Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Cell ; 184(10): 2595-2604.e13, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33891875

ABSTRACT

The emergence and spread of SARS-CoV-2 lineage B.1.1.7, first detected in the United Kingdom, has become a global public health concern because of its increased transmissibility. Over 2,500 COVID-19 cases associated with this variant have been detected in the United States (US) since December 2020, but the extent of establishment is relatively unknown. Using travel, genomic, and diagnostic data, we highlight that the primary ports of entry for B.1.1.7 in the US were in New York, California, and Florida. Furthermore, we found evidence for many independent B.1.1.7 establishments starting in early December 2020, followed by interstate spread by the end of the month. Finally, we project that B.1.1.7 will be the dominant lineage in many states by mid- to late March. Thus, genomic surveillance for B.1.1.7 and other variants urgently needs to be enhanced to better inform the public health response.


Subject(s)
COVID-19 Testing , COVID-19 , Models, Biological , SARS-CoV-2 , COVID-19/genetics , COVID-19/mortality , COVID-19/transmission , Female , Humans , Male , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , United States/epidemiology
2.
Cell ; 181(5): 990-996.e5, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32386545

ABSTRACT

The novel coronavirus SARS-CoV-2 was first detected in the Pacific Northwest region of the United States in January 2020, with subsequent COVID-19 outbreaks detected in all 50 states by early March. To uncover the sources of SARS-CoV-2 introductions and patterns of spread within the United States, we sequenced nine viral genomes from early reported COVID-19 patients in Connecticut. Our phylogenetic analysis places the majority of these genomes with viruses sequenced from Washington state. By coupling our genomic data with domestic and international travel patterns, we show that early SARS-CoV-2 transmission in Connecticut was likely driven by domestic introductions. Moreover, the risk of domestic importation to Connecticut exceeded that of international importation by mid-March regardless of our estimated effects of federal travel restrictions. This study provides evidence of widespread sustained transmission of SARS-CoV-2 within the United States and highlights the critical need for local surveillance.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/transmission , Pneumonia, Viral/transmission , Travel , Betacoronavirus/isolation & purification , COVID-19 , Connecticut/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Epidemiological Monitoring , Humans , Likelihood Functions , Pandemics , Phylogeny , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , SARS-CoV-2 , Travel/legislation & jurisprudence , United States/epidemiology , Washington/epidemiology
3.
Nat Rev Mol Cell Biol ; 18(10): 637-650, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28792005

ABSTRACT

Several macromolecular machines collaborate to produce eukaryotic messenger RNA. RNA polymerase II (Pol II) translocates along genes that are up to millions of base pairs in length and generates a flexible RNA copy of the DNA template. This nascent RNA harbours introns that are removed by the spliceosome, which is a megadalton ribonucleoprotein complex that positions the distant ends of the intron into its catalytic centre. Emerging evidence that the catalytic spliceosome is physically close to Pol II in vivo implies that transcription and splicing occur on similar timescales and that the transcription and splicing machineries may be spatially constrained. In this Review, we discuss aspects of spliceosome assembly, transcription elongation and other co-transcriptional events that allow the temporal coordination of co-transcriptional splicing.


Subject(s)
Eukaryota/metabolism , RNA Splicing , Spliceosomes/metabolism , Transcription, Genetic , Animals , Gene Expression Regulation , Humans
4.
PLoS Biol ; 19(5): e3001236, 2021 05.
Article in English | MEDLINE | ID: mdl-33961632

ABSTRACT

With the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants that may increase transmissibility and/or cause escape from immune responses, there is an urgent need for the targeted surveillance of circulating lineages. It was found that the B.1.1.7 (also 501Y.V1) variant, first detected in the United Kingdom, could be serendipitously detected by the Thermo Fisher TaqPath COVID-19 PCR assay because a key deletion in these viruses, spike Δ69-70, would cause a "spike gene target failure" (SGTF) result. However, a SGTF result is not definitive for B.1.1.7, and this assay cannot detect other variants of concern (VOC) that lack spike Δ69-70, such as B.1.351 (also 501Y.V2), detected in South Africa, and P.1 (also 501Y.V3), recently detected in Brazil. We identified a deletion in the ORF1a gene (ORF1a Δ3675-3677) in all 3 variants, which has not yet been widely detected in other SARS-CoV-2 lineages. Using ORF1a Δ3675-3677 as the primary target and spike Δ69-70 to differentiate, we designed and validated an open-source PCR assay to detect SARS-CoV-2 VOC. Our assay can be rapidly deployed in laboratories around the world to enhance surveillance for the local emergence and spread of B.1.1.7, B.1.351, and P.1.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/genetics , DNA Primers , Humans , Multiplex Polymerase Chain Reaction/methods , Mutation , Polyproteins/genetics , Viral Proteins/genetics
5.
PLoS Biol ; 18(8): e3000869, 2020 08.
Article in English | MEDLINE | ID: mdl-32822393

ABSTRACT

Genomic epidemiology can provide a unique, real-time understanding of SARS-CoV-2 transmission patterns. Yet the potential for genomic analyses to guide local policy and community-based behavioral decisions is limited because they are often oriented towards specially trained scientists and conducted on a national or global scale. Here, we propose a new paradigm: Phylogenetic analyses performed on a local level (municipal, county, or state), with results communicated in a clear, timely, and actionable manner to strengthen public health responses. We believe that presenting results rapidly, and tailored to a non-expert audience, can serve as a template for effective public health response to COVID-19 and other emerging viral diseases.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Information Dissemination , Pneumonia, Viral/epidemiology , Public Health , COVID-19 , Genomics , Humans , Pandemics , Phylogeny , SARS-CoV-2
6.
J Infect Dis ; 225(3): 374-384, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34718647

ABSTRACT

BACKGROUND: The underlying immunologic deficiencies enabling severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfection are currently unknown. We describe deep longitudinal immune profiling of a transplant recipient hospitalized twice for coronavirus disease 2019 (COVID-19). METHODS: A 66-year-old male renal transplant recipient was hospitalized with COVID-19 March 2020 then readmitted to the hospital with COVID-19 233 days after initial diagnosis. Virologic and immunologic investigations were performed on samples from the primary and secondary infections. RESULTS: Whole viral genome sequencing and phylogenetic analysis revealed that viruses causing both infections were caused by distinct genetic lineages without evidence of immune escape mutations. Longitudinal comparison of cellular and humoral responses during primary SARS-CoV-2 infection revealed that this patient responded to the primary infection with low neutralization titer anti-SARS-CoV-2 antibodies that were likely present at the time of reinfection. CONCLUSIONS: The development of neutralizing antibodies and humoral memory responses in this patient failed to confer protection against reinfection, suggesting that they were below a neutralizing titer threshold or that additional factors may be required for efficient prevention of SARS-CoV-2 reinfection. Development of poorly neutralizing antibodies may have been due to profound and relatively specific reduction in naive CD4 T-cell pools. Seropositivity alone may not be a perfect correlate of protection in immunocompromised patients.


Subject(s)
COVID-19 , Reinfection , Transplant Recipients , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Humans , Male , Organ Transplantation , Phylogeny , Reinfection/immunology , Reinfection/virology , SARS-CoV-2/genetics
7.
Transpl Infect Dis ; 24(2): e13782, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34969164

ABSTRACT

BACKGROUND: Solid organ transplant recipients are at increased risk of COVID-19-associated morbidity and mortality. AIMS: We describe a nosocomial outbreak investigation on an immunocompromised inpatient unit. METHODS: Patients positive for SARS-CoV-2 were identified. An epidemiologic investigation was assisted with whole genome sequencing of positive samples. RESULTS: Two patients were identified as potential index cases; one presented with diarrhea and was initially not isolated, and the other developed hypoxemia on hospital day 18 before testing positive. Following identification of a SARS-CoV-2 cluster, the unit was closed and all patients and staff received surveillance testing revealing eight additional positive patients and staff members. Whole genome sequencing confirmed an outbreak. Enhanced infection prevention practices mitigated further spread. Asymptomatic patients with COVID-19 were successfully treated with bamlanivimab. DISCUSSION: Preventing SARS-CoV-2 outbreaks in transplant units poses unique challenges as patients may have atypical presentations of COVID-19. Immunocompromised patients who test positive for SARS-CoV-2 while asymptomatic may benefit from monoclonal antibody therapy to prevent disease progression. All hospital staff members working with immunocompromised patients should be promptly encouraged to follow infection prevention behaviors and receive SARS-CoV-2 vaccination. CONCLUSION: SARS-CoV-2 outbreaks on immunocompromised units can be mitigated through prompt identification of cases and robust infection prevention practices.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Disease Outbreaks , Humans , Vaccination
8.
Emerg Infect Dis ; 27(10): 2669-2672, 2021.
Article in English | MEDLINE | ID: mdl-34545794

ABSTRACT

In fall 2020, a coronavirus disease cluster comprising 16 cases occurred in Connecticut, USA. Epidemiologic and genomic evidence supported transmission among persons at a school and fitness center but not a workplace. The multiple transmission chains identified within this cluster highlight the necessity of a combined investigatory approach.


Subject(s)
COVID-19 , Fitness Centers , Connecticut/epidemiology , Genomics , Humans , SARS-CoV-2
9.
BMC Neurol ; 20(1): 248, 2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32552792

ABSTRACT

BACKGROUND: COVID-19 is caused by the severe acute respiratory syndrome virus SARS-CoV-2. It is widely recognized as a respiratory pathogen, but neurologic complications can be the presenting manifestation in a subset of infected patients. CASE PRESENTATION: We describe a 78-year old immunocompromised woman who presented with altered mental status after witnessed seizure-like activity at home. She was found to have SARS-CoV-2 infection and associated neuroinflammation. In this case, we undertake the first detailed analysis of cerebrospinal fluid (CSF) cytokines during COVID-19 infection and find a unique pattern of inflammation in CSF, but no evidence of viral neuroinvasion. CONCLUSION: Our findings suggest that neurologic symptoms such as encephalopathy and seizures may be the initial presentation of COVID-19. Central nervous system inflammation may associate with neurologic manifestations of disease.


Subject(s)
Betacoronavirus , Coronavirus Infections , Cytokines/cerebrospinal fluid , Encephalitis, Viral , Pandemics , Pneumonia, Viral , Acute Disease , Aged , Biomarkers/cerebrospinal fluid , COVID-19 , Female , Humans , SARS-CoV-2 , Seizures
10.
J Biol Chem ; 287(2): 1426-34, 2012 Jan 06.
Article in English | MEDLINE | ID: mdl-22117061

ABSTRACT

In the malarial parasite Plasmodium falciparum, a multifunctional phosphoethanolamine methyltransferase (PfPMT) catalyzes the methylation of phosphoethanolamine (pEA) to phosphocholine for membrane biogenesis. This pathway is also found in plant and nematodes, but PMT from these organisms use multiple methyltransferase domains for the S-adenosylmethionine (AdoMet) reactions. Because PfPMT is essential for normal growth and survival of Plasmodium and is not found in humans, it is an antiparasitic target. Here we describe the 1.55 Å resolution crystal structure of PfPMT in complex with AdoMet by single-wavelength anomalous dispersion phasing. In addition, 1.19-1.52 Å resolution structures of PfPMT with pEA (substrate), phosphocholine (product), sinefungin (inhibitor), and both pEA and S-adenosylhomocysteine bound were determined. These structures suggest that domain rearrangements occur upon ligand binding and provide insight on active site architecture defining the AdoMet and phosphobase binding sites. Functional characterization of 27 site-directed mutants identifies critical active site residues and suggests that Tyr-19 and His-132 form a catalytic dyad. Kinetic analysis, isothermal titration calorimetry, and protein crystallography of the Y19F and H132A mutants suggest a reaction mechanism for the PMT. Not only are Tyr-19 and His-132 required for phosphobase methylation, but they also form a "catalytic" latch that locks ligands in the active site and orders the site for catalysis. This study provides the first insight on this antiparasitic target enzyme essential for survival of the malaria parasite; however, further studies of the multidomain PMT from plants and nematodes are needed to understand the evolutionary division of metabolic function in the phosphobase pathway of these organisms.


Subject(s)
Methyltransferases/chemistry , Plasmodium falciparum/enzymology , Protozoan Proteins/chemistry , Adenosine/analogs & derivatives , Adenosine/chemistry , Amino Acid Substitution , Antimalarials/chemistry , Catalysis , Catalytic Domain , Crystallography, X-Ray , Drug Delivery Systems/methods , Enzyme Inhibitors/chemistry , Ethanolamines/chemistry , Humans , Kinetics , Malaria, Falciparum/drug therapy , Malaria, Falciparum/enzymology , Malaria, Falciparum/genetics , Methyltransferases/antagonists & inhibitors , Methyltransferases/genetics , Mutation, Missense , Phosphorylcholine/chemistry , Plasmodium falciparum/genetics , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/genetics
11.
Prog Biophys Mol Biol ; 182: 103-108, 2023 09.
Article in English | MEDLINE | ID: mdl-37369293

ABSTRACT

Early in the pandemic, a simple, open-source, RNA extraction-free RT-qPCR protocol for SARS-CoV-2 detection in saliva was developed and made widely available. This simplified approach (SalivaDirect) requires only sample treatment with proteinase K prior to PCR testing. However, feedback from clinical laboratories highlighted a need for a flexible workflow that can be seamlessly integrated into their current health and safety requirements for the receiving and handling of potentially infectious samples. To address these varying needs, we explored additional pre-PCR workflows. We built upon the original SalivaDirect workflow to include an initial incubation step (95 °C for 30 min, 95 °C for 5 min or 65 °C for 15 min) with or without addition of proteinase K. The limit of detection for the workflows tested did not significantly differ from that of the original SalivaDirect workflow. When tested on de-identified saliva samples from confirmed COVID-19 individuals, these workflows also produced comparable virus detection and assay sensitivities, as determined by RT-qPCR analysis. Exclusion of proteinase K did not negatively affect the sensitivity of the assay. The addition of multiple heat pretreatment options to the SalivaDirect protocol increases the accessibility of this cost-effective SARS-CoV-2 test as it gives diagnostic laboratories the flexibility to implement the workflow which best suits their safety protocols.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Endopeptidase K , Saliva , COVID-19/diagnosis , Polymerase Chain Reaction , RNA , Sensitivity and Specificity , COVID-19 Testing
12.
Lancet Microbe ; 4(1): e38-e46, 2023 01.
Article in English | MEDLINE | ID: mdl-36586415

ABSTRACT

BACKGROUND: Symptomatic patients who test negative for common viruses are an important possible source of unrecognised or emerging pathogens, but metagenomic sequencing of all samples is inefficient because of the low likelihood of finding a pathogen in any given sample. We aimed to determine whether nasopharyngeal CXCL10 screening could be used as a strategy to enrich for samples containing undiagnosed viruses. METHODS: In this pathogen surveillance and detection study, we measured CXCL10 concentrations from nasopharyngeal swabs from patients in the Yale New Haven health-care system, which had been tested at the Yale New Haven Hospital Clinical Virology Laboratory (New Haven, CT, USA). Patients who tested negative for a panel of respiratory viruses using multiplex PCR during Jan 23-29, 2017, or March 3-14, 2020, were included. We performed host and pathogen RNA sequencing (RNA-Seq) and analysis for viral reads on samples with CXCL10 higher than 1 ng/mL or CXCL10 testing and quantitative RT-PCR (RT-qPCR) for SARS-CoV-2. We used RNA-Seq and cytokine profiling to compare the host response to infection in samples that were virus positive (rhinovirus, seasonal coronavirus CoV-NL63, or SARS-CoV-2) and virus negative (controls). FINDINGS: During Jan 23-29, 2017, 359 samples were tested for ten viruses on the multiplex PCR respiratory virus panel (RVP). 251 (70%) were RVP negative. 60 (24%) of 251 samples had CXCL10 higher than 150 pg/mL and were identified for further analysis. 28 (47%) of 60 CXCL10-high samples were positive for seasonal coronaviruses. 223 (89%) of 251 samples were PCR negative for 15 viruses and, of these, CXCL10-based screening identified 32 (13%) samples for further analysis. Of these 32 samples, eight (25%) with CXCL10 concentrations higher than 1 ng/mL and sufficient RNA were selected for RNA-Seq. Microbial RNA analysis showed the presence of influenza C virus in one sample and revealed RNA reads from bacterial pathobionts in four (50%) of eight samples. Between March 3 and March 14, 2020, 375 (59%) of 641 samples tested negative for 15 viruses on the RVP. 32 (9%) of 375 samples had CXCL10 concentrations ranging from 100 pg/mL to 1000 pg/mL and four of those were positive for SARS-CoV-2. CXCL10 elevation was statistically significant, and a distinguishing feature was found in 28 (8%) of 375 SARS-CoV-2-negative samples versus all four SARS-CoV-2-positive samples (p=4·4 × 10-5). Transcriptomic signatures showed an interferon response in virus-positive samples and an additional neutrophil-high hyperinflammatory signature in samples with high amounts of bacterial pathobionts. The CXCL10 cutoff for detecting a virus was 166·5 pg/mL for optimal sensitivity and 1091·0 pg/mL for specificity using a clinic-ready automated microfluidics-based immunoassay. INTERPRETATION: These results confirm CXCL10 as a robust nasopharyngeal biomarker of viral respiratory infection and support host response-based screening followed by metagenomic sequencing of CXCL10-high samples as a practical approach to incorporate clinical samples into pathogen discovery and surveillance efforts. FUNDING: National Institutes of Health, the Hartwell Foundation, the Gruber Foundation, Fast Grants for COVID-19 research from the Mercatus Center, and the Huffman Family Donor Advised Fund.


Subject(s)
COVID-19 , Viruses , United States , Humans , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2/genetics , Viruses/genetics , Multiplex Polymerase Chain Reaction , RNA
13.
Bioorg Med Chem Lett ; 22(15): 4990-3, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22771008

ABSTRACT

Phosphoethanolamine N-methyltransferase (PMT) is essential for phospholipid biogenesis in the malarial parasite Plasmodium falciparum. PfPMT catalyzes the triple methylation of phosphoethanolamine to produce phosphocholine, which is then used for phosphatidylcholine synthesis. Here we describe the 2.0Å resolution X-ray crystal structure of PfPMT in complex with amodiaquine. To better characterize inhibition of PfPMT by amodiaquine, we determined the IC(50) values of a series of aminoquinolines using a direct radiochemical assay. Both structural and functional analyses provide a possible approach for the development of new small molecule inhibitors of PfPMT.


Subject(s)
Amodiaquine/chemistry , Enzyme Inhibitors/chemistry , Methyltransferases/antagonists & inhibitors , Plasmodium falciparum/enzymology , Aminoquinolines/chemistry , Binding Sites , Crystallography, X-Ray , Methyltransferases/metabolism , Protein Structure, Tertiary
14.
Virus Evol ; 8(1): veab098, 2022.
Article in English | MEDLINE | ID: mdl-35542310

ABSTRACT

Genomic sequencing is crucial to understanding the epidemiology and evolution of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Often, genomic studies rely on remnant diagnostic material, typically nasopharyngeal (NP) swabs, as input into whole-genome SARS-CoV-2 next-generation sequencing pipelines. Saliva has proven to be a safe and stable specimen for the detection of SARS-CoV-2 RNA via traditional diagnostic assays; however, saliva is not commonly used for SARS-CoV-2 sequencing. Using the ARTIC Network amplicon-generation approach with sequencing on the Oxford Nanopore MinION, we demonstrate that sequencing SARS-CoV-2 from saliva produces genomes comparable to those from NP swabs, and that RNA extraction is necessary to generate complete genomes from saliva. In this study, we show that saliva is a useful specimen type for genomic studies of SARS-CoV-2.

15.
Genome Biol ; 23(1): 236, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36348471

ABSTRACT

Effectively monitoring the spread of SARS-CoV-2 mutants is essential to efforts to counter the ongoing pandemic. Predicting lineage abundance from wastewater, however, is technically challenging. We show that by sequencing SARS-CoV-2 RNA in wastewater and applying algorithms initially used for transcriptome quantification, we can estimate lineage abundance in wastewater samples. We find high variability in signal among individual samples, but the overall trends match those observed from sequencing clinical samples. Thus, while clinical sequencing remains a more sensitive technique for population surveillance, wastewater sequencing can be used to monitor trends in mutant prevalence in situations where clinical sequencing is unavailable.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Wastewater , RNA, Viral/genetics , Transcriptome
16.
Commun Biol ; 5(1): 439, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35545661

ABSTRACT

SARS-CoV-2 variants shaped the second year of the COVID-19 pandemic and the discourse around effective control measures. Evaluating the threat posed by a new variant is essential for adapting response efforts when community transmission is detected. In this study, we compare the dynamics of two variants, Alpha and Iota, by integrating genomic surveillance data to estimate the effective reproduction number (Rt) of the variants. We use Connecticut, United States, in which Alpha and Iota co-circulated in 2021. We find that the Rt of these variants were up to 50% larger than that of other variants. We then use phylogeography to show that while both variants were introduced into Connecticut at comparable frequencies, clades that resulted from introductions of Alpha were larger than those resulting from Iota introductions. By monitoring the dynamics of individual variants throughout our study period, we demonstrate the importance of routine surveillance in the response to COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genomics , Humans , Pandemics , SARS-CoV-2/genetics , United States/epidemiology
17.
medRxiv ; 2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34230934

ABSTRACT

Genomic sequencing is crucial to understanding the epidemiology and evolution of SARS-CoV-2. Often, genomic studies rely on remnant diagnostic material, typically nasopharyngeal swabs, as input into whole genome SARS-CoV-2 next-generation sequencing pipelines. Saliva has proven to be a safe and stable specimen for the detection of SARS-CoV-2 RNA via traditional diagnostic assays, however saliva is not commonly used for SARS-CoV-2 sequencing. Using the ARTIC Network amplicon-generation approach with sequencing on the Oxford Nanopore MinION, we demonstrate that sequencing SARS-CoV-2 from saliva produces genomes comparable to those from nasopharyngeal swabs, and that RNA extraction is necessary to generate complete genomes from saliva. In this study, we show that saliva is a useful specimen type for genomic studies of SARS-CoV-2.

18.
JMIRx Med ; 2(4): e31503, 2021.
Article in English | MEDLINE | ID: mdl-35014989

ABSTRACT

BACKGROUND: Clinical and virologic characteristics of COVID-19 infections in veterans in New England have not been described. The average US veteran is a male older than the general US population. SARS-CoV-2 infection is known to cause poorer outcomes among men and older adults, making the veteran population an especially vulnerable group for COVID-19. OBJECTIVE: This study aims to evaluate clinical and virologic factors impacting COVID-19 outcomes. METHODS: This retrospective chart review included 476 veterans in six New England states with confirmed SARS-CoV-2 infection between April and September 2020. Whole genome sequencing was performed on SARS-CoV-2 RNA isolated from these veterans, and the correlation of genomic data to clinical outcomes was evaluated. Clinical and demographic variables were collected by manual chart review and were correlated to the end points of peak disease severity (based on oxygenation requirements), hospitalization, and mortality using multivariate regression analyses. RESULTS: Of 476 veterans, 274 had complete and accessible charts. Of the 274 veterans, 92.7% (n=254) were men and 83.2% (n=228) were White, and the mean age was 63 years. In the multivariate regression, significant predictors of hospitalization (C statistic 0.75) were age (odds ratio [OR] 1.05, 95% CI 1.03-1.08) and non-White race (OR 2.39, 95% CI 1.13-5.01). Peak severity (C statistic 0.70) also varied by age (OR 1.07, 95% CI 1.03-1.11) and O2 requirement on admission (OR 45.7, 95% CI 18.79-111). Mortality (C statistic 0.87) was predicted by age (OR 1.06, 95% CI 1.01-1.11), dementia (OR 3.44, 95% CI 1.07-11.1), and O2 requirement on admission (OR 6.74, 95% CI 1.74-26.1). Most (291/299, 97.3%) of our samples were dominated by the spike protein D614G substitution and were from SARS-CoV-2 B.1 lineage or one of 37 different B.1 sublineages, with none representing more than 8.7% (26/299) of the cases. CONCLUSIONS: In a cohort of veterans from the six New England states with a mean age of 63 years and a high comorbidity burden, age was the largest predictor of hospitalization, peak disease severity, and mortality. Non-White veterans were more likely to be hospitalized, and patients who required oxygen on admission were more likely to have severe disease and higher rates of mortality. Multiple SARS-CoV-2 lineages were distributed in patients in New England early in the COVID-19 era, mostly related to viruses from New York State with D614G mutation.

19.
medRxiv ; 2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33791729

ABSTRACT

Prior to the emergence of antigenically distinct SARS-CoV-2 variants, reinfections were reported infrequently - presumably due to the generation of durable and protective immune responses. However, case reports also suggested that rare, repeated infections may occur as soon as 48 days following initial disease onset. The underlying immunologic deficiencies enabling SARS-CoV-2 reinfections are currently unknown. Here we describe a renal transplant recipient who developed recurrent, symptomatic SARS-CoV-2 infection - confirmed by whole virus genome sequencing - 7 months after primary infection. To elucidate the immunological mechanisms responsible for SARS-CoV-2 reinfection, we performed longitudinal profiling of cellular and humoral responses during both primary and recurrent SARS-CoV-2 infection. We found that the patient responded to the primary infection with transient, poor-quality adaptive immune responses. The patient's immune system was further compromised by intervening treatment for acute rejection of the renal allograft prior to reinfection. Importantly, we also identified the development of neutralizing antibodies and the formation of humoral memory responses prior to SARS-CoV-2 reinfection. However, these neutralizing antibodies failed to confer protection against reinfection, suggesting that additional factors are required for efficient prevention of SARS-CoV-2 reinfection. Further, we found no evidence supporting viral evasion of primary adaptive immune responses, suggesting that susceptibility to reinfection may be determined by host factors rather than pathogen adaptation in this patient. In summary, our study suggests that a low neutralizing antibody presence alone is not sufficient to confer resistance against reinfection. Thus, patients with solid organ transplantation, or patients who are otherwise immunosuppressed, who recover from infection with SARS-CoV-2 may not develop sufficient protective immunity and are at risk of reinfection.

20.
medRxiv ; 2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34494031

ABSTRACT

Effectively monitoring the spread of SARS-CoV-2 variants is essential to efforts to counter the ongoing pandemic. Wastewater monitoring of SARS-CoV-2 RNA has proven an effective and efficient technique to approximate COVID-19 case rates in the population. Predicting variant abundances from wastewater, however, is technically challenging. Here we show that by sequencing SARS-CoV-2 RNA in wastewater and applying computational techniques initially used for RNA-Seq quantification, we can estimate the abundance of variants in wastewater samples. We show by sequencing samples from wastewater and clinical isolates in Connecticut U.S.A. between January and April 2021 that the temporal dynamics of variant strains broadly correspond. We further show that this technique can be used with other wastewater sequencing techniques by expanding to samples taken across the United States in a similar timeframe. We find high variability in signal among individual samples, and limited ability to detect the presence of variants with clinical frequencies <10%; nevertheless, the overall trends match what we observed from sequencing clinical samples. Thus, while clinical sequencing remains a more sensitive technique for population surveillance, wastewater sequencing can be used to monitor trends in variant prevalence in situations where clinical sequencing is unavailable or impractical.

SELECTION OF CITATIONS
SEARCH DETAIL