Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50.278
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 630(8015): 91-95, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38778107

RESUMO

The strength of materials depends on the rate at which they are tested, as defects, for example dislocations, that move in response to applied strains have intrinsic kinetic limitations1-4. As the deformation strain rate increases, more strengthening mechanisms become active and increase the strength4-7. However, the regime in which this transition happens has been difficult to access with traditional micromechanical strength measurements. Here, with microballistic impact testing at strain rates greater than 106 s-1, and without shock conflation, we show that the strength of copper increases by about 30% for a 157 °C increase in temperature, an effect also observed in pure titanium and gold. This effect is counterintuitive, as almost all materials soften when heated under normal conditions. This anomalous thermal strengthening across several pure metals is the result of a change in the controlling deformation mechanism from thermally activated strengthening to ballistic transport of dislocations, which experience drag through phonon interactions1,8-10. These results point to a pathway to better model and predict materials properties under various extreme strain rate conditions, from high-speed manufacturing operations11 to hypersonic transport12.


Assuntos
Cobre , Ouro , Temperatura , Titânio , Ouro/química , Titânio/química , Estresse Mecânico , Teste de Materiais , Fônons , Metais/química , Temperatura Alta
2.
Mol Cell ; 82(6): 1083-1085, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35303481

RESUMO

In this issue of Molecular Cell, Tsuchida et al. (2022) present a successful structure-guided effort in improving genome-editing efficiencies of CRISPR-CasX from Deltaproteobacteria (DpbCasX) and Planctomycetes (PlmCasX). Engineered variants that stabilize the active conformational state improved the catalytic efficiency by ∼10-20 fold in vitro and mean-editing efficiency by ∼2-3 fold in human cells.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Ouro , Humanos
3.
Nature ; 620(7975): 787-793, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37612396

RESUMO

Increasing gold and mineral mining activity in rivers across the global tropics has degraded ecosystems and threatened human health1,2. Such river mineral mining involves intensive excavation and sediment processing in river corridors, altering river form and releasing excess sediment downstream2. Increased suspended sediment loads can reduce water clarity and cause siltation to levels that may result in disease and mortality in fish3,4, poor water quality5 and damage to human infrastructure6. Although river mining has been investigated at local scales, no global synthesis of its physical footprint and impacts on hydrologic systems exists, leaving its full environmental consequences unknown. We assemble and analyse a 37-year satellite database showing pervasive, increasing river mineral mining worldwide. We identify 396 mining districts in 49 countries, concentrated in tropical waterways that are almost universally altered by mining-derived sediment. Of 173 mining-affected rivers, 80% have suspended sediment concentrations (SSCs) more than double pre-mining levels. In 30 countries in which mining affects large (>50 m wide) rivers, 23 ± 19% of large river length is altered by mining-derived sediment, a globe-spanning effect representing 35,000 river kilometres, 6% (±1% s.e.) of all large tropical river reaches. Our findings highlight the ubiquity and intensity of mining-associated degradation in tropical river systems.


Assuntos
Ecossistema , Sedimentos Geológicos , Mineração , Rios , Clima Tropical , Animais , Humanos , Bases de Dados Factuais , Ouro , Hidrologia , Mineração/estatística & dados numéricos , Mineração/tendências , Peixes , Sedimentos Geológicos/análise
4.
Nature ; 623(7985): 58-65, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37914945

RESUMO

To construct tissue-like prosthetic materials, soft electroactive hydrogels are the best candidate owing to their physiological mechanical modulus, low electrical resistance and bidirectional stimulating and recording capability of electrophysiological signals from biological tissues1,2. Nevertheless, until now, bioelectronic devices for such prostheses have been patch type, which cannot be applied onto rough, narrow or deep tissue surfaces3-5. Here we present an injectable tissue prosthesis with instantaneous bidirectional electrical conduction in the neuromuscular system. The soft and injectable prosthesis is composed of a biocompatible hydrogel with unique phenylborate-mediated multiple crosslinking, such as irreversible yet freely rearrangeable biphenyl bonds and reversible coordinate bonds with conductive gold nanoparticles formed in situ by cross-coupling. Closed-loop robot-assisted rehabilitation by injecting this prosthetic material is successfully demonstrated in the early stage of severe muscle injury in rats, and accelerated tissue repair is achieved in the later stage.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Próteses e Implantes , Ferimentos e Lesões , Animais , Ratos , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Condutividade Elétrica , Ouro/química , Hidrogéis/administração & dosagem , Hidrogéis/química , Hidrogéis/uso terapêutico , Nanopartículas Metálicas/química , Músculos/lesões , Músculos/inervação , Robótica , Ferimentos e Lesões/reabilitação , Ferimentos e Lesões/cirurgia
5.
Nature ; 612(7939): 259-265, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36443603

RESUMO

The unique topology and physics of chiral superlattices make their self-assembly from nanoparticles highly sought after yet challenging in regard to (meta)materials1-3. Here we show that tetrahedral gold nanoparticles can transform from a perovskite-like, low-density phase with corner-to-corner connections into pinwheel assemblies with corner-to-edge connections and denser packing. Whereas corner-sharing assemblies are achiral, pinwheel superlattices become strongly mirror asymmetric on solid substrates as demonstrated by chirality measures. Liquid-phase transmission electron microscopy and computational models show that van der Waals and electrostatic interactions between nanoparticles control thermodynamic equilibrium. Variable corner-to-edge connections among tetrahedra enable fine-tuning of chirality. The domains of the bilayer superlattices show strong chiroptical activity as identified by photon-induced near-field electron microscopy and finite-difference time-domain simulations. The simplicity and versatility of substrate-supported chiral superlattices facilitate the manufacture of metastructured coatings with unusual optical, mechanical and electronic characteristics.


Assuntos
Ouro , Nanopartículas Metálicas , Eletrônica , Física
6.
Nature ; 603(7900): 271-275, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35038718

RESUMO

In oxidation reactions catalysed by supported metal nanoparticles with oxygen as the terminal oxidant, the rate of the oxygen reduction can be a limiting factor. This is exemplified by the oxidative dehydrogenation of alcohols, an important class of reactions with modern commercial applications1-3. Supported gold nanoparticles are highly active for the dehydrogenation of the alcohol to an aldehyde4 but are less effective for oxygen reduction5,6. By contrast, supported palladium nanoparticles offer high efficacy for oxygen reduction5,6. This imbalance can be overcome by alloying gold with palladium, which gives enhanced activity to both reactions7,8,9; however, the electrochemical potential of the alloy is a compromise between that of the two metals, meaning that although the oxygen reduction can be improved in the alloy, the dehydrogenation activity is often limited. Here we show that by separating the gold and palladium components in bimetallic carbon-supported catalysts, we can almost double the reaction rate compared with that achieved with the corresponding alloy catalyst. We demonstrate this using physical mixtures of carbon-supported monometallic gold and palladium catalysts and a bimetallic catalyst comprising separated gold and palladium regions. Furthermore, we demonstrate electrochemically that this enhancement is attributable to the coupling of separate redox processes occurring at isolated gold and palladium sites. The discovery of this catalytic effect-a cooperative redox enhancement-offers an approach to the design of multicomponent heterogeneous catalysts.


Assuntos
Ouro , Nanopartículas Metálicas , Álcoois , Ligas , Carbono , Catálise , Oxirredução , Oxigênio , Paládio
7.
Nature ; 611(7937): 695-701, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36289344

RESUMO

Although tremendous advances have been made in preparing porous crystals from molecular precursors1,2, there are no general ways of designing and making topologically diversified porous colloidal crystals over the 10-1,000 nm length scale. Control over porosity in this size range would enable the tailoring of molecular absorption and storage, separation, chemical sensing, catalytic and optical properties of such materials. Here, a universal approach for synthesizing metallic open-channel superlattices with pores of 10 to 1,000 nm from DNA-modified hollow colloidal nanoparticles (NPs) is reported. By tuning hollow NP geometry and DNA design, one can adjust crystal pore geometry (pore size and shape) and channel topology (the way in which pores are interconnected). The assembly of hollow NPs is driven by edge-to-edge rather than face-to-face DNA-DNA interactions. Two new design rules describing this assembly regime emerge from these studies and are then used to synthesize 12 open-channel superlattices with control over crystal symmetry, channel geometry and topology. The open channels can be selectively occupied by guests of the appropriate size and that are modified with complementary DNA (for example, Au NPs).


Assuntos
Cristalização , DNA , Ouro , Nanopartículas , DNA/química , Ouro/química , Nanopartículas/química , Tamanho da Partícula , Porosidade , Coloides/química , Cristalização/métodos
8.
Nature ; 601(7893): 366-373, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35046606

RESUMO

Chirality is a unifying structural metric of biological and abiological forms of matter. Over the past decade, considerable clarity has been achieved in understanding the chemistry and physics of chiral inorganic nanoparticles1-4; however, little is known about their effects on complex biochemical networks5,6. Intermolecular interactions of biological molecules and inorganic nanoparticles show some commonalities7-9, but these structures differ in scale, in geometry and in the dynamics of chiral shapes, which can both impede and strengthen their mirror-asymmetric complexes. Here we show that achiral and left- and right-handed gold biomimetic nanoparticles show different in vitro and in vivo immune responses. We use irradiation with circularly polarized light (CPL) to synthesize nanoparticles with controllable nanometre-scale chirality and optical anisotropy factors (g-factors) of up to 0.4. We find that binding of nanoparticles to two proteins from the family of adhesion G-protein-coupled receptors (AGPCRs)-namely cluster-of-differentiation 97 (CD97) and epidermal-growth-factor-like-module receptor 1 (EMR1)-results in the opening of mechanosensitive potassium-efflux channels, the production of immune signalling complexes known as inflammasomes, and the maturation of mouse bone-marrow-derived dendritic cells. Both in vivo and in vitro immune responses depend monotonically on the g-factors of the nanoparticles, indicating that nanoscale chirality can be used to regulate the maturation of immune cells. Finally, left-handed nanoparticles show substantially higher (1,258-fold) efficiency compared with their right-handed counterparts as adjuvants for vaccination against the H9N2 influenza virus, opening a path to the use of nanoscale chirality in immunology.


Assuntos
Proteínas de Ligação ao Cálcio , Células Dendríticas , Inflamassomos , Nanopartículas Metálicas , Receptores Acoplados a Proteínas G , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Células Dendríticas/imunologia , Ouro , Vírus da Influenza A Subtipo H9N2 , Mecanotransdução Celular , Nanopartículas Metálicas/química , Camundongos , Canais de Potássio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Estereoisomerismo
9.
Nature ; 594(7863): 380-384, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34135522

RESUMO

DNA has long been used as a template for the construction of helical assemblies of inorganic nanoparticles1-5. For example, gold nanoparticles decorated with DNA (or with peptides) can create helical assemblies6-9. But without such biological ligands, helices are difficult to achieve and their mechanism of formation is challenging to understand10,11. Atomically precise nanoclusters that are protected by ligands such as thiolate12,13 have demonstrated hierarchical structural complexity in their assembly at the interparticle and intraparticle levels, similar to biomolecules and their assemblies14. Furthermore, carrier dynamics can be controlled by engineering the structure of the nanoclusters15. But these nanoclusters usually have isotropic structures16,17 and often assemble into commonly found supercrystals18. Here we report the synthesis of homodimeric and heterodimeric gold nanoclusters and their self-assembly into superstructures. While the homodimeric nanoclusters form layer-by-layer superstructures, the heterodimeric nanoclusters self-assemble into double- and quadruple-helical superstructures. These complex arrangements are the result of two different motif pairs, one pair per monomer, where each motif bonds with its paired motif on a neighbouring heterodimer. This motif pairing is reminiscent of the paired interactions of nucleobases in DNA helices. Meanwhile, the surrounding ligands on the clusters show doubly or triply paired steric interactions. The helical assembly is driven by van der Waals interactions through particle rotation and conformational matching. Furthermore, the heterodimeric clusters have a carrier lifetime that is roughly 65 times longer than that of the homodimeric clusters. Our findings suggest new approaches for increasing complexity in the structural design and engineering of precision in supercrystals.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Cristalização , DNA/química , Ligantes , Modelos Moleculares
10.
Proc Natl Acad Sci U S A ; 121(23): e2403131121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38805267

RESUMO

The renal elimination pathway is increasingly harnessed to reduce nonspecific accumulation of engineered nanoparticles within the body and expedite their clinical applications. While the size of nanoparticles is recognized as crucial for their passive filtration through the glomerulus due to its limited pore size, the influence of nanoparticle charge on their transport and interactions within the kidneys remains largely elusive. Herein, we report that the proximal tubule and peritubular capillary, rather than the glomerulus, serve as primary charge barriers to the transport of charged nanoparticles within the kidney. Employing a series of ultrasmall, renal-clearable gold nanoparticles (AuNPs) with precisely engineered surface charge characteristics as multimodal imaging agents, we have tracked their distribution and retention across various kidney components following intravenous administration. Our results reveal that retention in the proximal tubules is governed not by the nanoparticle's zeta-potential, but by direct Coulombic interactions between the positively charged surface ligands of the AuNPs and the negatively charged microvilli of proximal tubules. However, further enhancing these interactions leads to increased binding of the positively charged AuNPs to the peritubular capillaries during the initial phase of elimination, subsequently facilitating their slow passage through the glomeruli and interaction with tubular components in a charge-selective manner. By identifying these two critical charge-dependent barriers in the renal transport of nanoparticles, our findings offer a fundamental insight for the design of renal nanomedicines tailored for selective targeting within the kidney, laying down a foundation for developing targeting renal nanomedicines for future kidney disease management in the clinics.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Animais , Camundongos , Túbulos Renais Proximais/metabolismo , Eliminação Renal , Rim/metabolismo , Masculino
11.
Proc Natl Acad Sci U S A ; 121(5): e2318265121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38261618

RESUMO

Surgical resections of solid tumors guided by visual inspection of tumor margins have been performed for over a century to treat cancer. Near-infrared (NIR) fluorescence labeling/imaging of tumor in the NIR-I (800 to 900 nm) range with systemically administrated fluorophore/tumor-targeting antibody conjugates have been introduced to improve tumor margin delineation, tumor removal accuracy, and patient survival. Here, we show Au25 molecular clusters functionalized with phosphorylcholine ligands (AuPC, ~2 nm in size) as a preclinical intratumorally injectable agent for NIR-II/SWIR (1,000 to 3,000 nm) fluorescence imaging-guided tumor resection. The AuPC clusters were found to be uniformly distributed in the 4T1 murine breast cancer tumor upon intratumor (i.t.) injection. The phosphocholine coating afforded highly stealth clusters, allowing a high percentage of AuPC to fill the tumor interstitial fluid space homogeneously. Intra-operative surgical navigation guided by imaging of the NIR-II fluorescence of AuPC allowed for complete and non-excessive tumor resection. The AuPC in tumors were also employed as a photothermal therapy (PTT) agent to uniformly heat up and eradicate tumors. Further, we performed in vivo NIR-IIb (1,500 to 1,700 nm) molecular imaging of the treated tumor using a quantum dot-Annexin V (QD-P3-Anx V) conjugate, revealing cancer cell apoptosis following PTT. The therapeutic functionalities of AuPC clusters combined with rapid renal excretion, high biocompatibility, and safety make them promising for clinical translation.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Humanos , Animais , Camundongos , Feminino , Imagem Óptica , Anexina A5 , Apoptose , Ouro
12.
Nature ; 587(7835): 588-593, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33239800

RESUMO

The quantum spin properties of nitrogen-vacancy defects in diamond enable diverse applications in quantum computing and communications1. However, fluorescent nanodiamonds also have attractive properties for in vitro biosensing, including brightness2, low cost3 and selective manipulation of their emission4. Nanoparticle-based biosensors are essential for the early detection of disease, but they often lack the required sensitivity. Here we investigate fluorescent nanodiamonds as an ultrasensitive label for in vitro diagnostics, using a microwave field to modulate emission intensity5 and frequency-domain analysis6 to separate the signal from background autofluorescence7, which typically limits sensitivity. Focusing on the widely used, low-cost lateral flow format as an exemplar, we achieve a detection limit of 8.2 × 10-19 molar for a biotin-avidin model, 105 times more sensitive than that obtained using gold nanoparticles. Single-copy detection of HIV-1 RNA can be achieved with the addition of a 10-minute isothermal amplification step, and is further demonstrated using a clinical plasma sample with an extraction step. This ultrasensitive quantum diagnostics platform is applicable to numerous diagnostic test formats and diseases, and has the potential to transform early diagnosis of disease for the benefit of patients and populations.


Assuntos
Técnicas Biossensoriais/métodos , Diagnóstico Precoce , Infecções por HIV/diagnóstico , Infecções por HIV/virologia , HIV-1/genética , Nanodiamantes/química , RNA Viral/sangue , Avidina/química , Técnicas Biossensoriais/instrumentação , Biotina/química , Fluorescência , Ouro/química , HIV-1/isolamento & purificação , Humanos , Limite de Detecção , Nanopartículas Metálicas/química , Microfluídica/instrumentação , Microfluídica/métodos , Micro-Ondas , Técnicas de Amplificação de Ácido Nucleico , Papel , Plasma/virologia , Teoria Quântica , Sensibilidade e Especificidade , Imagem Individual de Molécula , Temperatura
13.
Proc Natl Acad Sci U S A ; 120(42): e2305662120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37812696

RESUMO

Nanomedicines for treating chronic kidney disease (CKD) are on the horizon, yet their delivery to renal tubules where tubulointerstitial fibrosis occurs remains inefficient. We report a folic acid-conjugated gold nanoparticle that can transport into renal tubules and treat tubulointerstitial fibrosis in mice with unilateral ureteral obstruction. The 3-nm gold core allows for the dissection of bio-nano interactions in the fibrotic kidney, ensures the overall nanoparticle (~7 nm) to be small enough for glomerular filtration, and naturally inhibits the p38α mitogen-activated protein kinase in the absence of chemical or biological drugs. The folic acids support binding to selected tubule cells with overexpression of folate receptors and promote retention in the fibrotic kidney. Upon intravenous injection, this nanoparticle can selectively accumulate in the fibrotic kidney over the nonfibrotic contralateral kidney at ~3.6% of the injected dose. Delivery to the fibrotic kidney depends on nanoparticle size and disease stage. Notably, a single injection of this self-therapeutic nanoparticle reduces tissue degeneration, inhibits genes related to the extracellular matrix, and treats fibrosis more effectively than standard Captopril therapy. Our data underscore the importance of constructing CKD nanomedicines based on renal pathophysiology.


Assuntos
Nanopartículas Metálicas , Insuficiência Renal Crônica , Camundongos , Animais , Ouro/farmacologia , Ácido Fólico/metabolismo , Nanopartículas Metálicas/uso terapêutico , Rim/metabolismo , Insuficiência Renal Crônica/metabolismo , Fibrose
14.
Nat Mater ; 23(2): 271-280, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37957270

RESUMO

Interfacing molecular machines to inorganic nanoparticles can, in principle, lead to hybrid nanomachines with extended functions. Here we demonstrate a ligand engineering approach to develop atomically precise hybrid nanomachines by interfacing gold nanoclusters with tetraphenylethylene molecular rotors. When gold nanoclusters are irradiated with near-infrared light, the rotation of surface-decorated tetraphenylethylene moieties actively dissipates the absorbed energy to sustain the photothermal nanomachine with an intact structure and steady efficiency. Solid-state nuclear magnetic resonance and femtosecond transient absorption spectroscopy reveal that the photogenerated hot electrons are rapidly cooled down within picoseconds via electron-phonon coupling in the nanomachine. We find that the nanomachine remains structurally and functionally intact in mammalian cells and in vivo. A single dose of near-infrared irradiation can effectively ablate tumours without recurrence in tumour-bearing mice, which shows promise in the development of nanomachine-based theranostics.


Assuntos
Nanopartículas , Neoplasias , Estilbenos , Animais , Camundongos , Fototerapia/métodos , Nanopartículas/química , Ouro/química , Mamíferos
15.
Chem Rev ; 123(10): 6612-6667, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37071737

RESUMO

The gold drugs, gold sodium thiomalate (Myocrisin), aurothioglucose (Solganal), and the orally administered auranofin (Ridaura), are utilized in modern medicine for the treatment of inflammatory arthritis including rheumatoid and juvenile arthritis; however, new gold agents have been slow to enter the clinic. Repurposing of auranofin in different disease indications such as cancer, parasitic, and microbial infections in the clinic has provided impetus for the development of new gold complexes for biomedical applications based on unique mechanistic insights differentiated from auranofin. Various chemical methods for the preparation of physiologically stable gold complexes and associated mechanisms have been explored in biomedicine such as therapeutics or chemical probes. In this Review, we discuss the chemistry of next generation gold drugs, which encompasses oxidation states, geometry, ligands, coordination, and organometallic compounds for infectious diseases, cancer, inflammation, and as tools for chemical biology via gold-protein interactions. We will focus on the development of gold agents in biomedicine within the past decade. The Review provides readers with an accessible overview of the utility, development, and mechanism of action of gold-based small molecules to establish context and basis for the thriving resurgence of gold in medicine.


Assuntos
Artrite Reumatoide , Auranofina , Humanos , Auranofina/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Ouro , Aurotioglucose/farmacologia , Aurotioglucose/uso terapêutico , Tiomalato Sódico de Ouro/farmacologia , Tiomalato Sódico de Ouro/uso terapêutico
16.
Methods ; 221: 12-17, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38006950

RESUMO

This research aims to develop a robust and quantitative method for measuring creatinine levels by harnessing the enhanced Tyndall effect (TE) phenomenon. The envisioned sensing assay is designed for practical deployment in resource-limited settings or homes, where access to advanced laboratory facilities is limited. Its primary objective is to enable regular and convenient monitoring of renal healthcare, particularly in cases involving elevated creatinine levels. The creatinine sensing strategy is achieved based on the aggregation of gold nanoparticles (AuNPs) triggered via the direct crosslinking reaction between creatinine and AuNPs, where an inexpensive laser pointer was used as a handheld light source and a smartphone as a portable device to record the TE phenomenon enhanced by the creatinine-induced aggregation of AuNPs. After evaluation and optimization of parameters such as AuNP concentrations and TE measurement time, the subsequent proof-of-concept experiments demonstrated that the average gray value change of TE images was linearly related to the logarithm of creatinine concentrations in the range of 1-50 µM, with a limit of detection of 0.084 µM. Meanwhile, our proposed creatinine sensing platform exhibited highly selective detection in complex matrix environments. Our approach offers a straightforward, cost-effective, and portable means of creatinine detection, presenting an encouraging signal readout mechanism suitable for point-of-care (POC) applications. The utilization of this assay as a POC solution exhibits potential for expediting timely interventions and enhancing healthcare outcomes among individuals with renal health issues.


Assuntos
Nanopartículas Metálicas , Smartphone , Humanos , Creatinina , Ouro , Urinálise , Colorimetria/métodos
17.
Cell ; 142(6): 879-88, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20850010

RESUMO

Many biological motor molecules move within cells using stepsizes predictable from their structures. Myosin VI, however, has much larger and more broadly distributed stepsizes than those predicted from its short lever arms. We explain the discrepancy by monitoring Qdots and gold nanoparticles attached to the myosin-VI motor domains using high-sensitivity nanoimaging. The large stepsizes were attributed to an extended and relatively rigid lever arm; their variability to two stepsizes, one large (72 nm) and one small (44 nm). These results suggest that there exist two tilt angles during myosin-VI stepping, which correspond to the pre- and postpowerstroke states and regulate the leading head. The large steps are consistent with the previously reported hand-over-hand mechanism, while the small steps follow an inchworm-like mechanism and increase in frequency with ADP. Switching between these two mechanisms in a strain-sensitive, ADP-dependent manner allows myosin VI to fulfill its multiple cellular tasks including vesicle transport and membrane anchoring.


Assuntos
Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/metabolismo , Actinas/metabolismo , Animais , Galinhas , Dimerização , Ouro , Humanos , Nanopartículas Metálicas , Microscopia , Microscopia de Fluorescência , Modelos Biológicos , Modelos Moleculares , Estrutura Terciária de Proteína , Pontos Quânticos
18.
Nature ; 569(7756): 438-442, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31068697

RESUMO

Symmetrical protein cages have evolved to fulfil diverse roles in nature, including compartmentalization and cargo delivery1, and have inspired synthetic biologists to create novel protein assemblies via the precise manipulation of protein-protein interfaces. Despite the impressive array of protein cages produced in the laboratory, the design of inducible assemblies remains challenging2,3. Here we demonstrate an ultra-stable artificial protein cage, the assembly and disassembly of which can be controlled by metal coordination at the protein-protein interfaces. The addition of a gold (I)-triphenylphosphine compound to a cysteine-substituted, 11-mer protein ring triggers supramolecular self-assembly, which generates monodisperse cage structures with masses greater than 2 MDa. The geometry of these structures is based on the Archimedean snub cube and is, to our knowledge, unprecedented. Cryo-electron microscopy confirms that the assemblies are held together by 120 S-Aui-S staples between the protein oligomers, and exist in two chiral forms. The cage shows extreme chemical and thermal stability, yet it readily disassembles upon exposure to reducing agents. As well as gold, mercury(II) is also found to enable formation of the protein cage. This work establishes an approach for linking protein components into robust, higher-order structures, and expands the design space available for supramolecular assemblies to include previously unexplored geometries.


Assuntos
Ouro/química , Proteínas/química , Microscopia Crioeletrônica , Cisteína/química , Mercúrio/química , Modelos Moleculares , Proteínas/ultraestrutura
19.
Proc Natl Acad Sci U S A ; 119(29): e2123527119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858309

RESUMO

A promising clinical trial utilizing gold-silica core-shell nanostructures coated with polyethylene glycol (PEG) has been reported for near-infrared (NIR) photothermal therapy (PTT) of prostate cancer. The next critical step for PTT is the visualization of therapeutically relevant nanoshell (NS) concentrations at the tumor site. Here we report the synthesis of PEGylated Gd2O3-mesoporous silica/gold core/shell NSs (Gd2O3-MS NSs) with NIR photothermal properties that also supply sufficient MRI contrast to be visualized at therapeutic doses (≥108 NSs per milliliter). The nanoparticles have r1 relaxivities more than three times larger than those of conventional T1 contrast agents, requiring less concentration of Gd3+ to observe an equivalent signal enhancement in T1-weighted MR images. Furthermore, Gd2O3-MS NS nanoparticles have r2 relaxivities comparable to those of existing T2 contrast agents, observed in agarose phantoms. This highly unusual combination of simultaneous T1 and T2 contrast allows for MRI enhancement through different approaches. As a rudimentary example, we demonstrate T1/T2 ratio MR images with sixfold contrast signal enhancement relative to its T1 MRI and induced temperature increases of 20 to 55 °C under clinical illumination conditions. These nanoparticles facilitate MRI-guided PTT while providing real-time temperature feedback through thermal MRI mapping.


Assuntos
Meios de Contraste , Gadolínio , Ouro , Imageamento por Ressonância Magnética , Nanoconchas , Terapia Fototérmica , Meios de Contraste/síntese química , Gadolínio/química , Ouro/química , Imageamento por Ressonância Magnética/métodos , Nanoconchas/química , Terapia Fototérmica/métodos , Polietilenoglicóis/química , Dióxido de Silício/química
20.
Proc Natl Acad Sci U S A ; 119(42): e2210204119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215468

RESUMO

V-ATPases are rotary motor proteins that convert the chemical energy of ATP into the electrochemical potential of ions across cell membranes. V-ATPases consist of two rotary motors, Vo and V1, and Enterococcus hirae V-ATPase (EhVoV1) actively transports Na+ in Vo (EhVo) by using torque generated by ATP hydrolysis in V1 (EhV1). Here, we observed ATP-driven stepping rotation of detergent-solubilized EhVoV1 wild-type, aE634A, and BR350K mutants under various Na+ and ATP concentrations ([Na+] and [ATP], respectively) by using a 40-nm gold nanoparticle as a low-load probe. When [Na+] was low and [ATP] was high, under the condition that only Na+ binding to EhVo is rate limiting, wild-type and aE634A exhibited 10 pausing positions reflecting 10-fold symmetry of the EhVo rotor and almost no backward steps. Duration time before the forward steps was inversely proportional to [Na+], confirming that Na+ binding triggers the steps. When both [ATP] and [Na+] were low, under the condition that both Na+ and ATP bindings are rate limiting, aE634A exhibited 13 pausing positions reflecting 10- and 3-fold symmetries of EhVo and EhV1, respectively. The distribution of duration time before the forward step was fitted well by the sum of two exponential decay functions with distinct time constants. Furthermore, occasional backward steps smaller than 36° were observed. Small backward steps were also observed during three long ATP cleavage pauses of BR350K. These results indicate that EhVo and EhV1 do not share pausing positions, Na+ and ATP bindings occur at different angles, and the coupling between EhVo and EhV1 has a rigid component.


Assuntos
Nanopartículas Metálicas , ATPases Vacuolares Próton-Translocadoras , Trifosfato de Adenosina/metabolismo , Detergentes , Ouro/metabolismo , Modelos Moleculares , ATPases Translocadoras de Prótons/metabolismo , Rotação , ATPases Vacuolares Próton-Translocadoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA