ABSTRACT
With greater population density, the likelihood of viral outbreaks achieving pandemic status is increasing. However, current viral screening techniques use specific reagents, and as viruses mutate, test accuracy decreases. Here, we present the first real-time, reagent-free, portable analysis platform for viral detection in liquid saliva, using COVID-19 as a proof-of-concept. We show that vibrational molecular spectroscopy and machine learning (ML) detect biomolecular changes consistent with the presence of viral infection. Saliva samples were collected from 470 individuals, including 65 that were infected with COVID-19 (28 from hospitalized patients and 37 from a walk-in testing clinic) and 251 that had a negative polymerase chain reaction (PCR) test. A further 154 were collected from healthy volunteers. Saliva measurements were achieved in 6 minutes or less and led to machine learning models predicting COVID-19 infection with sensitivity and specificity reaching 90%, depending on volunteer symptoms and disease severity. Machine learning models were based on linear support vector machines (SVM). This platform could be deployed to manage future pandemics using the same hardware but using a tunable machine learning model that could be rapidly updated as new viral strains emerge.
ABSTRACT
Raman spectroscopy imaging is a technique that can be adapted for intraoperative tissue characterization to be used for surgical guidance. Here we present a macroscopic line scanning Raman imaging system that has been modified to ensure suitability for intraoperative use. The imaging system has a field of view of 1 × 1 cm2 and acquires Raman fingerprint images of 40 × 42 pixels, typically in less than 5 minutes. The system is mounted on a mobile cart, it is equiped with a passive support arm and possesses a removable and sterilizable probe muzzle. The results of a proof of concept study are presented in porcine adipose and muscle tissue. Supervised machine learning models (support vector machines and random forests) were trained and they were tested on a holdout dataset consisting of 7 Raman images (10 080 spectra) acquired in different animal tissues. This led to a detection accuracy >96% and prediction confidence maps providing a quantitative detection assessment for tissue border visualization. Further testing was accomplished on a dataset acquired with the imaging probe's contact muzzle and tailored classification models showed robust classifications capabilities with specificity, sensitivity and accuracy all surpassing 95% with a support vector machine classifier. Finally, laser safety, biosafety and sterilization of the system was assest. The safety assessment showed that the system's laser can be operated safetly according to the American National Standards Institute's standard for maximum permissible exposures for eyes and skin. It was further shown that during tissue interrogation, the temperature-history in cumulative equivalent minutes at 43 °C (CEM43 °C) never exceeded a safe threshold of 5 min.
Subject(s)
Intraoperative Period , Spectrum Analysis, Raman , Spectrum Analysis, Raman/instrumentation , Spectrum Analysis, Raman/methods , Swine , Animals , Adipose Tissue , Muscle, SkeletalABSTRACT
BACKGROUND: Prostate cancer (PC) is the most frequently diagnosed cancer in North American men. Pathologists are in critical need of accurate biomarkers to characterize PC, particularly to confirm the presence of intraductal carcinoma of the prostate (IDC-P), an aggressive histopathological variant for which therapeutic options are now available. Our aim was to identify IDC-P with Raman micro-spectroscopy (RµS) and machine learning technology following a protocol suitable for routine clinical histopathology laboratories. METHODS AND FINDINGS: We used RµS to differentiate IDC-P from PC, as well as PC and IDC-P from benign tissue on formalin-fixed paraffin-embedded first-line radical prostatectomy specimens (embedded in tissue microarrays [TMAs]) from 483 patients treated in 3 Canadian institutions between 1993 and 2013. The main measures were the presence or absence of IDC-P and of PC, regardless of the clinical outcomes. The median age at radical prostatectomy was 62 years. Most of the specimens from the first cohort (Centre hospitalier de l'Université de Montréal) were of Gleason score 3 + 3 = 6 (51%) while most of the specimens from the 2 other cohorts (University Health Network and Centre hospitalier universitaire de Québec-Université Laval) were of Gleason score 3 + 4 = 7 (51% and 52%, respectively). Most of the 483 patients were pT2 stage (44%-69%), and pT3a (22%-49%) was more frequent than pT3b (9%-12%). To investigate the prostate tissue of each patient, 2 consecutive sections of each TMA block were cut. The first section was transferred onto a glass slide to perform immunohistochemistry with H&E counterstaining for cell identification. The second section was placed on an aluminum slide, dewaxed, and then used to acquire an average of 7 Raman spectra per specimen (between 4 and 24 Raman spectra, 4 acquisitions/TMA core). Raman spectra of each cell type were then analyzed to retrieve tissue-specific molecular information and to generate classification models using machine learning technology. Models were trained and cross-validated using data from 1 institution. Accuracy, sensitivity, and specificity were 87% ± 5%, 86% ± 6%, and 89% ± 8%, respectively, to differentiate PC from benign tissue, and 95% ± 2%, 96% ± 4%, and 94% ± 2%, respectively, to differentiate IDC-P from PC. The trained models were then tested on Raman spectra from 2 independent institutions, reaching accuracies, sensitivities, and specificities of 84% and 86%, 84% and 87%, and 81% and 82%, respectively, to diagnose PC, and of 85% and 91%, 85% and 88%, and 86% and 93%, respectively, for the identification of IDC-P. IDC-P could further be differentiated from high-grade prostatic intraepithelial neoplasia (HGPIN), a pre-malignant intraductal proliferation that can be mistaken as IDC-P, with accuracies, sensitivities, and specificities > 95% in both training and testing cohorts. As we used stringent criteria to diagnose IDC-P, the main limitation of our study is the exclusion of borderline, difficult-to-classify lesions from our datasets. CONCLUSIONS: In this study, we developed classification models for the analysis of RµS data to differentiate IDC-P, PC, and benign tissue, including HGPIN. RµS could be a next-generation histopathological technique used to reinforce the identification of high-risk PC patients and lead to more precise diagnosis of IDC-P.
Subject(s)
Carcinoma, Intraductal, Noninfiltrating/diagnostic imaging , Machine Learning/standards , Nonlinear Optical Microscopy/standards , Prostatic Neoplasms/diagnostic imaging , Aged , Canada/epidemiology , Carcinoma, Intraductal, Noninfiltrating/epidemiology , Carcinoma, Intraductal, Noninfiltrating/pathology , Case-Control Studies , Cohort Studies , Humans , Male , Middle Aged , Nonlinear Optical Microscopy/methods , Prostatic Neoplasms/epidemiology , Prostatic Neoplasms/pathology , Reproducibility of Results , Retrospective StudiesABSTRACT
Raman spectroscopy is a promising tool for neurosurgical guidance and cancer research. Quantitative analysis of the Raman signal from living tissues is, however, limited. Their molecular composition is convoluted and influenced by clinical factors, and access to data is limited. To ensure acceptance of this technology by clinicians and cancer scientists, we need to adapt the analytical methods to more closely model the Raman-generating process. Our objective is to use feature engineering to develop a new representation for spectral data specifically tailored for brain diagnosis that improves interpretability of the Raman signal while retaining enough information to accurately predict tissue content. The method consists of band fitting of Raman bands which consistently appear in the brain Raman literature, and the generation of new features representing the pairwise interaction between bands and the interaction between bands and patient age. Our technique was applied to a dataset of 547 in situ Raman spectra from 65 patients undergoing glioma resection. It showed superior predictive capacities to a principal component analysis dimensionality reduction. After analysis through a Bayesian framework, we were able to identify the oncogenic processes that characterize glioma: increased nucleic acid content, overexpression of type IV collagen and shift in the primary metabolic engine. Our results demonstrate how this mathematical transformation of the Raman signal allows the first biological, statistically robust analysis of in vivo Raman spectra from brain tissue.
Subject(s)
Brain Neoplasms/metabolism , Glioma/metabolism , Spectrum Analysis, Raman/methods , Bayes Theorem , Brain Neoplasms/chemistry , Collagen Type IV/metabolism , Datasets as Topic , Female , Glioma/chemistry , Humans , Intraoperative Care , Light , Male , Middle Aged , Nucleic Acids/metabolism , Principal Component Analysis , Retrospective StudiesABSTRACT
Here we introduce a Raman spectroscopy approach combining multi-spectral imaging and a new fluorescence background subtraction technique to image individual Raman peaks in less than 5 seconds over a square field-of-view of 1-centimeter sides with 350 micrometers resolution. First, human data is presented supporting the feasibility of achieving cancer detection with high sensitivity and specificity - in brain, breast, lung, and ovarian/endometrium tissue - using no more than three biochemically interpretable biomarkers associated with the inelastic scattering signal from specific Raman peaks. Second, a proof-of-principle study in biological tissue is presented demonstrating the feasibility of detecting a single Raman band - here the CH2/CH3 deformation bands from proteins and lipids - using a conventional multi-spectral imaging system in combination with the new background removal method. This study paves the way for the development of a new Raman imaging technique that is rapid, label-free, and wide field.
Subject(s)
Neoplasms , Spectrum Analysis, Raman , Humans , Neoplasms/diagnostic imaging , Neoplasms/pathology , Molecular Imaging/methods , Feasibility StudiesABSTRACT
PURPOSE: Cancer confirmation in the operating room (OR) is crucial to improve local control in cancer therapies. Histopathological analysis remains the gold standard, but there is a lack of real-time in situ cancer confirmation to support margin confirmation or remnant tissue. Raman spectroscopy (RS), as a label-free optical technique, has proven its power in cancer detection and, when integrated into a robotic assistance system, can positively impact the efficiency of procedures and the quality of life of patients, avoiding potential recurrence. METHODS: A workflow is proposed where a 6-DOF robotic system (optical camera + MECA500 robotic arm) assists the characterization of fresh tissue samples using RS. Three calibration methods are compared for the robot, and the temporal efficiency is compared with standard hand-held analysis. For healthy/cancerous tissue discrimination, a 1D-convolutional neural network is proposed and tested on three ex vivo datasets (brain, breast, and prostate) containing processed RS and histopathology ground truth. RESULTS: The robot achieves a minimum error of 0.20 mm (0.12) on a set of 30 test landmarks and demonstrates significant time reduction in 4 of the 5 proposed tasks. The proposed classification model can identify brain, breast, and prostate cancer with an accuracy of 0.83 (0.02), 0.93 (0.01), and 0.71 (0.01), respectively. CONCLUSION: Automated RS analysis with deep learning demonstrates promising classification performance compared to commonly used support vector machines. Robotic assistance in tissue characterization can contribute to highly accurate, rapid, and robust biopsy analysis in the OR. These two elements are an important step toward real-time cancer confirmation using RS and OR integration.
Subject(s)
Breast Neoplasms , Prostatic Neoplasms , Robotic Surgical Procedures , Spectrum Analysis, Raman , Humans , Spectrum Analysis, Raman/methods , Prostatic Neoplasms/pathology , Prostatic Neoplasms/diagnosis , Robotic Surgical Procedures/methods , Breast Neoplasms/pathology , Male , Female , Operating Rooms , Biopsy/methods , Brain Neoplasms/pathology , Brain Neoplasms/diagnosisABSTRACT
Significance: Of patients with early-stage breast cancer, 60% to 75% undergo breast-conserving surgery. Of those, 20% or more need a second surgery because of an incomplete tumor resection only discovered days after surgery. An intraoperative imaging technology allowing cancer detection on the margins of breast specimens could reduce re-excision procedure rates and improve patient survival. Aim: We aimed to develop an experimental protocol using hyperspectral line-scanning Raman spectroscopy to image fresh breast specimens from cancer patients. Our objective was to determine whether macroscopic specimen images could be produced to distinguish invasive breast cancer from normal tissue structures. Approach: A hyperspectral inelastic scattering imaging instrument was used to interrogate eight specimens from six patients undergoing breast cancer surgery. Machine learning models trained with a different system to distinguish cancer from normal breast structures were used to produce tissue maps with a field-of-view of 1 cm 2 classifying each pixel as either cancer, adipose, or other normal tissues. The predictive model results were compared with spatially correlated histology maps of the specimens. Results: A total of eight specimens from six patients were imaged. Four of the hyperspectral images were associated with specimens containing cancer cells that were correctly identified by the new ex vivo pathology technique. The images associated with the remaining four specimens had no histologically detectable cancer cells, and this was also correctly predicted by the instrument. Conclusions: We showed the potential of hyperspectral Raman imaging as an intraoperative breast cancer margin assessment technique that could help surgeons improve cosmesis and reduce the number of repeat procedures in breast cancer surgery.
Subject(s)
Breast Neoplasms , Hyperspectral Imaging , Mastectomy, Segmental , Spectrum Analysis, Raman , Humans , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/surgery , Breast Neoplasms/pathology , Female , Spectrum Analysis, Raman/methods , Mastectomy, Segmental/methods , Hyperspectral Imaging/methods , Mastectomy , Breast/diagnostic imaging , Breast/surgery , Breast/pathology , Middle Aged , Machine LearningABSTRACT
Safe and effective brain tumor surgery aims to remove tumor tissue, not non-tumoral brain. This is a challenge since tumor cells are often not visually distinguishable from peritumoral brain during surgery. To address this, we conducted a multicenter study testing whether the Sentry System could distinguish the three most common types of brain tumors from brain tissue in a label-free manner. The Sentry System is a new real time, in situ brain tumor detection device that merges Raman spectroscopy with machine learning tissue classifiers. Nine hundred and seventy-six in situ spectroscopy measurements and colocalized tissue specimens were acquired from 67 patients undergoing surgery for glioblastoma, brain metastases, or meningioma to assess tumor classification. The device achieved diagnostic accuracies of 91% for glioblastoma, 97% for brain metastases, and 96% for meningiomas. These data show that the Sentry System discriminated tumor containing tissue from non-tumoral brain in real time and prior to resection.
Subject(s)
Brain Neoplasms , Spectrum Analysis, Raman , Humans , Brain Neoplasms/diagnosis , Brain Neoplasms/pathology , Brain Neoplasms/surgery , Spectrum Analysis, Raman/methods , Male , Female , Middle Aged , Aged , Meningioma/diagnosis , Meningioma/pathology , Glioblastoma/pathology , Glioblastoma/diagnosis , Glioblastoma/surgery , Adult , Machine Learning , Brain/pathology , Brain/diagnostic imagingABSTRACT
Significance: Orthopedic surgery is frequently performed but currently lacks consensus and availability of ideal guidance methods, resulting in high variability of outcomes. Misdirected insertion of surgical instruments can lead to weak anchorage and unreliable fixation along with risk to critical structures including the spinal cord. Current methods for surgical guidance using conventional medical imaging are indirect and time-consuming with unclear advantages. Aim: The purpose of this study was to investigate the potential of intraoperative in situ near-infrared Raman spectroscopy (RS) combined with machine learning in guiding pedicular screw insertion in the spine. Approach: A portable system equipped with a hand-held RS probe was used to make fingerprint measurements on freshly excised porcine vertebrae, identifying six tissue types: bone, spinal cord, fat, cartilage, ligament, and muscle. Supervised machine learning techniques were used to train-and test on independent hold-out data subsets-a six-class model as well as two-class models engineered to distinguish bone from soft tissue. The two-class models were further tested using in vivo spectral fingerprint measurements made during intra-pedicular drilling in a porcine spine model. Results: The five-class model achieved >96% accuracy in distinguish all six tissue classes when applied onto a hold-out testing data subset. The binary classifier detecting bone versus soft tissue (all soft tissue or spinal cord only) yielded 100% accuracy. When applied onto in vivo measurements performed during interpedicular drilling, the soft tissue detection models correctly detected all spinal canal breaches. Conclusions: We provide a foundation for RS in the orthopedic surgical guidance field. It shows that RS combined with machine learning is a rapid and accurate modality capable of discriminating tissues that are typically encountered in orthopedic procedures, including pedicle screw placement. Future development of integrated RS probes and surgical instruments promises better guidance options for the orthopedic surgeon and better patient outcomes.
Subject(s)
Orthopedic Procedures , Pedicle Screws , Phthiraptera , Surgery, Computer-Assisted , Swine , Animals , Spectrum Analysis, Raman , Surgery, Computer-Assisted/methods , Orthopedic Procedures/methodsABSTRACT
Significance: Standardized data processing approaches are required in the field of bio-Raman spectroscopy to ensure information associated with spectral data acquired by different research groups, and with different systems, can be compared on an equal footing. Aim: An open-sourced data processing software package was developed, implementing algorithms associated with all steps required to isolate the inelastic scattering component from signals acquired using Raman spectroscopy devices. The package includes a novel morphological baseline removal technique (BubbleFill) that provides increased adaptability to complex baseline shapes compared to current gold standard techniques. Also incorporated in the package is a versatile tool simulating spectroscopic data with varying levels of Raman signal-to-background ratios, baselines with different morphologies, and varying levels of stochastic noise. Results: Application of the BubbleFill technique to simulated data demonstrated superior baseline removal performance compared to standard algorithms, including iModPoly and MorphBR. The data processing workflow of the open-sourced package was validated in four independent in-human datasets, demonstrating it leads to inter-systems data compatibility. Conclusions: A new open-sourced spectroscopic data pre-processing package was validated on simulated and real-world in-human data and is now available to researchers and clinicians for the development of new clinical applications using Raman spectroscopy.
Subject(s)
Algorithms , Spectrum Analysis, Raman , Humans , Spectrum Analysis, Raman/methods , SoftwareABSTRACT
Significance: Lung cancer is the most frequently diagnosed cancer overall and the deadliest cancer in North America. Early diagnosis through current bronchoscopy techniques is limited by poor diagnostic yield and low specificity, especially for lesions located in peripheral pulmonary locations. Even with the emergence of robotic-assisted platforms, bronchoscopy diagnostic yields remain below 80%. Aim: The aim of this study was to determine whether in situ single-point fingerprint (800 to 1700 cm-1) Raman spectroscopy coupled with machine learning could detect lung cancer within an otherwise heterogenous background composed of normal tissue and tissue associated with benign conditions, including emphysema and bronchiolitis. Approach: A Raman spectroscopy probe was used to measure the spectral fingerprint of normal, benign, and cancer lung tissue in 10 patients. Each interrogated specimen was characterized by histology to determine cancer type, i.e., small cell carcinoma or non-small cell carcinoma (adenocarcinoma and squamous cell carcinoma). Biomolecular information was extracted from the fingerprint spectra to identify biomolecular features that can be used for cancer detection. Results: Supervised machine learning models were trained using leave-one-patient-out cross-validation, showing lung cancer could be detected with a sensitivity of 94% and a specificity of 80%. Conclusions: This proof of concept demonstrates fingerprint Raman spectroscopy is a promising tool for the detection of lung cancer during diagnostic procedures and can capture biomolecular changes associated with the presence of cancer among a complex heterogeneous background within less than 1 s.
Subject(s)
Adenocarcinoma , Carcinoma, Squamous Cell , Lung Neoplasms , Humans , Spectrum Analysis, Raman , Lung Neoplasms/diagnostic imaging , Lung/diagnostic imagingABSTRACT
Significance: As many as 60% of patients with early stage breast cancer undergo breast-conserving surgery. Of those, 20% to 35% need a second surgery because of incomplete resection of the lesions. A technology allowing in situ detection of cancer could reduce re-excision procedure rates and improve patient survival. Aim: Raman spectroscopy was used to measure the spectral fingerprint of normal breast and cancer tissue ex-vivo. The aim was to build a machine learning model and to identify the biomolecular bands that allow one to detect invasive breast cancer. Approach: The system was used to interrogate specimens from 20 patients undergoing lumpectomy, mastectomy, or breast reduction surgery. This resulted in 238 ex-vivo measurements spatially registered with standard histology classifying tissue as cancer, normal, or fat. A technique based on support vector machines led to the development of predictive models, and their performance was quantified using a receiver-operating-characteristic analysis. Results: Raman spectroscopy combined with machine learning detected normal breast from ductal or lobular invasive cancer with a sensitivity of 93% and a specificity of 95%. This was achieved using a model based on only two spectral bands, including the peaks associated with C-C stretching of proteins around 940 cm - 1 and the symmetric ring breathing at 1004 cm - 1 associated with phenylalanine. Conclusions: Detection of cancer on the margins of surgically resected breast specimen is feasible with Raman spectroscopy.
Subject(s)
Breast Neoplasms , Carcinoma, Ductal, Breast , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/surgery , Spectrum Analysis, Raman/methods , Mastectomy , Mastectomy, Segmental/methods , Proteins , Carcinoma, Ductal, Breast/surgeryABSTRACT
SIGNIFICANCE: The diagnosis of prostate cancer (PCa) and focal treatment by brachytherapy are limited by the lack of precise intraoperative information to target tumors during biopsy collection and radiation seed placement. Image-guidance techniques could improve the safety and diagnostic yield of biopsy collection as well as increase the efficacy of radiotherapy. AIM: To estimate the accuracy of PCa detection using in situ Raman spectroscopy (RS) in a pilot in-human clinical study and assess biochemical differences between in vivo and ex vivo measurements. APPROACH: A new miniature RS fiber-optics system equipped with an electromagnetic (EM) tracker was guided by trans-rectal ultrasound-guided imaging, fused with preoperative magnetic resonance imaging to acquire 49 spectra in situ (in vivo) from 18 PCa patients. In addition, 179 spectra were acquired ex vivo in fresh prostate samples from 14 patients who underwent radical prostatectomy. Two machine-learning models were trained to discriminate cancer from normal prostate tissue from both in situ and ex vivo datasets. RESULTS: A support vector machine (SVM) model was trained on the in situ dataset and its performance was evaluated using leave-one-patient-out cross validation from 28 normal prostate measurements and 21 in-tumor measurements. The model performed at 86% sensitivity and 72% specificity. Similarly, an SVM model was trained with the ex vivo dataset from 152 normal prostate measurements and 27 tumor measurements showing reduced cancer detection performance mostly attributable to spatial registration inaccuracies between probe measurements and histology assessment. A qualitative comparison between in situ and ex vivo measurements demonstrated a one-to-one correspondence and similar ratios between the main Raman bands (e.g., amide I-II bands, phenylalanine). CONCLUSIONS: PCa detection can be achieved using RS and machine learning models for image-guidance applications using in situ measurements during prostate biopsy procedures.
Subject(s)
Prostate , Prostatic Neoplasms , Biopsy , Humans , Image-Guided Biopsy/methods , Magnetic Resonance Imaging/methods , Male , Prostate/diagnostic imaging , Prostate/pathology , Prostate/surgery , Prostatectomy/methods , Prostatic Neoplasms/pathology , Spectrum Analysis, Raman/methodsABSTRACT
Up to 70% of ovarian cancer patients are diagnosed with advanced-stage disease and the degree of cytoreduction is an important survival prognostic factor. The aim of this study was to evaluate if Raman spectroscopy could detect cancer from different organs within the abdominopelvic region, including the ovaries. A Raman spectroscopy probe was used to interrogate specimens from a cohort of nine patients undergoing cytoreductive surgery, including four ovarian cancer patients and three patients with endometrial cancer. A feature-selection algorithm was developed to determine which spectral bands contributed to cancer detection and a machine-learning model was trained. The model could detect cancer using only eight spectral bands. The receiver-operating-characteristic curve had an area-under-the-curve of 0.96, corresponding to an accuracy, a sensitivity and a specificity of 90%, 93% and 88%, respectively. These results provide evidence multispectral Raman spectroscopy could be developed to detect ovarian cancer intraoperatively.
Subject(s)
Endometrial Neoplasms , Ovarian Neoplasms , Endometrial Neoplasms/diagnosis , Endometrial Neoplasms/surgery , Female , Humans , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/surgery , ROC Curve , Spectrum Analysis, Raman/methodsABSTRACT
SIGNIFICANCE: The diagnosis and treatment of prostate cancer (PCa) are limited by a lack of intraoperative information to accurately target tumors with needles for biopsy and brachytherapy. An innovative image-guidance technique using optical devices could improve the diagnostic yield of biopsy and efficacy of radiotherapy. AIM: To evaluate the performance of multimodal PCa detection using biomolecular features from in-situ Raman spectroscopy (RS) combined with image-based (radiomics) features from multiparametric magnetic resonance images (mpMRI). APPROACH: In a prospective pilot clinical study, 18 patients were recruited and underwent high-dose-rate brachytherapy. Multimodality image fusion (preoperative mpMRI with intraoperative transrectal ultrasound) combined with electromagnetic tracking was used to navigate an RS needle in the prostate prior to brachytherapy. This resulting dataset consisted of Raman spectra and co-located radiomics features from mpMRI. Feature selection was performed with the constraint that no more than 10 features were retained overall from a combination of inelastic scattering spectra and radiomics. These features were used to train support vector machine classifiers for PCa detection based on leave-one-patient-out cross-validation. RESULTS: RS along with biopsy samples were acquired from 47 sites along the insertion trajectory of the fiber-optics needle: 26 were confirmed as benign or grade group = 1, and 21 as grade group >1, according to histopathological reports. The combination of the fingerprint region of the RS and radiomics showed an accuracy of 83% (sensitivity = 81 % and a specificity = 85 % ), outperforming by more than 9% models trained with either spectroscopic or mpMRI data alone. An optimal number of features was identified between 6 and 8 features, which have good potential for discriminating grade group ≥1 / grade group <1 (accuracy = 87 % ) or grade group >1 / grade group ≤1 (accuracy = 91 % ). CONCLUSIONS: In-situ Raman spectroscopy combined with mpMRI radiomics features can lead to highly accurate PCa detection for improved in-vivo targeting of biopsy sample collection and radiotherapy seed placement.
Subject(s)
Prostate , Prostatic Neoplasms , Humans , Magnetic Resonance Imaging , Male , Prospective Studies , Prostate/diagnostic imaging , Prostate/surgery , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/surgery , Spectrum Analysis, RamanABSTRACT
SIGNIFICANCE: The primary method of COVID-19 detection is reverse transcription polymerase chain reaction (RT-PCR) testing. PCR test sensitivity may decrease as more variants of concern arise and reagents may become less specific to the virus. AIM: We aimed to develop a reagent-free way to detect COVID-19 in a real-world setting with minimal constraints on sample acquisition. The machine learning (ML) models involved could be frequently updated to include spectral information about variants without needing to develop new reagents. APPROACH: We present a workflow for collecting, preparing, and imaging dried saliva supernatant droplets using a non-invasive, label-free technique-Raman spectroscopy-to detect changes in the molecular profile of saliva associated with COVID-19 infection. RESULTS: We used an innovative multiple instance learning-based ML approach and droplet segmentation to analyze droplets. Amongst all confounding factors, we discriminated between COVID-positive and COVID-negative individuals yielding receiver operating coefficient curves with an area under curve (AUC) of 0.8 in both males (79% sensitivity and 75% specificity) and females (84% sensitivity and 64% specificity). Taking the sex of the saliva donor into account increased the AUC by 5%. CONCLUSION: These findings may pave the way for new rapid Raman spectroscopic screening tools for COVID-19 and other infectious diseases.
Subject(s)
COVID-19 , Saliva , Female , Humans , Indicators and Reagents , Machine Learning , Male , SARS-CoV-2 , Sensitivity and Specificity , Spectrum Analysis, RamanABSTRACT
SIGNIFICANCE: Prostate cancer is the most common cancer among men. An accurate diagnosis of its severity at detection plays a major role in improving their survival. Recently, machine learning models using biomarkers identified from Raman micro-spectroscopy discriminated intraductal carcinoma of the prostate (IDC-P) from cancer tissue with a ≥85 % detection accuracy and differentiated high-grade prostatic intraepithelial neoplasia (HGPIN) from IDC-P with a ≥97.8 % accuracy. AIM: To improve the classification performance of machine learning models identifying different types of prostate cancer tissue using a new dimensional reduction technique. APPROACH: A radial basis function (RBF) kernel support vector machine (SVM) model was trained on Raman spectra of prostate tissue from a 272-patient cohort (Centre hospitalier de l'Université de Montréal, CHUM) and tested on two independent cohorts of 76 patients [University Health Network (UHN)] and 135 patients (Centre hospitalier universitaire de Québec-Université Laval, CHUQc-UL). Two types of engineered features were used. Individual intensity features, i.e., Raman signal intensity measured at particular wavelengths and novel Raman spectra fitted peak features consisting of peak heights and widths. RESULTS: Combining engineered features improved classification performance for the three aforementioned classification tasks. The improvements for IDC-P/cancer classification for the UHN and CHUQc-UL testing sets in accuracy, sensitivity, specificity, and area under the curve (AUC) are (numbers in parenthesis are associated with the CHUQc-UL testing set): +4 % (+8 % ), +7 % (+9 % ), +2 % (6%), +9 (+9) with respect to the current best models. Discrimination between HGPIN and IDC-P was also improved in both testing cohorts: +2.2 % (+1.7 % ), +4.5 % (+3.6 % ), +0 % (+0 % ), +2.3 (+0). While no global improvements were obtained for the normal versus cancer classification task [+0 % (-2 % ), +0 % (-3 % ), +2 % (-2 % ), +4 (+3)], the AUC was improved in both testing sets. CONCLUSIONS: Combining individual intensity features and novel Raman fitted peak features, improved the classification performance on two independent and multicenter testing sets in comparison to using only individual intensity features.
Subject(s)
Carcinoma, Intraductal, Noninfiltrating , Prostatic Neoplasms , Area Under Curve , Humans , Machine Learning , Male , Prostatic Neoplasms/diagnostic imaging , Spectrum Analysis, RamanABSTRACT
SIGNIFICANCE: Ensuring spectral quality is prerequisite to Raman spectroscopy applied to surgery. This is because the inclusion of poor-quality spectra in the training phase of Raman-based pathology detection models can compromise prediction robustness and generalizability to new data. Currently, there exists no quantitative spectral quality assessment technique that can be used to either reject low-quality data points in existing Raman datasets based on spectral morphology or, perhaps more importantly, to optimize the in vivo data acquisition process to ensure minimal spectral quality standards are met. AIM: To develop a quantitative method evaluating Raman signal quality based on the variance associated with stochastic noise in important tissue bands, including CâC stretch, CH2 / CH3 deformation, and the amide bands. APPROACH: A single-point hand-held Raman spectroscopy probe system was used to acquire 315 spectra from 44 brain cancer patients. All measurements were classified as either high or low quality based on visual assessment (qualitative) and using a quantitative quality factor (QF) metric. Receiver-operator-characteristic (ROC) analyses were performed to evaluate the performance of the quantitative metric to assess spectral quality and improve cancer detection accuracy. RESULTS: The method can separate high- and low-quality spectra with a sensitivity of 89% and a specificity of 90% which is shown to increase cancer detection sensitivity and specificity by up to 20% and 12%, respectively. CONCLUSIONS: The QF threshold is effective in stratifying spectra in terms of spectral quality and the observed false negatives and false positives can be linked to limitations of qualitative spectral quality assessment.
Subject(s)
Brain Neoplasms , Spectrum Analysis, Raman , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Humans , Sensitivity and SpecificityABSTRACT
PURPOSE: Transrectal ultrasound (TRUS) image guidance is the standard of care for diagnostic and therapeutic interventions in prostate cancer (PCa) patients, but can lead to high false-negative rates, compromising downstream effectiveness of therapeutic choices. A promising approach to improve in-situ detection of PCa lies in using the optical properties of the tissue to discern cancer from healthy tissue. In this work, we present the first in-situ image-guided navigation system for a spatially tracked Raman spectroscopy probe integrated in a PCa workflow, capturing the optical tissue fingerprint. The probe is guided with fused TRUS/MR imaging and tested with both tissue-simulating phantoms and ex-vivo prostates. The workflow was designed to be integrated the clinical workflow for trans-perineal prostate biopsies, as well as for high-dose rate (HDR) brachytherapy. METHODS: The proposed system developed in 3D Slicer includes an electromagnetically tracked Raman spectroscopy probe, along with tracked TRUS imaging automatically registered to diagnostic MRI. The proposed system is tested on both custom gelatin tissue-simulating optical phantoms and biological tissue phantoms. A random-forest classifier was then trained on optical spectrums from ex-vivo prostates following prostatectomy using our optical probe. Preliminary in-human results are presented with the Raman spectroscopy instrument to detect malignant tissue in-situ with histopathology confirmation. RESULTS: In 5 synthetic gelatin and biological tissue phantoms, we demonstrate the ability of the image-guided Raman system by detecting over 95% of lesions, based on biopsy samples. The included lesion volumes ranged from 0.1 to 0.61 cc. We showed the compatibility of our workflow with the current HDR brachytherapy setup. In ex-vivo prostates of PCa patients, the system showed a 81% detection accuracy in high grade lesions. CONCLUSION: Pre-clinical experiments demonstrated promising results for in-situ confirmation of lesion locations in prostates using Raman spectroscopy, both in phantoms and human ex-vivo prostate tissue, which is required for integration in HDR brachytherapy procedures.
Subject(s)
Prostatectomy/methods , Prostatic Neoplasms/surgery , Biopsy , Humans , Image-Guided Biopsy/methods , Magnetic Resonance Imaging/methods , Male , Phantoms, Imaging , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Spectrum Analysis, Raman , UltrasonographyABSTRACT
Surgical excision of the whole prostate through a radical prostatectomy procedure is part of the standard of care for prostate cancer. Positive surgical margins (cancer cells having spread into surrounding nonresected tissue) occur in as many as 1 in 5 cases and strongly correlate with disease recurrence and the requirement of adjuvant treatment. Margin assessment is currently only performed by pathologists hours to days following surgery and the integration of a real-time surgical readout would benefit current prostatectomy procedures. Raman spectroscopy is a promising technology to assess surgical margins: its in vivo use during radical prostatectomy could help insure the extent of resected prostate and cancerous tissue is maximized. We thus present the design and development of a dual excitation Raman spectroscopy system (680- and 785-nm excitations) integrated to the robotic da Vinci surgical platform for in vivo use. Following validation in phantoms, spectroscopic data from 20 whole human prostates immediately following radical prostatectomy are obtained using the system. With this dataset, we are able to distinguish prostate from extra prostatic tissue with an accuracy, sensitivity, and specificity of 91%, 90.5%, and 96%, respectively. Finally, the integrated Raman spectroscopy system is used to collect preliminary spectroscopic data at the surgical margin in vivo in four patients.