Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
J Org Chem ; 89(4): 2448-2458, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38275288

ABSTRACT

An operationally simple and green protocol using a NiSO4·6H2O/cationic 2,2'-bipyridyl ligand system as a water-soluble catalyst for the coupling of arylboronic acids with (2-haloallyl)phosphonates and (2-haloallyl)sulfones in water under air was developed. The reaction was performed at 120 °C with arylboronic acids (2 mmol) and (2-haloallyl)phosphonates or sulfones (1 mmol) in the presence of 5 mol % of the Ni catalytic system in a basic aqueous solution for 1 h, giving the corresponding 2-aryl allyl phosphonates or sulfones in good to excellent yields. This reaction features the use of an abundant transition metal as a catalyst in water and exhibits high functional group tolerance, rendering it an eco-friendly procedure.

2.
Angew Chem Int Ed Engl ; 62(28): e202305338, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37162028

ABSTRACT

Construction of metal-organic cages with unique architecture and guest binding abilities is highly desirable. Herein, we report the synthesis of a distorted trigonal cage (1) from a twisted tetratopic ligand (L) and a PdII acceptor. Surprisingly, 1 exhibited a complete structural reorganization of its building units in the presence of C70 and C60 to form guest-encapsulated tetragonal cages, (C70 )2 @2 and (C60 )2 @2, respectively. These guest-bound cages were found to be potential 1 O2 generators, with the former effectively catalyzing two different varieties of 1 O2 -mediated oxidation reactions.

3.
J Am Chem Soc ; 144(33): 15193-15202, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-35926139

ABSTRACT

Data carriers using spin waves in spintronic and magnonic logic devices offer operation at low power consumption and free of Joule heating yet requiring noncollinear spin structures of small sizes. Heterometallic rings can provide such an opportunity due to the controlled spin-wave transmission within such a confined space. Here, we present a series of {ScnGdn} (n = 4, 6, 8) heterometallic rings, which are the first Sc-Ln clusters to date, with tunable magnetic interactions for spin-wave excitations. By means of time- and temperature-dependent spin dynamics simulations, we are able to predict distinct spin-wave excitations at finite temperatures for Sc4Gd4, Sc6Gd6, and Sc8Gd8. Such a new model is previously unexploited, especially due to the interplay of antiferromagnetic exchange, dipole-dipole interaction, and ring topology at low temperatures, rendering the importance of the latter to spin-wave excitations.

4.
J Org Chem ; 87(21): 13698-13707, 2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36164765

ABSTRACT

An iron-based catalytic system was developed for the cross-coupling of 1-bromoalkynes with terminal alkynes to selectively generate unsymmetrical 1,3-butadiynes in water under air. It was found that a combination of 1-bromoalkynes derived from less acidic terminal alkynes with more acidic counterparts would greatly enhance yields and selectivity for unsymmetrical 1,3-butadiynes. The reaction was also applicable for the synthesis of unsymmetrical 1,3,5-hexatriynes through coupling of 1-bromoalkynes and trimethylsilyl-protected 1,3-butadiynes in a one-pot manner.

5.
J Am Chem Soc ; 143(6): 2537-2544, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33378184

ABSTRACT

Nanosized cage-within-cage compounds represent a synergistic molecular self-assembling form of three-dimensional architecture that has received particular research focus. Building multilayered ultralarge cages to simulate complicated virus capsids is believed to be a tough synthetic challenge. Here, we synthesize two large double-shell supramolecular cages by facile self-assembly of presynthesized metal-organic hexatopic terpyridine ligands with metal ions. Differing from the mixture of prisms formed from the inner tritopic ligand, the redesigned metal-organic hexatopic ligands bearing high geometric constraints that led to the exclusive formation of discrete double-shell structures. These two unique nested cages are composed of inner cubes (5.1 nm) and outer huge truncated cubes (12.0 and 13.2 nm) with six large bowl-shape subcages distributed on six faces. The results with molecular weights of 75 232 and 77 667 Da were among the largest synthetic cage-in-cage supramolecules reported to date. The composition, size and shape were unambiguously characterized by a combination of 1H NMR, DOSY, ESI-MS, TWIM-MS, TEM, AFM, and SAXS. This work provides an interesting model for functional recognition, delivery, and detection of various guest molecules in the field of supramolecular materials.

6.
Angew Chem Int Ed Engl ; 60(4): 1923-1928, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33051951

ABSTRACT

Based on the predesigned self-selective complexation, metallo-supramolecular P3HT-b-PEO diblock copolymers with varying block ratios were synthesized, and their oriented polymer films generated during solvent evaporation in a 9 T magnetic field were investigated. An anisotropic, ordered layer structure was achieved using [P3HT20 -Zn-PEO107 ] and carefully characterized by polarized optical microscopy (POM), AFM, polarized UV/Vis spectroscopy, and GI-SAXS/WAXS. The PEO-removed [P3HT20 -Zn-PEO107 ] film was obtained after decomplexation with TEA-EDTA under mild conditions, and the selective removal of PEO domains was evidenced by UV/Vis and ATR-FTIR spectroscopy. Anisotropic photoconductivity of the magnetically aligned film was evaluated by flash-photolysis time-resolved microwave conductivity (FP-TRMC) measurements. The results indicated that the presence of insulating crystalline PEO segments diminished the photoconductivity along the P3HT backbone direction.

7.
Angew Chem Int Ed Engl ; 60(3): 1298-1305, 2021 01 18.
Article in English | MEDLINE | ID: mdl-32946649

ABSTRACT

Supramolecular cages/vesicles in biology display sophisticated structures and functions by utilizing a few types of protein subunit quasi-equivalently at distinct geometrical locations. However, synthetic supramolecular cages still lack comparable complexity to reach the high levels of functionality found in natural systems. Herein we report the self-assembly of giant pentagonal supramolecular prisms (molecular weight >50 kDa) with tetratopic pyridinyl subunits serving different geometrical roles within the structures, and their packing into a novel superstructure with unexpected three-fold rotational symmetry in a single two-dimensional layer of crystalline state. The formation of these complicated structures is controlled by both the predetermined angles of the ligands and the mismatched structural tensions created from the multi-layered geometry of the building blocks. Such a self-assembly strategy is extensively used by viruses to increase the volume and complexity of capsids and would provide a new approach to construct highly sophisticated supramolecular architectures.

8.
J Am Chem Soc ; 142(39): 16661-16667, 2020 09 30.
Article in English | MEDLINE | ID: mdl-32881485

ABSTRACT

A two-ligand system composed of the predesigned multivalent and complementary terpyridine-based ligands was exploited to construct heteroleptic metallo-supramolecules and to investigate the self-assembly mechanism. Molecular stellation of the trimeric hexagon [Cd6L23] gave rise to the exclusive self-assembly of the star hexagon [Cd18L16L33] through complementary ligand pairing between the ditopic and octatopic tectons. To understand how the intermolecular heteroleptic complexation influenced the self-assembly pathway, the star hexagon was truncated into two triangular fragments: [Cd12L13L43] and [Cd12L13L53]. In the self-assembly of [Cd12L13L43], the conformational movements of hexatopic ligand L4 could be regulated by L1 to promote the subsequent coordination event, which was the key step to the successful multicomponent self-assembly. In contrast, the formation of [Cd12L13L53] was hampered by the geometrically mismatched intermediates.

9.
J Am Chem Soc ; 142(15): 7134-7144, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32150683

ABSTRACT

Tetrafunctionalized calix[4]resorcinarene cavitands commonly serve as supramolecular scaffolds for construction of coordination-driven self-assembled capsules. However, due to the calix-like shape, the structural diversity of assemblies is mostly restricted to dimeric and hexameric capsules. Previously, we reported a spontaneous heteroleptic complexation strategy based on a pair of self-recognizable terpyridine-based ligands and CdII ions. Building on this complementary ligand pairing system, herein three types of nanocapsules, including a dimeric capsule, a Sierpinski triangular prism, and a cubic star, could be readily obtained through dynamic complexation reactions between a tetratopic cavitand-based ligand and various multitopic counterparts in the presence of CdII ions. The dimeric capsular assemblies display the spacer-length-dependent self-sorting behavior in a four-component system. Moreover, the precise multicomponent self-assembly of a Sierpinski triangular prism and a cubic star possessing three and six cavitand-based motifs, respectively, demonstrates that such self-assembly methodology is able to efficiently enhance architectural complexity for calix[4]resorcinarene-containing metallo-supramolecules.

10.
J Am Chem Soc ; 142(10): 4663-4670, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32033517

ABSTRACT

Gigantic coordination molecules assembled from a large number of metal ions and organic ligands are structurally and functionally challenging to characterize. Here we show that a heterometallic cluster [Ni36Gd102(OH)132(mmt)18(dmpa)18(H2dmpa)24(CH3COO)84(SO4)18(NO3)18(H2O)30]·Br6(NO3)6·(H2O)x·(CH3OH)y, (1, x ≈ 130, y ≈ 60), shaped like a "Star of David", can be synthesized using a "mixed-ligand" and "sulfate-template" strategy. In terms of metal nuclearity number, 1 is the second largest 3d-4f cluster to date. In the solid state, 1 is porous after removing the lattice guests. The N2 adsoption experiment reveals that the BET and Langmuir surface areas are 299.8 and 412.0 cm2 g-1, respectively. CO2 adsorption at 298 K gives the amount of 45 cm3 g-1 for 1. More importantly, 1 is soluble in common organic solvents and exhibits high solution stability revealed by high resolution MALDI-TOF mass spectroscopy, small-angle X-ray scattering (SAXS), and low-dose transmission electron microscopy. The solubility and the potential open metal sites owing to the labile coordinating components prompted us to investigate the photocatalytic properties of 1, which displays high selectivity and efficiency for reduction of CO2 to CO with turnover number and turnover frequency of 29700 and 1.2 s-1, respectively. These values are higher than most catalysts working under the same conditions, presumably due to the strong Ni-CO2 binding effect. In addition, the large percentage of Gd(III) in 1 leads to a large magnetic entropy change (41.3 J·kg-1·K-1) at 2.0 K for ΔH = 7 T.

11.
Inorg Chem ; 59(9): 6640-6645, 2020 May 04.
Article in English | MEDLINE | ID: mdl-32286799

ABSTRACT

A metal-organic supramolecular nanobelt was synthesized by quantitative self-assembling terpyridine-functionized tetraphenylethylene (TPE) and Cd2+, which only showed a weak emission both in solution or aggregated state. Nevertheless, nanobelt complex could be transferred to a fluorescence turn-on sensor to S2- by taking advantage of the structural transformation from nanobelt to its fluorescent ligand.

12.
Inorg Chem ; 59(1): 875-879, 2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31868353

ABSTRACT

A novel metal-organic ligand (MOL 2) has been prepared by linking two V-shaped bis-terpyridines with one X-shaped tetrakis-terpyridine through the stable connectivity. The complexation between MOL 2, X-shaped tetrakis-terpyridine, and Zn2+ gave rise to a supramolecular C6-symmetrical six-pointed star quantitatively. In addition, a mixture of MOL 2, K-shaped tetrakis-terpyridine, and Zn2+ afforded a C2-symmetrical four-pointed star. These metallo-supramolecular architectures were adequately characterized by NMR, ESI-MS, TWIM-MS, and TEM analyses.

13.
J Am Chem Soc ; 141(41): 16217-16221, 2019 10 16.
Article in English | MEDLINE | ID: mdl-31509710

ABSTRACT

A series of stellated metallosupramolecular architectures have been assembled through three-component integrative self-sorting. Building on the complementary ligand pairing, the initial attempts to synthesize the hexagram complex from a combination of X-shaped tetrakis- and V-shaped bis-terpyridine ligands, and CdII ions, resulted in an unprecedented mixture of stellated octanuclear and dodecanuclear metallocages, which were further isolated by column chromatography. To overcome the unexpected obstacle, the multivalent ligand design along with spontaneous heteroleptic complexation was applied to realization of the one-pot synthesis of the intricate topology. A centrally situated triangle served as a prop for quantitative formation of the six-pointed stellated complex. Notably, in the absence of the triangular prop, a four-pointed star was produced.

14.
Inorg Chem ; 58(1): 35-38, 2019 Jan 07.
Article in English | MEDLINE | ID: mdl-30570253

ABSTRACT

Construction of 3D terpyridine-based metallopolyhedra remains challenging because of the linear coordination geometry of ⟨tpy-MII-tpy⟩ connectivity. A progressive strategy is made by assembling tetranuclear terpyridyl metal-organic ligands to afford a novel regular octahedron, whose structure was established by NMR, electrospray ionization mass spectrometry, traveling-wave ion-mobility mass spectrometry, atomic force microscopy, and transmission electron microscopy. This strategy provides an efficient method for the construction of 3D terpyridine-based metallopolyhedra.

15.
Inorg Chem ; 58(8): 5051-5057, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30920813

ABSTRACT

The intricate discrete supramolecular architectures via two or more noncovalent interactions are very attractive for chemists. In this paper, a series of homomeric metallo-supramolecular lemniscates were prepared in nearly quantitative yields by assembling either dialkylammonium salt- or benzo-21-crown-7 (B21C7)-containing terpyridyl metallo-organic ligands with Zn2+. Furthermore, the heteromeric analogue could be obtained through two ways: (1) the cooperative interaction of coordination-driven self-assembly and host-guest recognition and (2) the transformation from homodimers to heterodimers driven by host-guest interaction. These supramolecules were characterized by nuclear magnetic resonance (NMR), diffusion-ordered NMR spectroscopy, electrospray ionization mass spectrometry, and two-dimensional (2D) ion-mobility mass spectrometry.

16.
Inorg Chem ; 58(12): 7662-7666, 2019 Jun 17.
Article in English | MEDLINE | ID: mdl-31150212

ABSTRACT

A shape-persistent metallosupramolecular multirhomboid that inlays a hexarhomboid polygon in a three-lobed flat structure was prepared by means of coordination-driven self-assembly. The key ligands were synthesized by a "reaction on complex" strategy that becomes accessible to troublesome metalloorganic ligand L3. The formation here consists of four different starting components and two metal ions. Complementarity of the shape and size drives molecular puzzling and results in the multicomponent, quantitative self-assembled construct.

17.
J Am Chem Soc ; 140(38): 12168-12174, 2018 09 26.
Article in English | MEDLINE | ID: mdl-30153008

ABSTRACT

The amalgamation of different components into a giant and intricate structure that makes quantitative and spontaneous assembly through molecular design is indispensable but challenging. To construct novel metallo-supramolecular architectures, here we present an architectural design principle based on multicomponent self-assembly. Using a carefully designed hexatopic terpyridine-based metallo-organic ligand (MOL), [Ru2T2K], we report on the formation of supramolecular trapezoid Zn5[Ru2T2K]V2, hollow hexagon Zn15[Ru2T2K]3K3, and giant star-shaped supramolecule Zn18[Ru2T2K]3[Ru2X2V]3, all of which were assembled by one-pot, nearly quantitative assembly of [Ru2T2K] with the ditopic 60°-directed bisterpyridine V, tetrakisterpyridine K, and MOL [Ru2X2V], respectively. The complementary ligands were selected on the basis of the size- and shape-fit principles, actually similar to the mortise-tenon joint that aligns and locks the two complementary wood components. This strategy is expected to open the door to sophisticated designer supramolecules and nonbiological materials. The multivalent connections within the mutual ligands give rise to the formation of stable assemblies, which are unambiguously characterized by NMR, ESI-MS, TWIM-MS, and TEM analyses.

18.
Anal Chem ; 90(12): 7691-7699, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29792807

ABSTRACT

Supramolecular diblock copolymers using metal-ligand coordination can be synthesized under ambient conditions by delicate design of the end groups of the homopolymer chains. However, mass spectrometric analysis of such metallo-supramolecular copolymers is challenging. One of the reasons is the nonpolarity of the polymer chains, making it hard to disperse the complexes in electrospray ionization (ESI)-friendly environments. The other difficulty is the noncovalent nature of such copolymers, which is easily disrupted during the ionization. Here, we demonstrate that the intact metallo-supramolecular diblock copolymers can be maintained sufficiently during the ESI process in aqueous solution within micelles. The high-resolution mass spectrometric evidence revealed that the surfactant molecules effectively protect the noncovalent binding of the complexes into gaseous ions. Intriguingly, surfactant molecules were sufficiently detached away from the copolymer complexes, giving unambiguous mass spectra that were predominated by intact diblock copolymers. This ESI-based approach allowed us to investigate the relative bond strengths of metal-to-ligand complexation using collision-induced dissociation (CID) in the ion trap mass spectrometry. Conformational features and collision cross sections of the copolymers were thus obtained using subsequent ion mobility spectrometry mass spectrometry (IMS-MS). Remarkable environment-dependent conformations of the denoted diblock copolymers were found using this mass spectrometric platform.

19.
Chemistry ; 24(37): 9274-9284, 2018 Jul 02.
Article in English | MEDLINE | ID: mdl-29714039

ABSTRACT

Spontaneous formation of the heteroleptic cadmium(II) bis(terpyridine) complex under ambient conditions can be achieved by a combination of 6,6''-di(2,6-dimethoxylphenyl)-substituted and unsubstituted terpyridine-based ligands. Building on this dynamic heteroleptic complexation, diverse metallo-supramolecular macrocycles and cages were readily assembled in quantitative yields from the predesigned multicomponent systems. The complementary ligation reinforced self-recognition to facilitate the shape-dependent self-sorting of a four-component dynamic library into two well-defined parallelograms. In addition, the subtle lability difference between homoleptic and heteroleptic complexes led to the site-selective CdII -ZnII transmetalation in the Sierpinski triangle. Facile construction of a dodecanuclear tetrahedral metallocage was also realized by using two self-recognizable tritopic building blocks. The photophysical study of the metallo-supramolecules assembled from the d10 metal ions revealed intense ligand-based photoluminescence in solution. The self-assembly strategy described here provides an efficient methodology for building pre-programmable, sophisticated supramolecular architectures furnished with photoactivity.

20.
J Org Chem ; 83(8): 4824-4830, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29595264

ABSTRACT

We present a series of tripodal ligands L1-3, which fold into hemicages C1-3 by using coordination-driven dynamic combinational chemistry. The identities of these hemicages were characterized using 1H NMR, 1H-1H COSY, DOSY, and ESI-TWIM-MS. Free rotation of the ferrocene structural units in the ligands affords an adaptable directionality, which is essential for the construction of these hemicages. Encapsulation of adamantane by C2 indicates the presence of a well-defined inner cavity as the binding pocket.

SELECTION OF CITATIONS
SEARCH DETAIL