Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
EMBO J ; 42(4): e111883, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36546550

RESUMO

Proper stamen filament elongation is essential for pollination and plant reproduction. Plant hormones are extensively involved in every stage of stamen development; however, the cellular mechanisms by which phytohormone signals couple with microtubule dynamics to control filament elongation remain unclear. Here, we screened a series of Arabidopsis thaliana mutants showing different microtubule defects and revealed that only those unable to sever microtubules, lue1 and ktn80.1234, displayed differential floral organ elongation with less elongated stamen filaments. Prompted by short stamen filaments and severe decrease in KTN1 and KTN80s expression in qui-2 lacking five BZR1-family transcription factors (BFTFs), we investigated the crosstalk between microtubule severing and brassinosteroid (BR) signaling. The BFTFs transcriptionally activate katanin-encoding genes, and the microtubule-severing frequency was severely reduced in qui-2. Taken together, our findings reveal how BRs can regulate cytoskeletal dynamics to coordinate the proper development of reproductive organs.


Assuntos
Brassinosteroides , Katanina , Microtúbulos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Katanina/genética , Katanina/metabolismo , Microtúbulos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo
2.
Development ; 151(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38572965

RESUMO

Microtubule organising centres (MTOCs) are sites of localised microtubule nucleation in eukaryotic cells. Regulation of microtubule dynamics often involves KATANIN (KTN): a microtubule severing enzyme that cuts microtubules to generate new negative ends, leading to catastrophic depolymerisation. In Arabidopsis thaliana, KTN is required for the organisation of microtubules in the cell cortex, preprophase band, mitotic spindle and phragmoplast. However, as angiosperms lack MTOCs, the role of KTN in MTOC formation has yet to be studied in plants. Two unique MTOCs - the polar organisers - form on opposing sides of the preprophase nucleus in liverworts. Here, we show that KTN-mediated microtubule depolymerisation regulates the number and organisation of polar organisers formed in Marchantia polymorpha. Mpktn mutants that lacked KTN function had supernumerary disorganised polar organisers compared with wild type. This was in addition to defects in the microtubule organisation in the cell cortex, preprophase band, mitotic spindle and phragmoplast. These data are consistent with the hypothesis that KTN-mediated microtubule dynamics are required for the de novo formation of MTOCs, a previously unreported function in plants.


Assuntos
Katanina , Marchantia , Centro Organizador dos Microtúbulos , Microtúbulos , Katanina/metabolismo , Katanina/genética , Microtúbulos/metabolismo , Marchantia/metabolismo , Marchantia/genética , Centro Organizador dos Microtúbulos/metabolismo , Mutação/genética , Fuso Acromático/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Arabidopsis/metabolismo , Arabidopsis/genética
3.
PLoS Biol ; 22(5): e3002596, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38718086

RESUMO

Autism spectrum disorders (ASD) frequently accompany macrocephaly, which often involves hydrocephalic enlargement of brain ventricles. Katnal2 is a microtubule-regulatory protein strongly linked to ASD, but it remains unclear whether Katnal2 knockout (KO) in mice leads to microtubule- and ASD-related molecular, synaptic, brain, and behavioral phenotypes. We found that Katnal2-KO mice display ASD-like social communication deficits and age-dependent progressive ventricular enlargements. The latter involves increased length and beating frequency of motile cilia on ependymal cells lining ventricles. Katnal2-KO hippocampal neurons surrounded by enlarged lateral ventricles show progressive synaptic deficits that correlate with ASD-like transcriptomic changes involving synaptic gene down-regulation. Importantly, early postnatal Katnal2 re-expression prevents ciliary, ventricular, and behavioral phenotypes in Katnal2-KO adults, suggesting a causal relationship and a potential treatment. Therefore, Katnal2 negatively regulates ependymal ciliary function and its deletion in mice leads to ependymal ciliary hyperfunction and hydrocephalus accompanying ASD-related behavioral, synaptic, and transcriptomic changes.


Assuntos
Transtorno do Espectro Autista , Cílios , Epêndima , Camundongos Knockout , Fenótipo , Animais , Masculino , Camundongos , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/fisiopatologia , Comportamento Animal , Cílios/metabolismo , Modelos Animais de Doenças , Epêndima/metabolismo , Hipocampo/metabolismo , Hidrocefalia/genética , Hidrocefalia/metabolismo , Hidrocefalia/patologia , Hidrocefalia/fisiopatologia , Katanina/metabolismo , Katanina/genética , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Sinapses/metabolismo , Transcriptoma/genética
4.
Proc Natl Acad Sci U S A ; 121(27): e2314702121, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38916997

RESUMO

Enlargement of the cerebrospinal fluid (CSF)-filled brain ventricles (cerebral ventriculomegaly), the cardinal feature of congenital hydrocephalus (CH), is increasingly recognized among patients with autism spectrum disorders (ASD). KATNAL2, a member of Katanin family microtubule-severing ATPases, is a known ASD risk gene, but its roles in human brain development remain unclear. Here, we show that nonsense truncation of Katnal2 (Katnal2Δ17) in mice results in classic ciliopathy phenotypes, including impaired spermatogenesis and cerebral ventriculomegaly. In both humans and mice, KATNAL2 is highly expressed in ciliated radial glia of the fetal ventricular-subventricular zone as well as in their postnatal ependymal and neuronal progeny. The ventriculomegaly observed in Katnal2Δ17 mice is associated with disrupted primary cilia and ependymal planar cell polarity that results in impaired cilia-generated CSF flow. Further, prefrontal pyramidal neurons in ventriculomegalic Katnal2Δ17 mice exhibit decreased excitatory drive and reduced high-frequency firing. Consistent with these findings in mice, we identified rare, damaging heterozygous germline variants in KATNAL2 in five unrelated patients with neurosurgically treated CH and comorbid ASD or other neurodevelopmental disorders. Mice engineered with the orthologous ASD-associated KATNAL2 F244L missense variant recapitulated the ventriculomegaly found in human patients. Together, these data suggest KATNAL2 pathogenic variants alter intraventricular CSF homeostasis and parenchymal neuronal connectivity by disrupting microtubule dynamics in fetal radial glia and their postnatal ependymal and neuronal descendants. The results identify a molecular mechanism underlying the development of ventriculomegaly in a genetic subset of patients with ASD and may explain persistence of neurodevelopmental phenotypes in some patients with CH despite neurosurgical CSF shunting.


Assuntos
Cílios , Hidrocefalia , Microtúbulos , Animais , Feminino , Humanos , Masculino , Camundongos , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Transtorno do Espectro Autista/metabolismo , Cílios/metabolismo , Cílios/patologia , Epêndima/metabolismo , Epêndima/patologia , Hidrocefalia/genética , Hidrocefalia/patologia , Hidrocefalia/metabolismo , Katanina/metabolismo , Katanina/genética , Microtúbulos/metabolismo , Neurônios/metabolismo , Células Piramidais/metabolismo , Células Piramidais/patologia
5.
Development ; 150(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37882691

RESUMO

Katanins, a class of microtubule-severing enzymes, are potent M-phase regulators in oocytes and somatic cells. How the complex and evolutionarily crucial, male mammalian meiotic spindle is sculpted remains unknown. Here, using multiple single and double gene knockout mice, we reveal that the canonical katanin A-subunit KATNA1 and its close paralogue KATNAL1 together execute multiple aspects of meiosis. We show KATNA1 and KATNAL1 collectively regulate the male meiotic spindle, cytokinesis and midbody abscission, in addition to diverse spermatid remodelling events, including Golgi organisation, and acrosome and manchette formation. We also define KATNAL1-specific roles in sperm flagellum development, manchette regulation and sperm-epithelial disengagement. Finally, using proteomic approaches, we define the KATNA1, KATNAL1 and KATNB1 mammalian testis interactome, which includes a network of cytoskeletal and vesicle trafficking proteins. Collectively, we reveal that the presence of multiple katanin A-subunit paralogs in mammalian spermatogenesis allows for 'customised cutting' via neofunctionalisation and protective buffering via gene redundancy.


Assuntos
Katanina , Microtúbulos , Proteômica , Animais , Masculino , Camundongos , Fertilidade/genética , Katanina/genética , Meiose/genética , Microtúbulos/metabolismo , Sêmen/metabolismo , Espermatogênese/genética
6.
EMBO Rep ; 25(6): 2722-2742, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38773322

RESUMO

Alpha, beta, and gamma tubulins are essential building blocks for all eukaryotic cells. The functions of the non-canonical tubulins, delta, epsilon, and zeta, however, remain poorly understood and their requirement in mammalian development untested. Herein we have used a spermatogenesis model to define epsilon tubulin (TUBE1) function in mice. We show that TUBE1 is essential for the function of multiple complex microtubule arrays, including the meiotic spindle, axoneme and manchette and in its absence, there is a dramatic loss of germ cells and male sterility. Moreover, we provide evidence for the interplay between TUBE1 and katanin-mediated microtubule severing, and for the sub-specialization of individual katanin paralogs in the regulation of specific microtubule arrays.


Assuntos
Katanina , Microtúbulos , Espermatogênese , Tubulina (Proteína) , Animais , Masculino , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Camundongos , Katanina/metabolismo , Katanina/genética , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Células Germinativas/metabolismo , Fuso Acromático/metabolismo , Espermatozoides/metabolismo , Infertilidade Masculina/metabolismo , Infertilidade Masculina/genética , Camundongos Knockout , Axonema/metabolismo
7.
J Neurosci ; 44(13)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38050126

RESUMO

Dynamic microtubules critically regulate synaptic functions, but the role of microtubule severing in these processes is barely understood. Katanin is a neuronally expressed microtubule-severing complex regulating microtubule number and length in cell division or neurogenesis; however, its potential role in synaptic functions has remained unknown. Studying mice from both sexes, we found that katanin is abundant in neuronal dendrites and can be detected at individual excitatory spine synapses. Overexpression of a dominant-negative ATPase-deficient katanin subunit to functionally inhibit severing alters the growth of microtubules in dendrites, specifically at premature but not mature neuronal stages without affecting spine density. Notably, interference with katanin function prevented structural spine remodeling following single synapse glutamate uncaging and significantly affected the potentiation of AMPA-receptor-mediated excitatory currents after chemical induction of long-term potentiation. Furthermore, katanin inhibition reduced the invasion of microtubules into fully developed spines. Our data demonstrate that katanin-mediated microtubule severing regulates structural and functional plasticity at synaptic sites.


Assuntos
Microtúbulos , Neurônios , Animais , Camundongos , Katanina/genética , Katanina/metabolismo , Microtúbulos/metabolismo , Neurônios/fisiologia , Neurogênese , Plasticidade Neuronal
8.
Plant Cell ; 34(8): 3006-3027, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35579372

RESUMO

The MAP215 family of microtubule (MT) polymerase/nucleation factors and the MT severing enzyme katanin are widely conserved MT-associated proteins (MAPs) across the plant and animal kingdoms. However, how these two essential MAPs coordinate to regulate plant MT dynamics and development remains unknown. Here, we identified novel hypomorphic alleles of MICROTUBULE ORGANIZATION 1 (MOR1), encoding the Arabidopsis thaliana homolog of MAP215, in genetic screens for mutants oversensitive to the MT-destabilizing drug propyzamide. Live imaging in planta revealed that MOR1-green fluorescent protein predominantly tracks the plus-ends of cortical MTs (cMTs) in interphase cells and labels preprophase band, spindle and phragmoplast MT arrays in dividing cells. Remarkably, MOR1 and KATANIN 1 (KTN1), the p60 subunit of Arabidopsis katanin, act synergistically to control the proper formation of plant-specific MT arrays, and consequently, cell division and anisotropic cell expansion. Moreover, MOR1 physically interacts with KTN1 and promotes KTN1-mediated severing of cMTs. Our work establishes the Arabidopsis MOR1-KTN1 interaction as a central functional node dictating MT dynamics and plant growth and development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Divisão Celular , Katanina/genética , Katanina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo
9.
Development ; 148(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34822718

RESUMO

Katanin microtubule-severing enzymes are crucial executers of microtubule regulation. Here, we have created an allelic loss-of-function series of the katanin regulatory B-subunit KATNB1 in mice. We reveal that KATNB1 is the master regulator of all katanin enzymatic A-subunits during mammalian spermatogenesis, wherein it is required to maintain katanin A-subunit abundance. Our data shows that complete loss of KATNB1 from germ cells is incompatible with sperm production, and we reveal multiple new spermatogenesis functions for KATNB1, including essential roles in male meiosis, acrosome formation, sperm tail assembly, regulation of both the Sertoli and germ cell cytoskeletons during sperm nuclear remodelling, and maintenance of seminiferous epithelium integrity. Collectively, our findings reveal that katanins are able to differentially regulate almost all key microtubule-based structures during mammalian male germ cell development, through the complexing of one master controller, KATNB1, with a 'toolbox' of neofunctionalised katanin A-subunits.


Assuntos
Haploidia , Katanina/genética , Meiose/genética , Espermatogênese/genética , Espermatozoides/crescimento & desenvolvimento , Acrossomo/metabolismo , Animais , Citoesqueleto/genética , Células Germinativas/citologia , Células Germinativas/crescimento & desenvolvimento , Masculino , Camundongos , Microtúbulos/genética , Células de Sertoli/citologia , Cauda do Espermatozoide/metabolismo , Espermatozoides/metabolismo
10.
J Biol Chem ; 298(9): 102292, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35868557

RESUMO

Katanin p60 ATPase-containing subunit A1 (KATNA1) is a microtubule-cleaving enzyme that regulates the development of neural protrusions through cytoskeletal rearrangements. However, the mechanism underlying the linkage of the small ubiquitin-like modifier (SUMO) protein to KATNA1 and how this modification regulates the development of neural protrusions is unclear. Here we discovered, using mass spectrometry analysis, that SUMO-conjugating enzyme UBC9, an enzyme necessary for the SUMOylation process, was present in the KATNA1 interactome. Moreover, GST-pull down and co-immunoprecipitation assays confirmed that KATNA1 and SUMO interact. We further demonstrated using immunofluorescence experiments that KATNA1 and the SUMO2 isoform colocalized in hippocampal neurites. We also performed a bioinformatics analysis of KATNA1 protein sequences to identify three potentially conserved SUMOylation sites (K77, K157, and K330) among vertebrates. Mutation of K330, but not K77 or K157, abolished KATNA1-induced microtubule severing and decreased the level of binding observed for KATNA1 and SUMO2. Cotransfection of SUMO2 and wildtype KATNA1 in COS7 cells increased microtubule severing, whereas no effect was observed after cotransfection with the K330R KATNA1 mutant. Furthermore, in cultured hippocampal neurons, overexpression of wildtype KATNA1 significantly promoted neurite outgrowth, whereas the K330R mutant eliminated this effect. Taken together, our results demonstrate that the K330 site in KATNA1 is modified by SUMOylation and SUMOylation of KATNA1 promotes microtubule dynamics and hippocampal neurite outgrowth.


Assuntos
Katanina , Microtúbulos , Crescimento Neuronal , Sumoilação , Adenosina Trifosfatases/metabolismo , Animais , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Katanina/genética , Katanina/metabolismo , Microtúbulos/enzimologia , Microtúbulos/genética , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
11.
PLoS Biol ; 17(7): e3000381, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31314751

RESUMO

The primary cilium is a central signaling hub in cell proliferation and differentiation and is built and disassembled every cell cycle in many animal cells. Disassembly is critically important, as misregulation or delay of cilia loss leads to cell cycle defects. The physical means by which cilia are lost are poorly understood but are thought to involve resorption of ciliary components into the cell body. To investigate cilium loss in mammalian cells, we used live-cell imaging to comprehensively characterize individual events. The predominant mode of cilium loss was rapid deciliation, in which the membrane and axoneme of the cilium was shed from the cell. Gradual resorption was also observed, as well as events in which a period of gradual resorption was followed by rapid deciliation. Deciliation resulted in intact shed cilia that could be recovered from culture medium and contained both membrane and axoneme proteins. We modulated levels of katanin and intracellular calcium, two putative regulators of deciliation, and found that excess katanin promotes cilia loss by deciliation, independently of calcium. Together, these results suggest that mammalian ciliary loss involves a tunable decision between deciliation and resorption.


Assuntos
Axonema/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Cílios/fisiologia , Transdução de Sinais/fisiologia , Animais , Axonema/metabolismo , Cálcio/metabolismo , Ciclo Celular/fisiologia , Linhagem Celular , Cílios/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Katanina/genética , Katanina/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Microscopia Confocal , Microscopia de Fluorescência
12.
Mediators Inflamm ; 2022: 8950130, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35979014

RESUMO

Background: Sepsis is a systemic inflammatory response that can elicit organ dysfunction as well as circulatory diseases in serious cases. When inflammatory responses are especially dysregulated, severe complications can arise, including sepsis-induced liver injury. Various microRNAs along with circular (circ) RNAs are involved in inflammatory responses; nevertheless, their functions in regulating sepsis-induced liver injury remain unknown. The cecal ligation and puncture (CLP) procedure can induce liver injury as well as polymicrobial sepsis. Methods: In this study, CLP was used to induce liver injury as well as polymicrobial sepsis. Then, liver function, inflammatory cytokine expression, and hepatic histopathology were evaluated. High-throughput sequencing was employed to investigate the abnormal hepatic circRNA expression after CLP. Raw264.7 cells were utilized to simulation an in vitro sepsis inflammation model with LPS induce. The relative mRNA as well as protein levels of TNF-α, IL-1ß, and IL-6 was explored by quantitative polymerase chain reaction (PCR) and enzyme-linked immunosorbent assays. We explored functional connections among circRNAs, miR-31-5p, and gasdermin D (GSDMD) using dual-luciferase reporter assays. Western blot was employed to test GSDMD, caspase-1, and NLRP3 expression in mice and cell models. Results: Our results showed that CLP-induced sepsis promoted liver injury via increasing inflammatory pyroptosis. The abnormal expression of circ-Katnal1 played an important role in CLP-induced sepsis. Downregulating circ-Katnal1 suppressed LPS-induced inflammatory pyroptosis in Raw264.7 cells. Bioinformatics and luciferase reporter results confirmed that miR-31-5p and GSDMD were downstream targets of circ-Katnal1. Inhibiting miR-31-5p or upregulating GSDMD reversed the protective effects of silencing circ-Katnal1. Conclusion: Taken together, circ-Katnal1 enhanced inflammatory pyroptosis in sepsis-induced liver injury through the miR-31-5p/GSDMD axis.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Katanina/genética , MicroRNAs , Sepse , Animais , Apoptose , Katanina/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Piroptose , RNA Circular/genética , Sepse/patologia
13.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35409205

RESUMO

Root hydrotropism refers to root directional growth toward soil moisture. Cortical microtubule arrays are essential for determining the growth axis of the elongating cells in plants. However, the role of microtubule reorganization in root hydrotropism remains elusive. Here, we demonstrate that the well-ordered microtubule arrays and the microtubule-severing protein KATANIN (KTN) play important roles in regulating root hydrotropism in Arabidopsis. We found that the root hydrotropic bending of the ktn1 mutant was severely attenuated but not root gravitropism. After hydrostimulation, cortical microtubule arrays in cells of the elongation zone of wild-type (WT) Col-0 roots were reoriented from transverse into an oblique array along the axis of cell elongation, whereas the microtubule arrays in the ktn1 mutant remained in disorder. Moreover, we revealed that abscisic acid (ABA) signaling enhanced the root hydrotropism of WT and partially rescued the oryzalin (a microtubule destabilizer) alterative root hydrotropism of WT but not ktn1 mutants. These results suggest that katanin-dependent microtubule ordering is required for root hydrotropism, which might work downstream of ABA signaling pathways for plant roots to search for water.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Katanina/genética , Katanina/metabolismo , Microtúbulos/metabolismo , Raízes de Plantas/metabolismo , Tropismo/fisiologia , Água/metabolismo
14.
J Integr Plant Biol ; 64(8): 1514-1530, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35587570

RESUMO

The organization of the microtubule cytoskeleton is critical for cell and organ morphogenesis. The evolutionarily conserved microtubule-severing enzyme KATANIN plays critical roles in microtubule organization in the plant and animal kingdoms. We previously used conical cell of Arabidopsis thaliana petals as a model system to investigate cortical microtubule organization and cell morphogenesis and determined that KATANIN promotes the formation of circumferential cortical microtubule arrays in conical cells. Here, we demonstrate that the conserved protein phosphatase PP2A interacts with and dephosphorylates KATANIN to promote the formation of circumferential cortical microtubule arrays in conical cells. KATANIN undergoes cycles of phosphorylation and dephosphorylation. Using co-immunoprecipitation coupled with mass spectrometry, we identified PP2A subunits as KATANIN-interacting proteins. Further biochemical studies showed that PP2A interacts with and dephosphorylates KATANIN to stabilize its cellular abundance. Similar to the katanin mutant, mutants for genes encoding PP2A subunits showed disordered cortical microtubule arrays and defective conical cell shape. Taken together, these findings identify PP2A as a regulator of conical cell shape and suggest that PP2A mediates KATANIN phospho-regulation during plant cell morphogenesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Katanina/genética , Katanina/metabolismo , Microtúbulos/metabolismo , Morfogênese , Plantas/metabolismo
15.
EMBO J ; 36(23): 3435-3447, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28978669

RESUMO

The microtubule (MT)-severing enzyme katanin triggers dynamic reorientation of cortical MT arrays that play crucial functions during plant cell morphogenesis, such as cell elongation, cell wall biosynthesis, and hormonal signaling. MT severing specifically occurs at crossover or branching nucleation sites in living Arabidopsis cells. This differs from the random severing observed along the entire length of single MTs in vitro and strongly suggests that a precise control mechanism must exist in vivo However, how katanin senses and cleaves at MT crossover and branching nucleation sites in vivo has remained unknown. Here, we show that the katanin p80 subunit KTN80 confers precision to MT severing by specific targeting of the katanin p60 subunit KTN1 to MT cleavage sites and that KTN1 is required for oligomerization of functional KTN80-KTN1 complexes that catalyze severing. Moreover, our findings suggest that the katanin complex in Arabidopsis is composed of a hexamer of KTN1-KTN80 heterodimers that sense MT geometry to confer precise MT severing. Our findings shed light on the precise control mechanism of MT severing in plant cells, which may be relevant for other eukaryotes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Katanina/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Genes de Plantas , Katanina/química , Katanina/genética , Microtúbulos/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Plantas Geneticamente Modificadas , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
16.
Clin Genet ; 100(4): 376-385, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34096614

RESUMO

Oligo-astheno-teratozoospermia (OAT) is a common cause of male infertility, and most of idiopathic OAT patients are thought to be caused by genetic defects. Here, we recruited 38 primary infertile patients with the OAT phenotype and 40 adult men with proven fertility for genetic analysis and identified biallelic mutations of KATNAL2 by whole-exome sequencing in two cases. F013/II:1, from a consanguineous family, carried the KATNAL2 c.328C > T:p.Arg110X homozygous mutations. The other carried c.55A > G: p.Lys19Glu and c.169C > T: p Arg57Trp biallelic mutations. None of the KATNAL2 variants were found in the 40 adult men with proven fertility. The spermatozoa from patients with KATNAL2 biallelic mutations exhibited conspicuous defects in maturation, head morphology, and the structure of mitochondrial sheaths and flagella. KATNAL2 was mainly expressed in the pericentriolar material and mitochondrial sheath of the spermatozoa from control subjects, but it was undetectable in the spermatozoa from the patients. Furthermore, Katnal2 null male mice were infertile and displayed an OAT phenotype. Our results proved that the biallelic mutations in KATNAL2 cause male infertility and OAT in humans for the first time, to our knowledge, which could enrich the genetic defect spectrum of OAT and be beneficial for its accurate genetic screening and clinical diagnosis.


Assuntos
Alelos , Astenozoospermia/diagnóstico , Astenozoospermia/genética , Katanina/genética , Mutação , Substituição de Aminoácidos , Animais , Análise Mutacional de DNA , Modelos Animais de Doenças , Estudos de Associação Genética , Genótipo , Homozigoto , Humanos , Imuno-Histoquímica , Infertilidade Masculina/diagnóstico , Infertilidade Masculina/genética , Masculino , Camundongos , Camundongos Knockout , Linhagem , Análise do Sêmen , Análise de Sequência de DNA , Contagem de Espermatozoides , Sequenciamento do Exoma
17.
Theor Appl Genet ; 134(8): 2429-2441, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34043036

RESUMO

KEY MESSAGE: We identified a short fruit3 (sf3) mutant in cucumber. Map-based cloning revealed that CsKTN1 gene encodes a katanin p60 subunit, which is associated with the regulation of fruit elongation. Fruit length is an important horticultural trait for both fruit yield and quality of cucumber (Cucumis sativus L.). Knowledge on the molecular regulation of fruit elongation in cucumber is very limited. In this study, we identified and characterized a cucumber short fruit3 (sf3) mutant. Histological examination indicated that the shorter fruit in the mutant was due to reduced cell numbers. Genetic analysis revealed that the phenotype of the sf3 mutant was controlled by a single gene with semi-dominant inheritance. By map-based cloning and Arabidopsis genetic transformation, we showed that Sf3 was a homolog of KTN1 (CsKTN1) encoding a katanin p60 subunit. A non-synonymous mutation in the fifth exon of CsKTN1 resulted in an amino acid substitution from Serine in the wild type to Phenylalanine in the sf3 mutant. CsKTN1 expressed in all tissues of both the wild type and the sf3 mutant. However, there was no significant difference in CsKTN1 expression levels between the wild type and the sf3 mutant. The hormone quantitation and RNA-seq analysis suggested that auxin and gibberellin contents are decreased in sf3 by changing the expression levels of genes related with auxin and gibberellin metabolism and signaling. This work helps understand the function of the katanin and the molecular mechanisms of fruit growth regulation in cucumber.


Assuntos
Cucumis sativus/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Katanina/metabolismo , Fenótipo , Proteínas de Plantas/metabolismo , Mapeamento Cromossômico , Cucumis sativus/genética , Cucumis sativus/metabolismo , Frutas/genética , Frutas/metabolismo , Perfilação da Expressão Gênica , Katanina/genética , Proteínas de Plantas/genética , Subunidades Proteicas , RNA-Seq
18.
PLoS Genet ; 14(10): e1007705, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30296269

RESUMO

Plants have evolved diverse cell types with distinct sizes, shapes, and functions. For example, most flowering plants contain specialized petal conical epidermal cells that are thought to attract pollinators and influence light capture and reflectance, but the molecular mechanisms controlling conical cell shaping remain unclear. Here, through a genetic screen in Arabidopsis thaliana, we demonstrated that loss-of-function mutations in ANGUSTIFOLIA (AN), which encodes for a homolog of mammalian CtBP/BARs, displayed conical cells phenotype with wider tip angles, correlating with increased accumulation of reactive oxygen species (ROS). We further showed that exogenously supplied ROS generated similar conical cell phenotypes as the an mutants. Moreover, reduced endogenous ROS levels resulted in deceased tip sharpening of conical cells. Furthermore, through enhancer screening, we demonstrated that mutations in katanin (KTN1) enhanced conical cell phenotypes of the an-t1 mutants. Genetic analyses showed that AN acted in parallel with KTN1 to control conical cell shaping. Both increased or decreased ROS levels and mutations in AN suppressed microtubule organization into well-ordered circumferential arrays. We demonstrated that the AN-ROS pathway jointly functioned with KTN1 to modulate microtubule ordering, correlating with the tip sharpening of conical cells. Collectively, our findings revealed a mechanistic insight into ROS homeostasis regulation of microtubule organization and conical cell shaping.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/citologia , Forma Celular/fisiologia , Proteínas Repressoras/genética , Arabidopsis/fisiologia , Células Epidérmicas/metabolismo , Epiderme/metabolismo , Flores/genética , Flores/metabolismo , Katanina/genética , Microtúbulos/genética , Espécies Reativas de Oxigênio/metabolismo
19.
Int J Mol Sci ; 22(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573354

RESUMO

Cytokinesis is accomplished in higher plants by the phragmoplast, creating and conducting the cell plate to separate daughter nuclei by a new cell wall. The microtubule-severing enzyme p60-katanin plays an important role in the centrifugal expansion and timely disappearance of phragmoplast microtubules. Consequently, aberrant structure and delayed expansion rate of the phragmoplast have been reported to occur in p60-katanin mutants. Here, the consequences of p60-katanin malfunction in cell plate/daughter wall formation were investigated by transmission electron microscopy (TEM), in root cells of the fra2 Arabidopsis thaliana loss-of-function mutant. In addition, deviations in the chemical composition of cell plate/new cell wall were identified by immunolabeling and confocal microscopy. It was found that, apart from defective phragmoplast microtubule organization, cell plates/new cell walls also appeared faulty in structure, being unevenly thick and perforated by large gaps. In addition, demethylesterified homogalacturonans were prematurely present in fra2 cell plates, while callose content was significantly lower than in the wild type. Furthermore, KNOLLE syntaxin disappeared from newly formed cell walls in fra2 earlier than in the wild type. Taken together, these observations indicate that delayed cytokinesis, due to faulty phragmoplast organization and expansion, results in a loss of synchronization between cell plate growth and its chemical maturation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Parede Celular/metabolismo , Citocinese/fisiologia , Katanina/metabolismo , Arabidopsis/citologia , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Parede Celular/ultraestrutura , Katanina/genética , Microscopia Eletrônica de Transmissão , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Raízes de Plantas/ultraestrutura , Plantas Geneticamente Modificadas , Proteínas Qa-SNARE/metabolismo
20.
J Integr Plant Biol ; 63(4): 646-661, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32761943

RESUMO

Plant interphase cortical microtubules (cMTs) mediate anisotropic cell expansion in response to environmental and developmental cues. In Arabidopsis thaliana, KATANIN 1 (KTN1), the p60 catalytic subunit of the conserved MT-severing enzyme katanin, is essential for cMT ordering and anisotropic cell expansion. However, the regulation of KTN1-mediated cMT severing and ordering remains unclear. In this work, we report that the Arabidopsis IQ67 DOMAIN (IQD) family gene ABNORMAL SHOOT 6 (ABS6) encodes a MT-associated protein. Overexpression of ABS6 leads to elongated cotyledons, directional pavement cell expansion, and highly ordered transverse cMT arrays. Genetic suppressor analysis revealed that ABS6-mediated cMT ordering is dependent on KTN1 and SHADE AVOIDANCE 4 (SAV4). Live imaging of cMT dynamics showed that both ABS6 and SAV4 function as positive regulators of cMT severing. Furthermore, ABS6 directly interacts with KTN1 and SAV4 and promotes their recruitment to the cMTs. Finally, analysis of loss-of-function mutant combinations showed that ABS6, SAV4, and KTN1 work together to ensure the robust ethylene response in the apical hook of dark-grown seedlings. Together, our findings establish ABS6 and SAV4 as positive regulators of cMT severing and ordering, and highlight the role of cMT dynamics in fine-tuning differential growth in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Katanina/metabolismo , Microtúbulos/metabolismo , Proteínas de Arabidopsis/genética , Katanina/genética , Microtúbulos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA