ClpV recognition site within VipB, showed that productive ClpV-VipB interaction requires the oligomeric state of both proteins, solved the crystal structure of a ClpV N-domain-VipB peptide complex, and verified the interaction surface by mutant analysis. Our results show that the substrate is bound to a hydrophobic groove, which is formed by the addition of a single α-helix to the core N-domain. This helix is absent from homologous N-domains, explaining the unique substrate specificity of ClpV. A limited interaction surface between both proteins accounts for the dramatic increase in binding affinity upon ATP-driven ClpV hexamerization and VipA/VipB tubule assembly by coupling multiple weak interactions. This principle ensures ClpV selectivity toward the VipA/VipB macromolecular complex.


Assuntos
Adenosina Trifosfatases/química , Sistemas de Secreção Bacterianos/fisiologia , Chaperonas Moleculares/química , Multimerização Proteica/fisiologia , Vibrio cholerae/enzimologia , Sítios de Ligação , Cristalografia por Raios X , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
11.
J Biol Chem ; 286(16): 14237-45, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21357692

RESUMO

Nephronophthisis is the most common genetic cause of end-stage renal failure during childhood and adolescence. Genetic studies have identified disease-causing mutations in at least 11 different genes (NPHP1-11), but the function of the corresponding nephrocystin proteins remains poorly understood. The two evolutionarily conserved proteins nephrocystin-1 (NPHP1) and nephrocystin-4 (NPHP4) interact and localize to cilia in kidney, retina, and brain characterizing nephronophthisis and associated pathologies as result of a ciliopathy. Here we show that NPHP4, but not truncating patient mutations, negatively regulates tyrosine phosphorylation of NPHP1. NPHP4 counteracts Pyk2-mediated phosphorylation of three defined tyrosine residues of NPHP1 thereby controlling binding of NPHP1 to the trans-Golgi sorting protein PACS-1. Knockdown of NPHP4 resulted in an accumulation of NPHP1 in trans-Golgi vesicles of ciliated retinal epithelial cells. These data strongly suggest that NPHP4 acts upstream of NPHP1 in a common pathway and support the concept of a role for nephrocystin proteins in intracellular vesicular transport.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cílios/metabolismo , Quinase 2 de Adesão Focal/metabolismo , Regulação da Expressão Gênica , Proteínas de Membrana/metabolismo , Proteínas/fisiologia , Tirosina/química , Linhagem Celular , Proteínas do Citoesqueleto , Complexo de Golgi/metabolismo , Humanos , Doenças Renais Císticas/metabolismo , Modelos Biológicos , Mutação , Fosforilação , Ligação Proteica , Distribuição Tecidual
12.
Am J Hum Genet ; 85(6): 883-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19944400

RESUMO

Genetic defects affecting motility of cilia and flagella cause chronic destructive airway disease, randomization of left-right body asymmetry, and, frequently, male infertility in primary ciliary dyskinesia (PCD). The most frequent defects involve outer and inner dynein arms (ODAs and IDAs) that are large multiprotein complexes responsible for cilia-beat generation and regulation, respectively. Here, we demonstrate that large genomic deletions, as well as point mutations involving LRRC50, are responsible for a distinct PCD variant that is characterized by a combined defect involving assembly of the ODAs and IDAs. Functional analyses showed that LRRC50 deficiency disrupts assembly of distally and proximally DNAH5- and DNAI2-containing ODA complexes, as well as DNALI1-containing IDA complexes, resulting in immotile cilia. On the basis of these findings, we assume that LRRC50 plays a role in assembly of distinct dynein-arm complexes.


Assuntos
Dineínas/genética , Deleção de Genes , Síndrome de Kartagener/genética , Proteínas Associadas aos Microtúbulos/fisiologia , Mutação Puntual , Proteínas/genética , Adolescente , Adulto , Alelos , Animais , Cromossomos/ultraestrutura , Análise Mutacional de DNA , Feminino , Flagelos , Genômica , Humanos , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Modelos Genéticos , Mutação , Proteínas/metabolismo
13.
J Cell Sci ; 123(Pt 11): 1851-61, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20442249

RESUMO

The mitotic-exit network (MEN) is a signaling pathway that is essential for the coordination of mitotic exit and cytokinesis. Whereas the role of the MEN in mitotic exit is well established, the molecular mechanisms by which MEN components regulate cytokinesis remain poorly understood. Here, we show that the MEN controls components involved in septum formation, including Inn1, Cyk3 and Chs2. MEN-deficient mutants, forced to exit mitosis as a result of Cdk1 inactivation, show defects in targeting Cyk3 and Inn1 to the bud-neck region. In addition, we found that the chitin synthase Chs2 did not efficiently localize at the bud neck in the absence of MEN activity. Ultrastructural analysis of the bud neck revealed that low MEN activity led to unilateral, uncoordinated extension of the primary and secondary septa. This defect was partially suppressed by increased levels of Cyk3. We therefore propose that the MEN directly controls cytokinesis via targeting of Inn1, Cyk3 and Chs2 to the bud neck.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quitina Sintase/metabolismo , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/fisiologia , Proteína Quinase CDC2/genética , Clonagem Molecular , Citocinese/genética , Microscopia de Fluorescência , Mitose/genética , Mutagênese Sítio-Dirigida , Cadeias Pesadas de Miosina/deficiência , Deleção de Sequência/genética , Transdução de Sinais/genética
14.
J Virol ; 85(4): 1452-63, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21106749

RESUMO

Prototype foamy virus (PFV) Gag lacks the characteristic orthoretroviral Cys-His motifs that are essential for various steps of the orthoretroviral replication cycle, such as RNA packaging, reverse transcription, infectivity, integration, and viral assembly. Instead, it contains three glycine-arginine-rich boxes (GR boxes) in its C terminus that putatively represent a functional equivalent. We used a four-plasmid replication-deficient PFV vector system, with uncoupled RNA genome packaging and structural protein translation, to analyze the effects of deletion and various substitution mutations within each GR box on particle release, particle-associated protein composition, RNA packaging, DNA content, infectivity, particle morphology, and intracellular localization. The degree of viral particle release by all mutants was similar to that of the wild type. Only minimal effects on Pol encapsidation, exogenous reverse transcriptase (RT) activity, and genomic viral RNA packaging were observed. In contrast, particle-associated DNA content and infectivity were drastically reduced for all deletion mutants and were undetectable for all alanine substitution mutants. Furthermore, GR box I mutants had significant changes in particle morphology, and GR box II mutants lacked the typical nuclear localization pattern of PFV Gag. Finally, it could be shown that GR boxes I and III, but not GR box II, can functionally complement each other. It therefore appears that, similar to the orthoretroviral Cys-His motifs, the PFV Gag GR boxes are important for RNA encapsidation, genome reverse transcription, and virion infectivity as well as for particle morphogenesis.


Assuntos
Produtos do Gene gag/química , Transcrição Reversa , Spumavirus/crescimento & desenvolvimento , Vírion/crescimento & desenvolvimento , Montagem de Vírus , Sequência de Aminoácidos , Arginina/química , Linhagem Celular , Produtos do Gene gag/genética , Produtos do Gene gag/metabolismo , Glicina/química , Células HeLa , Humanos , Dados de Sequência Molecular , RNA Viral/genética , RNA Viral/metabolismo , Spumavirus/genética , Spumavirus/metabolismo , Spumavirus/patogenicidade , Vírion/genética , Vírion/metabolismo , Replicação Viral
15.
J Cell Biol ; 177(4): 573-8, 2007 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-17517959

RESUMO

Considerable efforts are being undertaken to elucidate the processes of ribosome biogenesis. Although various preribosomal RNP complexes have been isolated and molecularly characterized, the order of ribosomal protein (r-protein) addition to the emerging ribosome subunits is largely unknown. Furthermore, the correlation between the ribosome assembly pathway and the structural organization of the dedicated ribosome factory, the nucleolus, is not well established. We have analyzed the nucleolar localization of several early binding r-proteins in human cells, applying various methods, including live-cell imaging and electron microscopy. We have located all examined r-proteins (S4, S6, S7, S9, S14, and L4) in the granular component (GC), which is the nucleolar region where later pre-ribosomal RNA (rRNA) processing steps take place. These results imply that early binding r-proteins do not assemble with nascent pre-rRNA transcripts in the dense fibrillar component (DFC), as is generally believed, and provide a link between r-protein assembly and the emergence of distinct granules at the DFC-GC interface.


Assuntos
Nucléolo Celular/metabolismo , Proteínas Ribossômicas/biossíntese , Ribossomos/metabolismo , Linhagem Celular Tumoral , Nucléolo Celular/ultraestrutura , Humanos , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/ultraestrutura , Ribossomos/ultraestrutura
16.
J Biol Chem ; 285(28): 21644-54, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20452983

RESUMO

PEA-15/PED (phosphoprotein enriched in astrocytes 15 kDa/phosphoprotein enriched in diabetes) is a death effector domain-containing protein which is known to modulate apoptotic cell death. The mechanism by which PEA-15 inhibits caspase activation and increases ERK (extracellular-regulated kinase) activity is well characterized. Here, we demonstrate that PEA-15 is not only pivotal in the activation of the ERK pathway but also modulates JNK (c-Jun N-terminal kinase) signaling. Upon overexpression of PEA-15 in malignant glioma cells, JNK is potently activated. The PEA-15-induced JNK activation depends on the phosphorylation of PEA-15 at both phosphorylation sites (serine 104 and serine 116). The activation of JNK is substantially inhibited by siRNA-mediated down-regulation of endogenous PEA-15. Moreover, we demonstrate that glioma cells overexpressing PEA-15 show increased signs of autophagy in response to classical autophagic stimuli such as ionizing irradiation, serum deprivation, or rapamycin treatment. In contrast, the non-phosphorylatable mutants of PEA-15 are not capable of promoting autophagy. The inhibition of JNK abrogates the PEA-15-mediated increase in autophagy. In conclusion, our data show that PEA-15 promotes autophagy in glioma cells in a JNK-dependent manner. This might render glioma cells more resistant to adverse stimuli such as starvation or ionizing irradiation.


Assuntos
Autofagia , Neoplasias Encefálicas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fosfoproteínas/metabolismo , Apoptose , Proteínas Reguladoras de Apoptose , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Modelos Biológicos , Fosforilação , RNA Interferente Pequeno/metabolismo , Transfecção
17.
Retrovirology ; 8: 66, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21843316

RESUMO

BACKGROUND: Foamy viruses (FVs) unlike orthoretroviruses express Pol as a separate precursor protein and not as a Gag-Pol fusion protein. A unique packaging strategy, involving recognition of briding viral RNA by both Pol precursor and Gag as well as potential Gag-Pol protein interactions, ensures Pol particle encapsidation. RESULTS: Several Prototype FV (PFV) Gag-Pol fusion protein constructs were generated to examine whether PFV replication is compatible with an orthoretroviral-like Pol expression. During their analysis, non-particle-associated secreted Pol precursor protein was discovered in extracellular wild type PFV particle preparations of different origin, copurifying in simple virion enrichment protocols. Different analysis methods suggest that extracellular wild type PFV particles contain predominantly mature p85(PR-RT) and p40(IN) Pol subunits. Characterization of various PFV Gag-Pol fusion constructs revealed that PFV Pol expression in an orthoretroviral manner is compatible with PFV replication as long as a proteolytic processing between Gag and Pol proteins is possible. PFV Gag-Pol translation by a HIV-1 like ribosomal frameshift signal resulted in production of replication-competent virions, although cell- and particle-associated Pol levels were reduced in comparison to wild type. In-frame fusion of PFV Gag and Pol ORFs led to increased cellular Pol levels, but particle incorporation was only marginally elevated. Unlike that reported for similar orthoretroviral constructs, a full-length in-frame PFV Gag-Pol fusion construct showed wildtype-like particle release and infectivity characteristics. In contrast, in-frame PFV Gag-Pol fusion with C-terminal Gag ORF truncations or non-removable Gag peptide addition to Pol displayed wildtype particle release, but reduced particle infectivity. PFV Gag-Pol precursor fusion proteins with inactivated protease were highly deficient in regular particle release, although coexpression of p71(Gag) resulted in a significant copackaging of these proteins. CONCLUSIONS: Non-particle associated PFV Pol appears to be naturally released from infected cells by a yet unknown mechanism. The absence of particle-associated Pol precursor suggests its rapid processing upon particle incorporation. Analysis of different PFV Gag-Pol fusion constructs demonstrates that orthoretroviral-like Pol expression is compatible with FV replication in principal as long as fusion protein processing is possible. Furthermore, unlike orthoretroviruses, PFV particle release and infectivity tolerate larger differences in relative cellular Gag/Pol levels.


Assuntos
Proteínas de Fusão gag-pol/metabolismo , Regulação Viral da Expressão Gênica , Infecções por Retroviridae/virologia , Spumavirus/fisiologia , Replicação Viral , Animais , Linhagem Celular , Cricetinae , Proteínas de Fusão gag-pol/genética , Humanos , Spumavirus/genética
18.
Am J Hum Genet ; 82(4): 959-70, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18371931

RESUMO

Many genetic diseases have been linked to the dysfunction of primary cilia, which occur nearly ubiquitously in the body and act as solitary cellular mechanosensory organelles. The list of clinical manifestations and affected tissues in cilia-related disorders (ciliopathies) such as nephronophthisis is broad and has been attributed to the wide expression pattern of ciliary proteins. However, little is known about the molecular mechanisms leading to this dramatic diversity of phenotypes. We recently reported hypomorphic NPHP3 mutations in children and young adults with isolated nephronophthisis and associated hepatic fibrosis or tapetoretinal degeneration. Here, we chose a combinatorial approach in mice and humans to define the phenotypic spectrum of NPHP3/Nphp3 mutations and the role of the nephrocystin-3 protein. We demonstrate that the pcy mutation generates a hypomorphic Nphp3 allele that is responsible for the cystic kidney disease phenotype, whereas complete loss of Nphp3 function results in situs inversus, congenital heart defects, and embryonic lethality in mice. In humans, we show that NPHP3 mutations can cause a broad clinical spectrum of early embryonic patterning defects comprising situs inversus, polydactyly, central nervous system malformations, structural heart defects, preauricular fistulas, and a wide range of congenital anomalies of the kidney and urinary tract (CAKUT). On the functional level, we show that nephrocystin-3 directly interacts with inversin and can inhibit like inversin canonical Wnt signaling, whereas nephrocystin-3 deficiency leads in Xenopus laevis to typical planar cell polarity defects, suggesting a role in the control of canonical and noncanonical (planar cell polarity) Wnt signaling.


Assuntos
Anormalidades Múltiplas/genética , Morte Fetal/genética , Doenças Renais Císticas/genética , Cinesinas/genética , Situs Inversus/genética , Adolescente , Animais , Criança , Feminino , Humanos , Recém-Nascido , Rim/anormalidades , Cinesinas/metabolismo , Fígado/anormalidades , Masculino , Camundongos , Camundongos Mutantes , Mutação , Pâncreas/anormalidades , Linhagem , Síndrome , Fatores de Transcrição/metabolismo , Proteínas Wnt/metabolismo , Xenopus laevis
19.
Nat Methods ; 5(5): 439-45, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18391960

RESUMO

The complexity of the angiogenic cascade limits cellular approaches to studying angiogenic endothelial cells (ECs). In turn, in vivo assays do not allow the analysis of the distinct cellular behavior of ECs during angiogenesis. Here we show that ECs can be grafted as spheroids into a matrix to give rise to a complex three-dimensional network of human neovessels in mice. The grafted vasculature matures and is connected to the mouse circulation. The assay is highly versatile and facilitates numerous applications including studies of the effects of different cytokines on angiogenesis. Modifications make it possible to study human lymphangiogenic processes in vivo. EC spheroids can also be coimplanted with other cell types for tissue engineering purposes.


Assuntos
Técnicas de Cultura de Células/métodos , Células Endoteliais/citologia , Neovascularização Fisiológica/fisiologia , Esferoides Celulares/citologia , Animais , Comunicação Celular , Células Endoteliais/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Humanos , Camundongos , Engenharia Tecidual , Fator A de Crescimento do Endotélio Vascular/farmacologia
20.
J Virol ; 84(12): 5909-22, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20375165

RESUMO

The rat parvovirus H-1 (H-1PV) attracts high attention as an anticancer agent, because it is not pathogenic for humans and has oncotropic and oncosuppressive properties. The viral nonstructural NS1 protein is thought to mediate H-1PV cytotoxicity, but its exact contribution to this process remains undefined. In this study, we analyzed the effects of the H-1PV NS1 protein on human cell proliferation and cell viability. We show that NS1 expression is sufficient to induce the accumulation of cells in G(2) phase, apoptosis via caspase 9 and 3 activation, and cell lysis. Similarly, cells infected with wild-type H-1PV arrest in G(2) phase and undergo apoptosis. Furthermore, we also show that both expression of NS1 and H-1PV infection lead to higher levels of intracellular reactive oxygen species (ROS), associated with DNA double-strand breaks. Antioxidant treatment reduces ROS levels and strongly decreases NS1- and virus-induced DNA damage, cell cycle arrest, and apoptosis, indicating that NS1-induced ROS are important mediators of H-1PV cytotoxicity.


Assuntos
Apoptose , Parvovirus H-1/metabolismo , Infecções por Parvoviridae/metabolismo , Infecções por Parvoviridae/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas não Estruturais Virais/metabolismo , Ciclo Celular , Linhagem Celular , Dano ao DNA , Parvovirus H-1/genética , Humanos , Infecções por Parvoviridae/genética , Infecções por Parvoviridae/virologia , Proteínas não Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA