Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.065
Filtrar
1.
Cell ; 184(20): 5107-5121.e14, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34551316

RESUMO

Neural circuit assembly features simultaneous targeting of numerous neuronal processes from constituent neuron types, yet the dynamics is poorly understood. Here, we use the Drosophila olfactory circuit to investigate dynamic cellular processes by which olfactory receptor neurons (ORNs) target axons precisely to specific glomeruli in the ipsi- and contralateral antennal lobes. Time-lapse imaging of individual axons from 30 ORN types revealed a rich diversity in extension speed, innervation timing, and ipsilateral branch locations and identified that ipsilateral targeting occurs via stabilization of transient interstitial branches. Fast imaging using adaptive optics-corrected lattice light-sheet microscopy showed that upon approaching target, many ORN types exhibiting "exploring branches" consisted of parallel microtubule-based terminal branches emanating from an F-actin-rich hub. Antennal nerve ablations uncovered essential roles for bilateral axons in contralateral target selection and for ORN axons to facilitate dendritic refinement of postsynaptic partner neurons. Altogether, these observations provide cellular bases for wiring specificity establishment.


Assuntos
Condutos Olfatórios/citologia , Condutos Olfatórios/diagnóstico por imagem , Imagem com Lapso de Tempo , Animais , Axônios/fisiologia , Células Cultivadas , Dendritos/fisiologia , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Microtúbulos/metabolismo , Neurônios Receptores Olfatórios/fisiologia , Fatores de Tempo
2.
Cell ; 180(2): 373-386.e15, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31955847

RESUMO

Molecular interactions at the cellular interface mediate organized assembly of single cells into tissues and, thus, govern the development and physiology of multicellular organisms. Here, we developed a cell-type-specific, spatiotemporally resolved approach to profile cell-surface proteomes in intact tissues. Quantitative profiling of cell-surface proteomes of Drosophila olfactory projection neurons (PNs) in pupae and adults revealed global downregulation of wiring molecules and upregulation of synaptic molecules in the transition from developing to mature PNs. A proteome-instructed in vivo screen identified 20 cell-surface molecules regulating neural circuit assembly, many of which belong to evolutionarily conserved protein families not previously linked to neural development. Genetic analysis further revealed that the lipoprotein receptor LRP1 cell-autonomously controls PN dendrite targeting, contributing to the formation of a precise olfactory map. These findings highlight the power of temporally resolved in situ cell-surface proteomic profiling in discovering regulators of brain wiring.


Assuntos
Condutos Olfatórios/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Proteômica/métodos , Animais , Axônios/metabolismo , Encéfalo/metabolismo , Dendritos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Membrana/metabolismo , Neurogênese/fisiologia , Nervo Olfatório/metabolismo , Condutos Olfatórios/citologia , Condutos Olfatórios/fisiologia , Receptores de Lipoproteínas/metabolismo , Olfato/fisiologia
3.
Cell ; 154(6): 1314-25, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-24034253

RESUMO

G-protein-coupled receptors (GPCRs) are known to possess two different conformations, active and inactive, and they spontaneously alternate between the two in the absence of ligands. Here, we analyzed the agonist-independent GPCR activity for its possible role in receptor-instructed axonal projection. We generated transgenic mice expressing activity mutants of the ß2-adrenergic receptor, a well-characterized GPCR with the highest homology to odorant receptors (ORs). We found that mutants with altered agonist-independent activity changed the transcription levels of axon-targeting molecules--e.g., Neuropilin-1 and Plexin-A1--but not of glomerular segregation molecules--e.g., Kirrel2 and Kirrel3--thus causing shifts in glomerular locations along the anterior-posterior (A-P) axis. Knockout and in vitro experiments demonstrated that Gs, but not Golf, is responsible for mediating the agonist-independent GPCR activity. We conclude that the equilibrium of conformational transitions set by each OR is the major determinant of expression levels of A-P-targeting molecules.


Assuntos
Axônios/metabolismo , Condutos Olfatórios/embriologia , Receptores Odorantes/metabolismo , Células Receptoras Sensoriais/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Animais , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Condutos Olfatórios/citologia , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Receptores Odorantes/genética
4.
Cell ; 146(6): 1004-15, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21925321

RESUMO

Anatomic and physiologic studies have suggested a model in which neurons of the piriform cortex receive convergent input from random collections of glomeruli. In this model, odor representations can only be afforded behavioral significance upon experience. We have devised an experimental strategy that permits us to ask whether the activation of an arbitrarily chosen subpopulation of neurons in piriform cortex can elicit different behavioral responses dependent upon learning. Activation of a small subpopulation of piriform neurons expressing channelrhodopsin at multiple loci in the piriform cortex, when paired with reward or shock, elicits either appetitive or aversive behavior. Moreover, we demonstrate that different subpopulations of piriform neurons expressing ChR2 can be discriminated and independently entrained to elicit distinct behaviors. These observations demonstrate that the piriform cortex is sufficient to elicit learned behavioral outputs in the absence of sensory input. These data imply that the piriform does not use spatial order to map odorant identity or behavioral output.


Assuntos
Comportamento Animal , Neurônios/fisiologia , Condutos Olfatórios/citologia , Olfato , Animais , Comportamento Apetitivo , Channelrhodopsins , Condicionamento Psicológico , Camundongos , Neurônios/citologia , Odorantes , Condutos Olfatórios/fisiologia
5.
Nature ; 579(7799): 402-408, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32132713

RESUMO

The evolution of animal behaviour is poorly understood1,2. Despite numerous correlations between interspecific divergence in behaviour and nervous system structure and function, demonstrations of the genetic basis of these behavioural differences remain rare3-5. Here we develop a neurogenetic model, Drosophila sechellia, a species that displays marked differences in behaviour compared to its close cousin Drosophila melanogaster6,7, which are linked to its extreme specialization on noni fruit (Morinda citrifolia)8-16. Using calcium imaging, we identify olfactory pathways in D. sechellia that detect volatiles emitted by the noni host. Our mutational analysis indicates roles for different olfactory receptors in long- and short-range attraction to noni, and our cross-species allele-transfer experiments demonstrate that the tuning of one of these receptors is important for species-specific host-seeking. We identify the molecular determinants of this functional change, and characterize their evolutionary origin and behavioural importance. We perform circuit tracing in the D. sechellia brain, and find that receptor adaptations are accompanied by increased sensory pooling onto interneurons as well as species-specific central projection patterns. This work reveals an accumulation of molecular, physiological and anatomical traits that are linked to behavioural divergence between species, and defines a model for investigating speciation and the evolution of the nervous system.


Assuntos
Drosophila/citologia , Drosophila/metabolismo , Especificidade de Hospedeiro , Morinda , Odorantes/análise , Condutos Olfatórios/fisiologia , Receptores Odorantes/metabolismo , Alelos , Animais , Comportamento Animal , Encéfalo/citologia , Encéfalo/metabolismo , Encéfalo/fisiologia , Cálcio/metabolismo , Drosophila/genética , Drosophila/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Drosophila simulans/fisiologia , Evolução Molecular , Feminino , Frutas/parasitologia , Interneurônios/metabolismo , Masculino , Modelos Biológicos , Morinda/parasitologia , Condutos Olfatórios/citologia , Neurônios Receptores Olfatórios/citologia , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/genética , Especificidade da Espécie
6.
Proc Natl Acad Sci U S A ; 119(11): e2100600119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35263217

RESUMO

SignificanceIn this work, we explore the hypothesis that biological neural networks optimize their architecture, through evolution, for learning. We study early olfactory circuits of mammals and insects, which have relatively similar structure but a huge diversity in size. We approximate these circuits as three-layer networks and estimate, analytically, the scaling of the optimal hidden-layer size with input-layer size. We find that both longevity and information in the genome constrain the hidden-layer size, so a range of allometric scalings is possible. However, the experimentally observed allometric scalings in mammals and insects are consistent with biologically plausible values. This analysis should pave the way for a deeper understanding of both biological and artificial networks.


Assuntos
Insetos , Aprendizagem , Mamíferos , Modelos Neurológicos , Condutos Olfatórios , Animais , Evolução Biológica , Contagem de Células , Aprendizagem/fisiologia , Corpos Pedunculados/citologia , Redes Neurais de Computação , Neurônios/citologia , Condutos Olfatórios/citologia , Condutos Olfatórios/crescimento & desenvolvimento , Córtex Piriforme/citologia
7.
J Neurosci ; 41(30): 6449-6467, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34099512

RESUMO

In sensory systems of the brain, mechanisms exist to extract distinct features from stimuli to generate a variety of behavioral repertoires. These often correspond to different cell types at various stages in sensory processing. In the mammalian olfactory system, complex information processing starts in the olfactory bulb, whose output is conveyed by mitral cells (MCs) and tufted cells (TCs). Despite many differences between them, and despite the crucial position they occupy in the information hierarchy, Cre-driver lines that distinguish them do not yet exist. Here, we sought to identify genes that are differentially expressed between MCs and TCs of the mouse, with an ultimate goal to generate a cell type-specific Cre-driver line, starting from a transcriptome analysis using a large and publicly available single-cell RNA-seq dataset (Zeisel et al., 2018). Many genes were differentially expressed, but only a few showed consistent expressions in MCs and at the specificity required. After further validating these putative markers using ISH, two genes (i.e., Pkib and Lbdh2) remained as promising candidates. Using CRISPR/Cas9-mediated gene editing, we generated Cre-driver lines and analyzed the resulting recombination patterns. This indicated that our new inducible Cre-driver line, Lbhd2-CreERT2, can be used to genetically label MCs in a tamoxifen dose-dependent manner, both in male and female mice, as assessed by soma locations, projection patterns, and sensory-evoked responses in vivo Hence, this is a promising tool for investigating cell type-specific contributions to olfactory processing and demonstrates the power of publicly accessible data in accelerating science.SIGNIFICANCE STATEMENT In the brain, distinct cell types play unique roles. It is therefore important to have tools for studying unique cell types specifically. For the sense of smell in mammals, information is processed first by circuits of the olfactory bulb, where two types of cells, mitral cells and tufted cells, output different information. We generated a transgenic mouse line that enables mitral cells to be specifically labeled or manipulated. This was achieved by looking for genes that are specific to mitral cells using a large and public gene expression dataset, and creating a transgenic mouse using the gene editing technique, CRISPR/Cas9. This will allow scientists to better investigate parallel information processing underlying the sense of smell.


Assuntos
Linhagem Celular , Neurônios/citologia , Bulbo Olfatório/citologia , Percepção Olfatória/fisiologia , Animais , Feminino , Integrases , Masculino , Camundongos , Camundongos Transgênicos , Condutos Olfatórios/citologia
8.
J Neurosci ; 40(32): 6189-6206, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32605937

RESUMO

Delineation of functional synaptic connections is fundamental to understanding sensory processing. Olfactory signals are synaptically processed initially in the olfactory bulb (OB) where neural circuits are formed among inhibitory interneurons and the output neurons mitral cells (MCs) and tufted cells (TCs). TCs function in parallel with but differently from MCs and are further classified into multiple subpopulations based on their anatomic and functional heterogeneities. Here, we combined optogenetics with electrophysiology to characterize the synaptic transmission from a subpopulation of TCs, which exclusively express the neuropeptide cholecystokinin (CCK), to two groups of spatially segregated GABAergic interneurons, granule cells (GCs) and glomerular interneurons in mice of both sexes with four major findings. First, CCKergic TCs receive direct input from the olfactory sensory neurons (OSNs). This monosynaptic transmission exhibits high fidelity in response to repetitive OSN input. Second, CCKergic TCs drive GCs through two functionally distinct types of monosynaptic connections: (1) dendrodendritic synapses onto GC distal dendrites via their lateral dendrites in the superficial external plexiform layer (EPL); (2) axodendritic synapses onto GC proximal dendrites via their axon collaterals or terminals in the internal plexiform layer (IPL) on both sides of each bulb. Third, CCKergic TCs monosynaptically excite two subpopulations of inhibitory glomerular interneurons via dendrodendritic synapses. Finally, sniff-like patterned activation of CCKergic TCs induces robust frequency-dependent depression of the dendrodendritic synapses but facilitation of the axodendritic synapses. These results demonstrated important roles of the CCKergic TCs in olfactory processing by orchestrating OB inhibitory activities.SIGNIFICANCE STATEMENT Neuronal morphology and organization in the olfactory bulb (OB) have been extensively studied, however, the functional operation of neuronal interactions is not fully understood. We combined optogenetic and electrophysiological approaches to investigate the functional operation of synaptic connections between a specific population of excitatory output neuron and inhibitory interneurons in the OB. We found that these output neurons formed distinct types of synapses with two populations of spatially segregated interneurons. The functional characteristics of these synapses vary significantly depending on the presynaptic compartments so that these output neurons can dynamically rebalance inhibitory feedback or feedforward to other neurons types in the OB in response to dynamic rhythmic inputs.


Assuntos
Neurônios GABAérgicos/fisiologia , Interneurônios/fisiologia , Bulbo Olfatório/citologia , Condutos Olfatórios/citologia , Animais , Colecistocinina/genética , Colecistocinina/metabolismo , Feminino , Neurônios GABAérgicos/metabolismo , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibição Neural , Bulbo Olfatório/fisiologia , Condutos Olfatórios/fisiologia , Potenciais Sinápticos
9.
J Neurochem ; 158(5): 1186-1198, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34338310

RESUMO

During adult rodent life, newborn neurons are added to the olfactory bulb (OB) in a tightly controlled manner. Upon arrival in the OB, input synapses from the local bulbar network and the higher olfactory cortex precede the formation of functional output synapses, indicating a possible role for these regions in newborn neuron survival. An interplay between the environment and the piriform cortex in the regulation of newborn neuron survival has been suggested. However, the specific network and the neuronal cell types responsible for this effect have not been elucidated. Furthermore, the role of the other olfactory cortical areas in this process is not known. Here we demonstrate that pyramidal neurons in the mouse anterior olfactory nucleus, the first cortical area for odor processing, have a key role in the survival of newborn neurons. Using DREADD (Designer Receptors Exclusively Activated by Designer Drugs) technology, we applied chronic stimulation to the anterior olfactory nucleus and observed a decrease in newborn neurons in the OB through induction of apoptosis. These findings provide further insight into the network regulating neuronal survival in adult neurogenesis and strengthen the importance of the surrounding network for sustained integration of new neurons.


Assuntos
Neurogênese/fisiologia , Neurônios/fisiologia , Bulbo Olfatório/citologia , Bulbo Olfatório/fisiologia , Córtex Olfatório/citologia , Córtex Olfatório/fisiologia , Fatores Etários , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Odorantes , Bulbo Olfatório/efeitos dos fármacos , Córtex Olfatório/efeitos dos fármacos , Condutos Olfatórios/citologia , Condutos Olfatórios/efeitos dos fármacos , Condutos Olfatórios/fisiologia , Olfato/fisiologia
10.
Annu Rev Neurosci ; 36: 383-402, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23725002

RESUMO

The main olfactory system encodes information about molecules in a combinatorial fashion by distributed spatiotemporal activity patterns. As activity propagates from sensory neurons to the olfactory bulb and to higher brain areas, odor information is processed by multiple transformations of these activity patterns. This review discusses neuronal computations associated with such transformations in the olfactory system of zebrafish, a small vertebrate that offers advantages for the quantitative analysis and manipulation of neuronal activity in the intact brain. The review focuses on pattern decorrelation in the olfactory bulb and on the readout of multiplexed sensory representations in the telencephalic area Dp, the homolog of the olfactory cortex. These computations are difficult to study in larger species and may provide insights into general information-processing strategies in the brain.


Assuntos
Simulação por Computador , Modelos Neurológicos , Neurônios/fisiologia , Condutos Olfatórios/citologia , Animais , Peixe-Zebra/anatomia & histologia
11.
J Neurosci ; 39(44): 8690-8704, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31548236

RESUMO

The basic organization of the olfactory system has been the subject of extensive studies in vertebrates and invertebrates. In many animals, GABA-ergic neurons inhibit spike activities of higher-order olfactory neurons and help sparsening of their odor representations. In the cockroach, two different types of GABA-immunoreactive interneurons (calyceal giants [CGs]) mainly project to the base and lip regions of the calyces (input areas) of the mushroom body (MB), a second-order olfactory center. The base and lip regions receive axon terminals of two different types of projection neurons, which receive synapses from different classes of olfactory sensory neurons (OSNs), and receive dendrites of different classes of Kenyon cells, MB intrinsic neurons. We performed intracellular recordings from pairs of CGs and MB output neurons (MBONs) of male American cockroaches, the latter receiving synapses from Kenyon cells, and we found that a CG receives excitatory synapses from an MBON and that odor responses of the MBON are changed by current injection into the CG. Such feedback effects, however, were often weak or absent in pairs of neurons that belong to different streams, suggesting parallel organization of the recurrent pathways, although interactions between different streams were also evident. Cross-covariance analysis of the spike activities of CGs and MBONs suggested that odor stimulation produces synchronized spike activities in MBONs and then in CGs. We suggest that there are separate but interactive parallel streams to process odors detected by different OSNs throughout the olfactory processing system in cockroaches.SIGNIFICANCE STATEMENT Organizational principles of the olfactory system have been the subject of extensive studies. In cockroaches, signals from olfactory sensory neurons (OSNs) in two different classes of sensilla are sent to two different classes of projection neurons, which terminate in different areas of the mushroom body (MB), each area having dendrites of different classes of MB intrinsic neurons (Kenyon cells) and terminations of different classes of GABAergic neurons. Physiological and morphological assessments derived from simultaneous intracellular recordings/stainings from GABAergic neurons and MB output neurons suggested that GABAergic neurons play feedback roles and that odors detected by OSNs are processed in separate but interactive processing streams throughout the central olfactory system.


Assuntos
Neurônios GABAérgicos/fisiologia , Corpos Pedunculados/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Periplaneta/fisiologia , Olfato/fisiologia , Animais , Neurônios GABAérgicos/citologia , Interneurônios/fisiologia , Masculino , Potenciais da Membrana , Corpos Pedunculados/citologia , Odorantes , Condutos Olfatórios/citologia , Condutos Olfatórios/fisiologia , Neurônios Receptores Olfatórios/citologia
12.
Nature ; 515(7526): 269-73, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25383519

RESUMO

Innate behaviours are observed in naive animals without prior learning or experience, suggesting that the neural circuits that mediate these behaviours are genetically determined and stereotyped. The neural circuits that convey olfactory information from the sense organ to the cortical and subcortical olfactory centres have been anatomically defined, but the specific pathways responsible for innate responses to volatile odours have not been identified. Here we devise genetic strategies that demonstrate that a stereotyped neural circuit that transmits information from the olfactory bulb to cortical amygdala is necessary for innate aversive and appetitive behaviours. Moreover, we use the promoter of the activity-dependent gene arc to express the photosensitive ion channel, channelrhodopsin, in neurons of the cortical amygdala activated by odours that elicit innate behaviours. Optical activation of these neurons leads to appropriate behaviours that recapitulate the responses to innate odours. These data indicate that the cortical amygdala plays a critical role in generating innate odour-driven behaviours but do not preclude its participation in learned olfactory behaviours.


Assuntos
Tonsila do Cerebelo/fisiologia , Comportamento/fisiologia , Odorantes/análise , Percepção Olfatória/fisiologia , Tonsila do Cerebelo/citologia , Animais , Aprendizagem/fisiologia , Camundongos , Neurônios/fisiologia , Bulbo Olfatório/citologia , Bulbo Olfatório/fisiologia , Condutos Olfatórios/citologia , Condutos Olfatórios/fisiologia
13.
Brain Behav Evol ; 95(3-4): 139-161, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33171468

RESUMO

The volume of the olfactory bulbs (OBs) relative to the brain has been used previously as a proxy for olfactory capabilities in many vertebrate taxa, including fishes. Although this gross approach has predictive power, a more accurate assessment of the number of afferent olfactory inputs and the convergence of this information at the level of the telencephalon is critical to our understanding of the role of olfaction in the behaviour of fishes. In this study, we used transmission electron microscopy to assess the number of first-order axons within the olfactory nerve (ON) and the number of second-order axons in the olfactory peduncle (OP) in established model species within cartilaginous (brownbanded bamboo shark, Chiloscyllium punctatum [CP]) and bony (common goldfish, Carassius auratus [CA]) fishes. The total number of axons varied from a mean of 18.12 ± 7.50 million in the ON to a mean of 0.38 ± 0.21 million in the OP of CP, versus 0.48 ± 0.16 million in the ON and 0.09 ± 0.02 million in the OP of CA. This resulted in a convergence ratio of approximately 50:1 and 5:1, respectively, for these two species. Based on astroglial ensheathing, axon type (unmyelinated [UM] and myelinated [M]) and axon size, we found no differentiated tracts in the OP of CP, whereas a lateral and a medial tract (both of which could be subdivided into two bundles or areas) were identified for CA, as previously described. Linear regression analyses revealed significant differences not only in axon density between species and locations (nerves and peduncles), but also in axon type and axon diameter (p < 0.05). However, UM axon diameter was larger in the OPs than in the nerve in both species (p = 0.005), with no significant differences in UM axon diameter in the ON (p = 0.06) between species. This study provides an in-depth analysis of the neuroanatomical organisation of the ascending olfactory pathway in two fish taxa and a quantitative anatomical comparison of the summation of olfactory information. Our results support the assertion that relative OB volume is a good indicator of the level of olfactory input and thereby a proxy for olfactory capabilities.


Assuntos
Axônios/ultraestrutura , Carpa Dourada/anatomia & histologia , Bulbo Olfatório/citologia , Nervo Olfatório/citologia , Condutos Olfatórios/citologia , Tubarões/anatomia & histologia , Animais , Microscopia Eletrônica de Transmissão , Bulbo Olfatório/ultraestrutura , Córtex Olfatório/citologia , Nervo Olfatório/ultraestrutura , Condutos Olfatórios/ultraestrutura
14.
J Neurosci ; 38(21): 4957-4976, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29712784

RESUMO

The vomeronasal system (VNS) is a major vertebrate chemosensory system that functions in parallel to the main olfactory system (MOS). Despite many similarities, the two systems dramatically differ in the temporal domain. While MOS responses are governed by breathing and follow a subsecond temporal scale, VNS responses are uncoupled from breathing and evolve over seconds. This suggests that the contribution of response dynamics to stimulus information will differ between these systems. While temporal dynamics in the MOS are widely investigated, similar analyses in the accessory olfactory bulb (AOB) are lacking. Here, we have addressed this issue using controlled stimulus delivery to the vomeronasal organ of male and female mice. We first analyzed the temporal properties of AOB projection neurons and demonstrated that neurons display prolonged, variable, and neuron-specific characteristics. We then analyzed various decoding schemes using AOB population responses. We showed that compared with the simplest scheme (i.e., integration of spike counts over the entire response period), the division of this period into smaller temporal bins actually yields poorer decoding accuracy. However, optimal classification accuracy can be achieved well before the end of the response period by integrating spike counts within temporally defined windows. Since VNS stimulus uptake is variable, we analyzed decoding using limited information about stimulus uptake time, and showed that with enough neurons, such time-invariant decoding is feasible. Finally, we conducted simulations that demonstrated that, unlike the main olfactory bulb, the temporal features of AOB neurons disfavor decoding with high temporal accuracy, and, rather, support decoding without precise knowledge of stimulus uptake time.SIGNIFICANCE STATEMENT A key goal in sensory system research is to identify which metrics of neuronal activity are relevant for decoding stimulus features. Here, we describe the first systematic analysis of temporal coding in the vomeronasal system (VNS), a chemosensory system devoted to socially relevant cues. Compared with the main olfactory system, timescales of VNS function are inherently slower and variable. Using various analyses of real and simulated data, we show that the consideration of response times relative to stimulus uptake can aid the decoding of stimulus information from neuronal activity. However, response properties of accessory olfactory bulb neurons favor decoding schemes that do not rely on the precise timing of stimulus uptake. Such schemes are consistent with the variable nature of VNS stimulus uptake.


Assuntos
Neurônios/fisiologia , Bulbo Olfatório/fisiologia , Órgão Vomeronasal/fisiologia , Animais , Simulação por Computador , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Odorantes , Bulbo Olfatório/citologia , Condutos Olfatórios/citologia , Condutos Olfatórios/fisiologia , Caracteres Sexuais , Especificidade da Espécie , Máquina de Vetores de Suporte , Urina/química , Órgão Vomeronasal/citologia
15.
Annu Rev Neurosci ; 34: 467-99, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21469960

RESUMO

Odor signals received by odorant receptors (ORs) expressed by olfactory sensory neurons (OSNs) in the olfactory epithelium (OE) are represented as an odor map in the olfactory bulb (OB). In the mouse, there are ~1,000 different OR species, and each OSN expresses only one functional OR gene in a monoallelic manner. Furthermore, OSN axons expressing the same type of OR converge on a specific target site in the OB, forming a glomerular structure. Because each glomerulus represents a single OR species, and a single odorant can interact with multiple OR species, odor signals received in the OE are converted into a topographic map of multiple glomeruli activated with varying magnitudes. Here we review recent progress in the study of the mammalian olfactory system, focusing on the formation of the olfactory map and the transmission of topographical information in the OB to the olfactory cortex to elicit various behaviors.


Assuntos
Mapeamento Encefálico , Condutos Olfatórios/citologia , Condutos Olfatórios/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Retroalimentação Fisiológica/fisiologia , Humanos , Camundongos , Odorantes , Receptores Odorantes/genética
16.
J Neurogenet ; 33(1): 33-40, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30686090

RESUMO

Diverse types of neurons must be specified in the developing brain to form the functional neural circuits that are necessary for the execution of daily tasks. Here, we describe the participation of Forkhead box class O (FOXO) in cell fate specification of a small subset of Drosophila ventral olfactory projection neurons (vPNs). Using the two-color labeling system, twin-spot MARCM, we determined the temporal birth order of each vPN type, and this characterization served as a foundation to investigate regulators of cell fate specification. Flies deficient for chinmo, a known temporal cell fate regulator, exhibited a partial loss of vPNs, suggesting that the gene plays a complex role in specifying vPN cell fate and is not the only regulator of this process. Interestingly, loss of foxo function resulted in the precocious appearance of late-born vPNs in place of early-born vPNs, whereas overexpression of constitutively active FOXO caused late-born vPNs to take on a morphology reminiscent of earlier born vPNs. Taken together, these data suggest that FOXO temporally regulates vPN cell fate specification. The comprehensive identification of molecules that regulate neuronal fate specification promises to provide a better understanding of the mechanisms governing the formation of functional brain tissue.


Assuntos
Diferenciação Celular/fisiologia , Proteínas de Drosophila/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Neurônios/citologia , Condutos Olfatórios/citologia , Animais , Animais Geneticamente Modificados , Linhagem da Célula/fisiologia , Neurogênese/fisiologia , Neurônios/metabolismo , Condutos Olfatórios/metabolismo
17.
Nature ; 493(7432): 424-8, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23263180

RESUMO

In Drosophila, most individual olfactory receptor neurons (ORNs) project bilaterally to both sides of the brain. Having bilateral rather than unilateral projections may represent a useful redundancy. However, bilateral ORN projections to the brain should also compromise the ability to lateralize odours. Nevertheless, walking or flying Drosophila reportedly turn towards the antenna that is more strongly stimulated by odour. Here we show that each ORN spike releases approximately 40% more neurotransmitter from the axon branch ipsilateral to the soma than from the contralateral branch. As a result, when an odour activates the antennae asymmetrically, ipsilateral central neurons begin to spike a few milliseconds before contralateral neurons, and at a 30 to 50% higher rate than contralateral neurons. We show that a walking fly can detect a 5% asymmetry in total ORN input to its left and right antennal lobes, and can turn towards the odour in less time than it requires the fly to complete a stride. These results demonstrate that neurotransmitter release properties can be tuned independently at output synapses formed by a single axon onto two target cells with identical functions and morphologies. Our data also show that small differences in spike timing and spike rate can produce reliable differences in olfactory behaviour.


Assuntos
Drosophila melanogaster/fisiologia , Lateralidade Funcional/fisiologia , Neurotransmissores/metabolismo , Odorantes/análise , Olfato/fisiologia , Potenciais de Ação , Animais , Antenas de Artrópodes/citologia , Antenas de Artrópodes/fisiologia , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/citologia , Voo Animal/fisiologia , Neurônios/fisiologia , Condutos Olfatórios/anatomia & histologia , Condutos Olfatórios/citologia , Condutos Olfatórios/fisiologia , Sinapses/metabolismo , Fatores de Tempo , Caminhada/fisiologia
18.
Nature ; 497(7447): 113-7, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23615618

RESUMO

The mushroom body in the fruitfly Drosophila melanogaster is an associative brain centre that translates odour representations into learned behavioural responses. Kenyon cells, the intrinsic neurons of the mushroom body, integrate input from olfactory glomeruli to encode odours as sparse distributed patterns of neural activity. We have developed anatomic tracing techniques to identify the glomerular origin of the inputs that converge onto 200 individual Kenyon cells. Here we show that each Kenyon cell integrates input from a different and apparently random combination of glomeruli. The glomerular inputs to individual Kenyon cells show no discernible organization with respect to their odour tuning, anatomic features or developmental origins. Moreover, different classes of Kenyon cells do not seem to preferentially integrate inputs from specific combinations of glomeruli. This organization of glomerular connections to the mushroom body could allow the fly to contextualize novel sensory experiences, a feature consistent with the role of this brain centre in mediating learned olfactory associations and behaviours.


Assuntos
Drosophila melanogaster/fisiologia , Corpos Pedunculados/fisiologia , Condutos Olfatórios/fisiologia , Olfato/fisiologia , Animais , Antenas de Artrópodes/anatomia & histologia , Antenas de Artrópodes/inervação , Antenas de Artrópodes/fisiologia , Corantes , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/citologia , Feminino , Aprendizagem/fisiologia , Masculino , Modelos Neurológicos , Corpos Pedunculados/anatomia & histologia , Corpos Pedunculados/citologia , Técnicas de Rastreamento Neuroanatômico , Neurônios/fisiologia , Odorantes/análise , Condutos Olfatórios/citologia , Coloração e Rotulagem
19.
Nature ; 498(7455): 487-91, 2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23719379

RESUMO

Female mosquitoes of some species are generalists and will blood-feed on a variety of vertebrate hosts, whereas others display marked host preference. Anopheles gambiae and Aedes aegypti have evolved a strong preference for humans, making them dangerously efficient vectors of malaria and Dengue haemorrhagic fever. Specific host odours probably drive this strong preference because other attractive cues, including body heat and exhaled carbon dioxide (CO2), are common to all warm-blooded hosts. Insects sense odours via several chemosensory receptor families, including the odorant receptors (ORs), membrane proteins that form heteromeric odour-gated ion channels comprising a variable ligand-selective subunit and an obligate co-receptor called Orco (ref. 6). Here we use zinc-finger nucleases to generate targeted mutations in the orco gene of A. aegypti to examine the contribution of Orco and the odorant receptor pathway to mosquito host selection and sensitivity to the insect repellent DEET (N,N-diethyl-meta-toluamide). orco mutant olfactory sensory neurons have greatly reduced spontaneous activity and lack odour-evoked responses. Behaviourally, orco mutant mosquitoes have severely reduced attraction to honey, an odour cue related to floral nectar, and do not respond to human scent in the absence of CO2. However, in the presence of CO2, female orco mutant mosquitoes retain strong attraction to both human and animal hosts, but no longer strongly prefer humans. orco mutant females are attracted to human hosts even in the presence of DEET, but are repelled upon contact, indicating that olfactory- and contact-mediated effects of DEET are mechanistically distinct. We conclude that the odorant receptor pathway is crucial for an anthropophilic vector mosquito to discriminate human from non-human hosts and to be effectively repelled by volatile DEET.


Assuntos
Aedes/genética , Aedes/fisiologia , DEET/farmacologia , Genes de Insetos/genética , Especificidade de Hospedeiro/genética , Repelentes de Insetos/farmacologia , Mutação/genética , Aedes/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Sequência de Bases , DEET/administração & dosagem , Resistência a Medicamentos/efeitos dos fármacos , Feminino , Mel , Especificidade de Hospedeiro/efeitos dos fármacos , Humanos , Repelentes de Insetos/administração & dosagem , Masculino , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Neurônios/citologia , Neurônios/efeitos dos fármacos , Odorantes/análise , Condutos Olfatórios/citologia , Condutos Olfatórios/efeitos dos fármacos , Volatilização
20.
Proc Natl Acad Sci U S A ; 113(8): 2276-81, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26858458

RESUMO

Throughout the brain, the recruitment of feedforward and recurrent inhibition shapes neural responses. However, disentangling the relative contributions of these often-overlapping cortical circuits is challenging. The piriform cortex provides an ideal system to address this issue because the interneurons responsible for feedforward and recurrent inhibition are anatomically segregated in layer (L) 1 and L2/3 respectively. Here we use a combination of optical and electrical activation of interneurons to profile the inhibitory input received by three classes of principal excitatory neuron in the anterior piriform cortex. In all classes, we find that L1 interneurons provide weaker inhibition than L2/3 interneurons. Nonetheless, feedforward inhibitory strength covaries with the amount of afferent excitation received by each class of principal neuron. In contrast, intracortical stimulation of L2/3 evokes strong inhibition that dominates recurrent excitation in all classes. Finally, we find that the relative contributions of feedforward and recurrent pathways differ between principal neuron classes. Specifically, L2 neurons receive more reliable afferent drive and less overall inhibition than L3 neurons. Alternatively, L3 neurons receive substantially more intracortical inhibition. These three features--balanced afferent drive, dominant recurrent inhibition, and differential recruitment by afferent vs. intracortical circuits, dependent on cell class--suggest mechanisms for olfactory processing that may extend to other sensory cortices.


Assuntos
Inibição Neural/fisiologia , Córtex Olfatório/fisiologia , Animais , Channelrhodopsins , Feminino , Técnicas In Vitro , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Modelos Neurológicos , Córtex Olfatório/citologia , Condutos Olfatórios/citologia , Condutos Olfatórios/fisiologia , Córtex Piriforme/citologia , Córtex Piriforme/fisiologia , Recrutamento Neurofisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA