Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 121(20): e2313971121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38662573

ABSTRACT

There is increasing evidence that interactions between microbes and their hosts not only play a role in determining health and disease but also in emotions, thought, and behavior. Built environments greatly influence microbiome exposures because of their built-in highly specific microbiomes coproduced with myriad metaorganisms including humans, pets, plants, rodents, and insects. Seemingly static built structures host complex ecologies of microorganisms that are only starting to be mapped. These microbial ecologies of built environments are directly and interdependently affected by social, spatial, and technological norms. Advances in technology have made these organisms visible and forced the scientific community and architects to rethink gene-environment and microbe interactions respectively. Thus, built environment design must consider the microbiome, and research involving host-microbiome interaction must consider the built-environment. This paradigm shift becomes increasingly important as evidence grows that contemporary built environments are steadily reducing the microbial diversity essential for human health, well-being, and resilience while accelerating the symptoms of human chronic diseases including environmental allergies, and other more life-altering diseases. New models of design are required to balance maximizing exposure to microbial diversity while minimizing exposure to human-associated diseases. Sustained trans-disciplinary research across time (evolutionary, historical, and generational) and space (cultural and geographical) is needed to develop experimental design protocols that address multigenerational multispecies health and health equity in built environments.


Subject(s)
Built Environment , Microbiota , Animals , Humans , Microbiota/physiology
2.
Proc Natl Acad Sci U S A ; 119(42): e2121105119, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36215474

ABSTRACT

Among mammals, the order Primates is exceptional in having a high taxonomic richness in which the taxa are arboreal, semiterrestrial, or terrestrial. Although habitual terrestriality is pervasive among the apes and African and Asian monkeys (catarrhines), it is largely absent among monkeys of the Americas (platyrrhines), as well as galagos, lemurs, and lorises (strepsirrhines), which are mostly arboreal. Numerous ecological drivers and species-specific factors are suggested to set the conditions for an evolutionary shift from arboreality to terrestriality, and current environmental conditions may provide analogous scenarios to those transitional periods. Therefore, we investigated predominantly arboreal, diurnal primate genera from the Americas and Madagascar that lack fully terrestrial taxa, to determine whether ecological drivers (habitat canopy cover, predation risk, maximum temperature, precipitation, primate species richness, human population density, and distance to roads) or species-specific traits (body mass, group size, and degree of frugivory) associate with increased terrestriality. We collated 150,961 observation hours across 2,227 months from 47 species at 20 sites in Madagascar and 48 sites in the Americas. Multiple factors were associated with ground use in these otherwise arboreal species, including increased temperature, a decrease in canopy cover, a dietary shift away from frugivory, and larger group size. These factors mostly explain intraspecific differences in terrestriality. As humanity modifies habitats and causes climate change, our results suggest that species already inhabiting hot, sparsely canopied sites, and exhibiting more generalized diets, are more likely to shift toward greater ground use.


Subject(s)
Biological Evolution , Primates , Americas , Animals , Cercopithecidae , Haplorhini , Humans , Madagascar , Mammals , Trees
3.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Article in English | MEDLINE | ID: mdl-33472859

ABSTRACT

The COVID-19 pandemic has the potential to affect the human microbiome in infected and uninfected individuals, having a substantial impact on human health over the long term. This pandemic intersects with a decades-long decline in microbial diversity and ancestral microbes due to hygiene, antibiotics, and urban living (the hygiene hypothesis). High-risk groups succumbing to COVID-19 include those with preexisting conditions, such as diabetes and obesity, which are also associated with microbiome abnormalities. Current pandemic control measures and practices will have broad, uneven, and potentially long-term effects for the human microbiome across the planet, given the implementation of physical separation, extensive hygiene, travel barriers, and other measures that influence overall microbial loss and inability for reinoculation. Although much remains uncertain or unknown about the virus and its consequences, implementing pandemic control practices could significantly affect the microbiome. In this Perspective, we explore many facets of COVID-19-induced societal changes and their possible effects on the microbiome, and discuss current and future challenges regarding the interplay between this pandemic and the microbiome. Recent recognition of the microbiome's influence on human health makes it critical to consider both how the microbiome, shaped by biosocial processes, affects susceptibility to the coronavirus and, conversely, how COVID-19 disease and prevention measures may affect the microbiome. This knowledge may prove key in prevention and treatment, and long-term biological and social outcomes of this pandemic.


Subject(s)
COVID-19/microbiology , Hygiene Hypothesis , Microbiota , Aged , Anti-Infective Agents/therapeutic use , COVID-19/mortality , Eating , Female , Humans , Infant , Infection Control/methods , Male , Microbiota/drug effects , Physical Distancing , Pregnancy
4.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Article in English | MEDLINE | ID: mdl-34161260

ABSTRACT

Individuals who are minoritized as a result of race, sexual identity, gender, or socioeconomic status experience a higher prevalence of many diseases. Understanding the biological processes that cause and maintain these socially driven health inequities is essential for addressing them. The gut microbiome is strongly shaped by host environments and affects host metabolic, immune, and neuroendocrine functions, making it an important pathway by which differences in experiences caused by social, political, and economic forces could contribute to health inequities. Nevertheless, few studies have directly integrated the gut microbiome into investigations of health inequities. Here, we argue that accounting for host-gut microbe interactions will improve understanding and management of health inequities, and that health policy must begin to consider the microbiome as an important pathway linking environments to population health.


Subject(s)
Gastrointestinal Microbiome , Health Status Disparities , Disease , Health , Humans , Mental Health , Publications
5.
Mol Biol Evol ; 39(1)2022 01 07.
Article in English | MEDLINE | ID: mdl-34542625

ABSTRACT

Over the course of human evolution, shifts in dietary practices such as meat-eating and cooking, have resulted in reduced fiber intake, a trend that has been exaggerated more recently in industrialized populations. Reduced fiber consumption is associated with a loss of gut microbial taxa that degrade fiber, particularly butyrate. Therefore, this dietary shift in humans may have altered the abundance of microbial genes involved in butyrate production. This study uses a gene-targeted alignment approach to quantify the abundance of butyrate production pathway genes from published wild nonhuman primate and human gut metagenomes. Surprisingly, humans have higher diversity and relative abundances of butyrate production pathways compared with all groups of nonhuman primates except cercopithecoids. Industrialized populations of humans also differ only slightly in butyrate pathway abundance from nonindustrialized populations. This apparent resilience of butyrate production pathways to shifts in human diet across both evolutionary and modern populations may signal an evolutionary shift in host-microbe interactions in humans that increased SCFA production. Such a shift could have contributed to meeting the increased energy requirements of humans relative to nonhuman primates.


Subject(s)
Gastrointestinal Microbiome , Animals , Butyrates/metabolism , Diet , Gastrointestinal Microbiome/genetics , Humans , Primates/metabolism
6.
Am J Hum Biol ; : e23972, 2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37632331

ABSTRACT

INTRODUCTION: Social interactions shape the infant microbiome by providing opportunities for caregivers to spread bacteria through physical contact. With most research focused on the impact of maternal-infant contact on the infant gut microbiome, it is unclear how alloparents (i.e., caregivers other than the parents) influence the bacterial communities of infant body sites that are frequently contacted during bouts of caregiving, including the skin. METHODS: To begin to understand how allocare may influence the diversity of the infant microbiome, detailed questionnaire data on infant-alloparent relationships and specific allocare behaviors were coupled with skin and fecal microbiome samples (four body sites) from 48 infants living in Chicago, United States. RESULTS: Data from 16S rRNA gene amplicon sequencing indicated that infant skin and fecal bacterial diversity showed strong associations (positive and negative) to having female adult alloparents. Alloparental feeding and co-sleeping displayed stronger associations to infant bacterial diversity compared to playing or holding. The associations with allocare behaviors differed in magnitude and direction across infant body sites. Bacterial relative abundances varied by infant-alloparent relationship and breastfeeding status. CONCLUSION: This study provides some of the first evidence of an association between allocare and infant skin and fecal bacterial diversity. The results suggest that infants' exposure to bacteria from the social environment may vary based on infant-alloparent relationships and allocare behaviors. Since the microbiome influences immune system development, variation in allocare that impacts the diversity of infant bacterial communities may be an underexplored dimension of the social determinants of health in early life.

7.
Mol Ecol ; 31(15): 4146-4161, 2022 08.
Article in English | MEDLINE | ID: mdl-35665560

ABSTRACT

Mammals rely on the metabolic functions of their gut microbiota to meet their energetic needs and digest potentially toxic components in their diet. The gut microbiome plastically responds to shifts in host diet and may buffer variation in energy and nutrient availability. However, it is unclear how seasonal differences in the gut microbiome influence microbial metabolism and nutrients available to hosts. In this study, we examine seasonal variation in the gut metabolome of black howler monkeys (Alouatta pigra) to determine whether those variations are associated with differences in gut microbiome composition and nutrient intake, and if plasticity in the gut microbiome buffers shortfalls in energy or nutrient intake. We integrated data on the metabolome of 81 faecal samples from 16 individuals collected across three distinct seasons with gut microbiome, nutrient intake and plant metabolite consumption data from the same period. Faecal metabolite profiles differed significantly between seasons and were strongly associated with changes in plant metabolite consumption. However, microbial community composition and faecal metabolite composition were not strongly associated. Additionally, the connectivity and stability of faecal metabolome networks varied seasonally, with network connectivity being highest during the dry, fruit-dominated season when black howler monkey diets were calorically and nutritionally constrained. Network stability was highest during the dry, leaf-dominated season when most nutrients were being consumed at intermediate rates. Our results suggest that the gut microbiome buffers seasonal variation in dietary intake, and that the buffering effect is most limited when host diet becomes calorically or nutritionally restricted.


Subject(s)
Alouatta , Alouatta/physiology , Animals , Diet , Feces , Mammals , Metabolome , Seasons
8.
Am J Hum Biol ; 34(1): e23584, 2022 01.
Article in English | MEDLINE | ID: mdl-33644952

ABSTRACT

OBJECTIVES: The skin, as well as its microbial communities, serves as the primary interface between the human body and the surrounding environment. In order to implement the skin microbiome into human biology research, there is a need to explore the effects of different sample collection and storage methodologies, including the feasibility of conducting skin microbiome studies in field settings. METHODS: We collected 99 skin microbiome samples from nine infants living in Veracruz, Mexico using a dual-tipped "dry" swab on the right armpit, palm, and forehead and a "wet" swab (0.15 M NaCl and 0.1% Tween 20) on the same body parts on the left side of the body. One swab from each collection method was stored in 95% ethanol while the other was frozen at -20°C. 16S rRNA amplicon sequencing generated data on bacterial diversity and community composition, which were analyzed using PERMANOVA, linear mixed effects models, and an algorithm-based classifier. RESULTS: Treatment (wet_ethanol, wet_freezer, dry_ethanol, and dry_freezer) had an effect (~10% explanatory power) on the bacterial community diversity and composition of skin samples, although body site exhibited a stronger effect (~20% explanatory power). Within treatments, the collection method (wet vs. dry) affected measures of bacterial diversity to a greater degree than did the storage method (ethanol vs. freezer). CONCLUSIONS: Our study provides novel information on skin microbiome sample collection and storage methods, suggesting that ethanol storage is suitable for research in resource-limited settings. Our results highlight the need for future study design to account for interbody site microbial variation.


Subject(s)
Microbiota , Bacteria/genetics , Feces , Humans , RNA, Ribosomal, 16S/genetics , Specimen Handling
9.
Am J Phys Anthropol ; 175(3): 513-530, 2021 07.
Article in English | MEDLINE | ID: mdl-33650680

ABSTRACT

OBJECTIVES: Although fermented food use is ubiquitous in humans, the ecological and evolutionary factors contributing to its emergence are unclear. Here we investigated the ecological contexts surrounding the consumption of fruits in the late stages of fermentation by wild primates to provide insight into its adaptive function. We hypothesized that climate, socioecological traits, and habitat patch size would influence the occurrence of this behavior due to effects on the environmental prevalence of late-stage fermented foods, the ability of primates to detect them, and potential nutritional benefits. MATERIALS AND METHODS: We compiled data from field studies lasting at least 9 months to describe the contexts in which primates were observed consuming fruits in the late stages of fermentation. Using generalized linear mixed-effects models, we assessed the effects of 18 predictor variables on the occurrence of fermented food use in primates. RESULTS: Late-stage fermented foods were consumed by a wide taxonomic breadth of primates. However, they generally made up 0.01%-3% of the annual diet and were limited to a subset of fruit species, many of which are reported to have mechanical and chemical defenses against herbivores when not fermented. Additionally, late-stage fermented food consumption was best predicted by climate and habitat patch size. It was more likely to occur in larger habitat patches with lower annual mean rainfall and higher annual mean maximum temperatures. DISCUSSION: We posit that primates capitalize on the natural fermentation of some fruits as part of a nutritional strategy to maximize periods of fruit exploitation and/or access a wider range of plant species. We speculate that these factors contributed to the evolutionary emergence of the human propensity for fermented foods.


Subject(s)
Fermented Foods , Animals , Diet , Ecosystem , Fruit , Primates
10.
Bioessays ; 41(10): e1900034, 2019 10.
Article in English | MEDLINE | ID: mdl-31524305

ABSTRACT

Human evolution has been punctuated by climate anomalies, structuring environments, deadly infections, and altering landscapes. How well humans adapted to these new circumstances had direct effects on fitness and survival. Here, how the gut microbiome could have contributed to human evolutionary success through contributions to host nutritional buffering and infectious disease resistance is reviewed. How changes in human genetics, diet, disease exposure, and social environments almost certainly altered microbial community composition is also explored. Emerging research points to the microbiome as a key player in host responses to environmental change. Therefore, the reciprocal interactions between humans and their microbes are likely to have shaped human patterns of local adaptation throughout our shared evolutionary history. Recent alterations in human lifestyle, however, are altering human microbiomes in unprecedented ways. The consequences of interrupted host-microbe relationships for human adaptive potential in the future are unknown.


Subject(s)
Biological Evolution , Gastrointestinal Microbiome , Host Microbial Interactions , Climate , Communicable Diseases , Diet , Humans
11.
Bioessays ; 41(10): e1900007, 2019 10.
Article in English | MEDLINE | ID: mdl-31099415

ABSTRACT

This essay, written by a biologist, a microbial ecologist, a biological anthropologist, and an anthropologist-historian, examines tensions and translations in microbiome research on animals in the laboratory and field. The authors trace how research questions and findings in the laboratory are extrapolated into the field and vice versa, and the shifting evidentiary standards that these research settings require. Showing how complexities of microbiomes challenge traditional standards of causation, the authors contend that these challenges require new approaches to inferences used in ecology, anthropology, and history. As social scientists incorporate investigations of microbial life into their human studies, microbiome researchers venture into field settings to develop mechanistic understandings about the functions of complex microbial communities. These efforts generate new possibilities for cross-fertilizations and inference frameworks to interpret microbiome findings. Microbiome research should integrate multiple scales, levels of variability, and other disciplinary approaches to tackle questions spanning conditions from the laboratory to the field.


Subject(s)
Interdisciplinary Research , Microbiota/physiology , Animals , Ecology , Host Microbial Interactions , Humans , Models, Animal
12.
Am J Primatol ; 83(12): e23330, 2021 12.
Article in English | MEDLINE | ID: mdl-34529285

ABSTRACT

Gut bacteria may coexist with other groups of organisms, such as nematode parasites, that inhabit the gastrointestinal tract of primates; however, the possible effects of endoparasites on bacterial communities are frequently overlooked. Here we explored whether infection with Trypanoxyuris, an oxyurid gastrointestinal parasite, is associated with changes in the gut bacterial community of wild black howler monkeys (Alouatta pigra), by comparing gut bacterial communities of consistently infected individuals and individuals that never tested positive for Trypanoxyuris throughout different months across the year. We additionally controlled for other sources of variation reported to influence the primate microbiome including individual identity, social group, and seasonality. Trypanoxyuris infection was not related to differences in gut bacterial alpha diversity, but was weakly associated with differences in gut bacterial community structure. In contrast, among the covariates considered, both individual identity and social group were more strongly associated with variation in the howler gut bacterial community. Our results suggest that gastrointestinal parasites may be associated, to some extent, with shifts in the gut bacterial communities hosted by free-ranging primates, although a causal link still needs to be established. Further studies of wild primate hosts infected with parasite species with different pathogenicity are needed to better elucidate health-related consequences from the parasite-microbiome interplay.


Subject(s)
Alouatta , Nematoda , Animals , Bacteria , Enterobius , Mexico
13.
Am J Primatol ; 81(10-11): e23060, 2019 10.
Article in English | MEDLINE | ID: mdl-31608486

ABSTRACT

Primate microbiome research is a quickly growing field with exciting potential for informing our understanding of primate biology, ecology, and evolution as well as host-microbe interactions more broadly. This introductory essay to a special section of the American Journal of Primatology provides a cross-sectional snapshot of current activity in these areas by briefly summarizing the diversity of contributed papers and their relationships to key themes in host-associated microbiome research. It then uses this survey as a foundation for consolidating a set of key research questions to broadly guide future research. It also argues for the importance of methods standardization to facilitate comparative analyses and the identification of generalizable patterns and relationships. While primatology will benefit greatly from the integration of microbial datasets, it is uniquely positioned to address important questions regarding microbiology and macro-ecology and evolution more generally. We are eager to see where the primate microbiome leads us.


Subject(s)
Microbiota , Primates/microbiology , Animals , Biological Evolution , Ecology , Host Microbial Interactions
14.
Am J Primatol ; 81(12): e23061, 2019 12.
Article in English | MEDLINE | ID: mdl-31713260

ABSTRACT

Despite careful attention to animal nutrition and wellbeing, gastrointestinal distress remains relatively common in captive non-human primates (NHPs), particularly dietary specialists such as folivores. These patterns may be a result of marked dietary differences between captive and wild settings and associated impacts on the gut microbiome. However, given that most existing studies target NHP dietary specialists, it is unclear if captive environments have distinct impacts on the gut microbiome of NHPs with different dietary niches. To begin to examine this question, we used 16S ribosomal RNA gene amplicon sequences to compare the gut microbiomes of five NHP genera categorized either as folivores (Alouatta, Colobus) or non-folivores (Cercopithecus, Gorilla, Pan) sampled both in captivity and in the wild. Though captivity affected the gut microbiomes of all NHPs in this study, the effects were largest in folivorous NHPs. Shifts in gut microbial diversity and in the relative abundances of fiber-degrading microbial taxa suggest that these findings are driven by marked dietary shifts for folivorous NHPs in captive settings. We propose that zoos and other captive care institutions consider including more natural browse in folivorous NHP diets and regularly bank fecal samples to further explore the relationship between NHP diet, the gut microbiome, and health outcomes.


Subject(s)
Animals, Laboratory/microbiology , Animals, Zoo/microbiology , Diet/veterinary , Gastrointestinal Microbiome , Primates/microbiology , Animals , Animals, Laboratory/physiology , Animals, Zoo/physiology , Diet/classification , Food Preferences , Primates/physiology , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysis , Species Specificity
15.
Am J Primatol ; 81(10-11): e22989, 2019 10.
Article in English | MEDLINE | ID: mdl-31106872

ABSTRACT

Many colobine species-including the endangered Guizhou snub-nosed monkey (Rhinopithecus brelichi) are difficult to maintain in captivity and frequently exhibit gastrointestinal (GI) problems. GI problems are commonly linked to alterations in the gut microbiota, which lead us to examine the gut microbial communities of wild and captive R. brelichi. We used high-throughput sequencing of the 16S rRNA gene to compare the gut microbiota of wild (N = 7) and captive (N = 8) R. brelichi. Wild monkeys exhibited increased gut microbial diversity based on the Chao1 but not Shannon diversity metric and greater relative abundances of bacteria in the Lachnospiraceae and Ruminococcaceae families. Microbes in these families digest complex plant materials and produce butyrate, a short chain fatty acid critical to colonocyte health. Captive monkeys had greater relative abundances of Prevotella and Bacteroides species, which degrade simple sugars and carbohydrates, like those present in fruits and cornmeal, two staples of the captive R. brelichi diet. Captive monkeys also had a greater abundance of Akkermansia species, a microbe that can thrive in the face of host malnutrition. Taken together, these findings suggest that poor health in captive R. brelichi may be linked to diet and an altered gut microbiota.


Subject(s)
Colobinae/microbiology , Diet/veterinary , Gastrointestinal Microbiome , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacterial Physiological Phenomena , Biodiversity , Carbohydrate Metabolism , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
16.
Microb Ecol ; 75(2): 515-527, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28735426

ABSTRACT

Both diet and host phylogeny shape the gut microbial community, and separating out the effects of these variables can be challenging. In this study, high-throughput sequencing was used to evaluate the impact of diet and phylogeny on the gut microbiota of nine colobine monkey species (N = 64 individuals). Colobines are leaf-eating monkeys that fare poorly in captivity-often exhibiting gastrointestinal (GI) problems. This study included eight Asian colobines (Rhinopithecus brelichi, Rhinopithecus roxellana, Rhinopithecus bieti, Pygathrix nemaeus, Nasalis larvatus, Trachypithecus francoisi, Trachypithecus auratus, and Trachypithecus vetulus) and one African colobine (Colobus guereza). Monkeys were housed at five different captive institutes: Panxi Wildlife Rescue Center (Guizhou, China), Beijing Zoo, Beijing Zoo Breeding Center, Singapore Zoo, and Singapore Zoo Primate Conservation Breeding Center. Captive diets varied widely between institutions, but within an institution, all colobine monkey species were fed nearly identical or identical diets. In addition, four monkey species were present at multiple captive institutes. This allowed us to parse the effects of diet and phylogeny in these captive colobines. Gut microbial communities clustered weakly by host species and strongly by diet, and overall, colobine phylogenetic relationships were not reflected in gut microbiota analyses. Core microbiota analyses also identified several key taxa-including microbes within the Ruminococcaceae and Lachnospiraceae families-that were shared by over 90% of the monkeys in this study. Microbial species within these families include many butyrate producers that are important for GI health. These results highlight the importance of diet in captive colobines.


Subject(s)
Bacteria/classification , Colobinae/microbiology , Gastrointestinal Microbiome , Host Specificity , Phylogeny , Animal Feed/analysis , Animals , Animals, Wild/metabolism , Animals, Wild/microbiology , Animals, Zoo/metabolism , Animals, Zoo/microbiology , Bacteria/genetics , Bacteria/isolation & purification , China , Colobinae/metabolism , Diet/veterinary , Species Specificity
17.
Am J Phys Anthropol ; 165(3): 576-588, 2018 03.
Article in English | MEDLINE | ID: mdl-29313897

ABSTRACT

OBJECTIVES: Invertebrate consumption is thought to be an integral part of early hominin diets, and many modern human populations regularly consume insects and other arthropods. This study examines the response of gut microbial community structure and function to changes in diet in wild white-faced capuchins (Cebus capucinus), a primate that incorporates a large proportion of invertebrates in its diet. The goal of the study is to better understand the role of both fruit and invertebrate prey consumption on shaping primate gut microbiomes. MATERIALS AND METHODS: Fecal samples (n = 169) and dietary data were collected over 12 months. The V3-V5 region of microbial 16S rRNA genes was amplified and sequenced. The IM-TORNADO pipeline was used to analyze sequences. RESULTS: White-faced capuchin gut bacterial communities were characterized primarily by Firmicutes (41.6%) and Proteobacteria (39.2%). There was a significant relationship between the invertebrate diet composition of individual capuchins and their gut microbiome composition. However, there was no relationship between the fruit diet composition of individual capuchins and their gut microbiome composition, even when examining multiple timescales. DISCUSSION: The results of our study indicate that there is a stronger relationship between gut microbial community structure and invertebrate diet composition than between gut microbial community structure and fruit consumption. As invertebrates and other animal prey play an important role in the diet of many primates, these results give important insight into the role of faunivory in shaping the evolution of host-microbe interactions in primates.


Subject(s)
Cebus/microbiology , Cebus/physiology , Feeding Behavior/physiology , Gastrointestinal Microbiome/physiology , Animals , Anthropology, Physical , Costa Rica , Feces/microbiology , Female , Fruit , Insecta , Male
18.
Am J Primatol ; 80(8): e22896, 2018 08.
Article in English | MEDLINE | ID: mdl-29984842

ABSTRACT

Changes in reproductive status influence energy and nutrient requirements in female primates. The gut microbiota may buffer changes in energy demands, with shifts in community composition increasing the energy production potential of the gut during pregnancy and lactation. In this study, we examine changes in the gut microbiome of wild, female white-faced capuchins (Cebus capucinus) across different reproductive states. Fecal samples (n = 39) were collected from five adult females over the course of a year. Gut microbial community composition was assessed using 16S rRNA gene sequences, and PICRUSt was used to make metagenomic functional predictions. We found a significant relationship between reproductive state and both the structure and predicted function of the gut microbiome, neither of which were associated with host diet. For example, the relative abundance of Firmicutes was significantly lower in lactating females compared with cycling females; the relative abundance of Actinobacteria was significantly higher in pregnant females compared with lactating females, and there was a trend toward higher relative abundances of Proteobacteria in pregnant females compared with cycling females. The results of this study suggest that, in addition to behavioral and dietary adaptions, the gut microbiota may play a role in allowing female primates to meet their changing energetic needs during reproduction. Further studies of the "microbial reproductive ecology" of primates will help advance our understanding of gut microbial contributions to primate energetics.


Subject(s)
Bacteria/isolation & purification , Cebus/microbiology , Cebus/physiology , Gastrointestinal Microbiome/physiology , Reproduction , Animals , Bacteria/classification , Bacteria/genetics , Costa Rica , Female , Metagenome , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysis
19.
BMC Biol ; 15(1): 127, 2017 12 27.
Article in English | MEDLINE | ID: mdl-29282061

ABSTRACT

The trillions of microbes living in the gut-the gut microbiota-play an important role in human biology and disease. While much has been done to explore its diversity, a full understanding of our microbiomes demands an evolutionary perspective. In this review, we compare microbiomes from human populations, placing them in the context of microbes from humanity's near and distant animal relatives. We discuss potential mechanisms to generate host-specific microbiome configurations and the consequences of disrupting those configurations. Finally, we propose that this broader phylogenetic perspective is useful for understanding the mechanisms underlying human-microbiome interactions.


Subject(s)
Biological Evolution , Microbiota/physiology , Animals , Gastrointestinal Microbiome/physiology , Host Specificity , Humans , Phylogeny
20.
Microb Ecol ; 74(1): 250-258, 2017 07.
Article in English | MEDLINE | ID: mdl-28124727

ABSTRACT

Studies of human and domestic animal models indicate that related individuals and those that spend the most time in physical contact typically have more similar gut microbial communities. However, few studies have examined these factors in wild mammals where complex social dynamics and a variety of interacting environmental factors may impact the patterns observed in controlled systems. Here, we explore the effect of host kinship and time spent in social contact on the gut microbiota of wild, black howler monkeys (Alouatta pigra). Our results indicate that closely related individuals had less similar gut microbial communities than non-related individuals. However, the effect was small. In contrast, as previously reported in baboons and chimpanzees, individuals that spent more time in contact (0 m) and close proximity (0-1 m) had more similar gut microbial communities. This pattern was driven by adult female-adult female dyads, which generally spend more time in social contact than adult male-adult male dyads or adult male-adult female dyads. Relative abundances of individual microbial genera such as Bacteroides, Clostridium, and Streptococcus were also more similar in individuals that spent more time in contact or close proximity. Overall, our data suggest that even in arboreal primates that live in small social groups and spend a relatively low proportion of their time in physical contact, social interactions are associated with variation in gut microbiota composition. Additionally, these results demonstrate that within a given host species, subgroups of individuals may interact with the gut microbiota differently.


Subject(s)
Alouatta/microbiology , Gastrointestinal Microbiome , Social Behavior , Animals , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL