Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Cell ; 175(1): 43-56.e21, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30241615

ABSTRACT

Stem cell regulation and hierarchical organization of human skeletal progenitors remain largely unexplored. Here, we report the isolation of a self-renewing and multipotent human skeletal stem cell (hSSC) that generates progenitors of bone, cartilage, and stroma, but not fat. Self-renewing and multipotent hSSCs are present in fetal and adult bones and can also be derived from BMP2-treated human adipose stroma (B-HAS) and induced pluripotent stem cells (iPSCs). Gene expression analysis of individual hSSCs reveals overall similarity between hSSCs obtained from different sources and partially explains skewed differentiation toward cartilage in fetal and iPSC-derived hSSCs. hSSCs undergo local expansion in response to acute skeletal injury. In addition, hSSC-derived stroma can maintain human hematopoietic stem cells (hHSCs) in serum-free culture conditions. Finally, we combine gene expression and epigenetic data of mouse skeletal stem cells (mSSCs) and hSSCs to identify evolutionarily conserved and divergent pathways driving SSC-mediated skeletogenesis. VIDEO ABSTRACT.


Subject(s)
Bone Development/physiology , Bone and Bones/cytology , Hematopoietic Stem Cells/cytology , Animals , Bone and Bones/metabolism , Cartilage/cytology , Cell Differentiation , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/physiology , Mesenchymal Stem Cells/cytology , Mice , Mice, Inbred C57BL , Signal Transduction , Single-Cell Analysis/methods , Stem Cells/cytology , Stromal Cells/cytology , Transcriptome/genetics
2.
Nature ; 597(7875): 256-262, 2021 09.
Article in English | MEDLINE | ID: mdl-34381212

ABSTRACT

Loss of skeletal integrity during ageing and disease is associated with an imbalance in the opposing actions of osteoblasts and osteoclasts1. Here we show that intrinsic ageing of skeletal stem cells (SSCs)2 in mice alters signalling in the bone marrow niche and skews the differentiation of bone and blood lineages, leading to fragile bones that regenerate poorly. Functionally, aged SSCs have a decreased bone- and cartilage-forming potential but produce more stromal lineages that express high levels of pro-inflammatory and pro-resorptive cytokines. Single-cell RNA-sequencing studies link the functional loss to a diminished transcriptomic diversity of SSCs in aged mice, which thereby contributes to the transformation of the bone marrow niche. Exposure to a youthful circulation through heterochronic parabiosis or systemic reconstitution with young haematopoietic stem cells did not reverse the diminished osteochondrogenic activity of aged SSCs, or improve bone mass or skeletal healing parameters in aged mice. Conversely, the aged SSC lineage promoted osteoclastic activity and myeloid skewing by haematopoietic stem and progenitor cells, suggesting that the ageing of SSCs is a driver of haematopoietic ageing. Deficient bone regeneration in aged mice could only be returned to youthful levels by applying a combinatorial treatment of BMP2 and a CSF1 antagonist locally to fractures, which reactivated aged SSCs and simultaneously ablated the inflammatory, pro-osteoclastic milieu. Our findings provide mechanistic insights into the complex, multifactorial mechanisms that underlie skeletal ageing and offer prospects for rejuvenating the aged skeletal system.


Subject(s)
Aging/pathology , Bone and Bones/pathology , Cellular Senescence , Inflammation/pathology , Stem Cell Niche , Stem Cells/pathology , Animals , Bone Morphogenetic Protein 2/metabolism , Bone Regeneration , Cell Lineage , Female , Fracture Healing , Hematopoiesis , Macrophage Colony-Stimulating Factor/metabolism , Male , Mice , Myeloid Cells/cytology , Osteoclasts/cytology , Rejuvenation
3.
Nature ; 572(7769): 392-396, 2019 08.
Article in English | MEDLINE | ID: mdl-31367043

ABSTRACT

Ovarian cancer and triple-negative breast cancer are among the most lethal diseases affecting women, with few targeted therapies and high rates of metastasis. Cancer cells are capable of evading clearance by macrophages through the overexpression of anti-phagocytic surface proteins called 'don't eat me' signals-including CD471, programmed cell death ligand 1 (PD-L1)2 and the beta-2 microglobulin subunit of the major histocompatibility class I complex (B2M)3. Monoclonal antibodies that antagonize the interaction of 'don't eat me' signals with their macrophage-expressed receptors have demonstrated therapeutic potential in several cancers4,5. However, variability in the magnitude and durability of the response to these agents has suggested the presence of additional, as yet unknown 'don't eat me' signals. Here we show that CD24 can be the dominant innate immune checkpoint in ovarian cancer and breast cancer, and is a promising target for cancer immunotherapy. We demonstrate a role for tumour-expressed CD24 in promoting immune evasion through its interaction with the inhibitory receptor sialic-acid-binding Ig-like lectin 10 (Siglec-10), which is expressed by tumour-associated macrophages. We find that many tumours overexpress CD24 and that tumour-associated macrophages express high levels of Siglec-10. Genetic ablation of either CD24 or Siglec-10, as well as blockade of the CD24-Siglec-10 interaction using monoclonal antibodies, robustly augment the phagocytosis of all CD24-expressing human tumours that we tested. Genetic ablation and therapeutic blockade of CD24 resulted in a macrophage-dependent reduction of tumour growth in vivo and an increase in survival time. These data reveal CD24 as a highly expressed, anti-phagocytic signal in several cancers and demonstrate the therapeutic potential for CD24 blockade in cancer immunotherapy.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , CD24 Antigen/antagonists & inhibitors , Immunotherapy/methods , Lectins/metabolism , Macrophages/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Receptors, Cell Surface/metabolism , Signal Transduction , Antineoplastic Agents, Immunological/immunology , Antineoplastic Agents, Immunological/pharmacology , CD24 Antigen/deficiency , CD24 Antigen/genetics , CD24 Antigen/immunology , Cell Line, Tumor , Humans , Lectins/antagonists & inhibitors , Lectins/genetics , Macrophages/drug effects , Macrophages/immunology , Neoplasms/immunology , Neoplasms/pathology , Phagocytosis/drug effects , Receptors, Cell Surface/antagonists & inhibitors , Receptors, Cell Surface/genetics , Signal Transduction/drug effects , Survival Analysis , Tumor Escape/drug effects , Tumor Escape/immunology
4.
Arterioscler Thromb Vasc Biol ; 43(7): 1262-1277, 2023 07.
Article in English | MEDLINE | ID: mdl-37051932

ABSTRACT

BACKGROUND: Peripheral vascular disease remains a leading cause of vascular morbidity and mortality worldwide despite advances in medical and surgical therapy. Besides traditional approaches, which can only restore blood flow to native arteries, an alternative approach is to enhance the growth of new vessels, thereby facilitating the physiological response to ischemia. METHODS: The ActinCreER/R26VT2/GK3 Rainbow reporter mouse was used for unbiased in vivo survey of injury-responsive vasculogenic clonal formation. Prospective isolation and transplantation were used to determine vessel-forming capacity of different populations. Single-cell RNA-sequencing was used to characterize distinct vessel-forming populations and their interactions. RESULTS: Two populations of distinct vascular stem/progenitor cells (VSPCs) were identified from adipose-derived mesenchymal stromal cells: VSPC1 is CD45-Ter119-Tie2+PDGFRa-CD31+CD105highSca1low, which gives rise to stunted vessels (incomplete tubular structures) in a transplant setting, and VSPC2 which is CD45-Ter119-Tie2+PDGFRa+CD31-CD105lowSca1high and forms stunted vessels and fat. Interestingly, cotransplantation of VSPC1 and VSPC2 is required to form functional vessels that improve perfusion in the mouse hindlimb ischemia model. Similarly, VSPC1 and VSPC2 populations isolated from human adipose tissue could rescue the ischemic condition in mice. CONCLUSIONS: These findings suggest that autologous cotransplantation of synergistic VSPCs from nonessential adipose tissue can promote neovascularization and represents a promising treatment for ischemic disease.


Subject(s)
Mesenchymal Stem Cells , Neovascularization, Physiologic , Mice , Humans , Animals , Neovascularization, Physiologic/physiology , Adipose Tissue , Neovascularization, Pathologic , Ischemia/therapy , Disease Models, Animal , Hindlimb/blood supply
5.
Nat Med ; 28(2): 333-344, 2022 02.
Article in English | MEDLINE | ID: mdl-35027753

ABSTRACT

The disialoganglioside GD2 is overexpressed on several solid tumors, and monoclonal antibodies targeting GD2 have substantially improved outcomes for children with high-risk neuroblastoma. However, approximately 40% of patients with neuroblastoma still relapse, and anti-GD2 has not mediated significant clinical activity in any other GD2+ malignancy. Macrophages are important mediators of anti-tumor immunity, but tumors resist macrophage phagocytosis through expression of the checkpoint molecule CD47, a so-called 'Don't eat me' signal. In this study, we establish potent synergy for the combination of anti-GD2 and anti-CD47 in syngeneic and xenograft mouse models of neuroblastoma, where the combination eradicates tumors, as well as osteosarcoma and small-cell lung cancer, where the combination significantly reduces tumor burden and extends survival. This synergy is driven by two GD2-specific factors that reorient the balance of macrophage activity. Ligation of GD2 on tumor cells (a) causes upregulation of surface calreticulin, a pro-phagocytic 'Eat me' signal that primes cells for removal and (b) interrupts the interaction of GD2 with its newly identified ligand, the inhibitory immunoreceptor Siglec-7. This work credentials the combination of anti-GD2 and anti-CD47 for clinical translation and suggests that CD47 blockade will be most efficacious in combination with monoclonal antibodies that alter additional pro- and anti-phagocytic signals within the tumor microenvironment.


Subject(s)
Bone Neoplasms , CD47 Antigen , Animals , Cell Line, Tumor , Humans , Immunotherapy , Mice , Neoplasm Recurrence, Local , Phagocytosis , Tumor Microenvironment
6.
Nat Protoc ; 13(6): 1294-1309, 2018 06.
Article in English | MEDLINE | ID: mdl-29748647

ABSTRACT

There are limited methods available to study skeletal stem, progenitor, and progeny cell activity in normal and diseased contexts. Most protocols for skeletal stem cell isolation are based on the extent to which cells adhere to plastic or whether they express a limited repertoire of surface markers. Here, we describe a flow cytometry-based approach that does not require in vitro selection and that uses eight surface markers to distinguish and isolate mouse skeletal stem cells (mSSCs); bone, cartilage, and stromal progenitors (mBCSPs); and five downstream differentiated subtypes, including chondroprogenitors, two types of osteoprogenitors, and two types of hematopoiesis-supportive stroma. We provide instructions for the optimal mechanical and chemical digestion of bone and bone marrow, as well as the subsequent flow-cytometry-activated cell sorting (FACS) gating schemes required to maximally yield viable skeletal-lineage cells. We also describe a methodology for renal subcapsular transplantation and in vitro colony-formation assays on the isolated mSSCs. The isolation of mSSCs can be completed in 9 h, with at least 1 h more required for transplantation. Experience with flow cytometry and mouse surgical procedures is recommended before attempting the protocol. Our system has wide applications and has already been used to study skeletal response to fracture, diabetes, and osteoarthritis, as well as hematopoietic stem cell-niche interactions in the bone marrow.


Subject(s)
Flow Cytometry/methods , Skeleton/cytology , Stem Cells/physiology , Animals , Colony-Forming Units Assay/methods , Mice , Stem Cell Transplantation/methods
SELECTION OF CITATIONS
SEARCH DETAIL