Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
J Immunol ; 198(4): 1474-1483, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28053237

ABSTRACT

Human mast cell chymase (HC) and human neutrophil cathepsin G (hCG) show relatively similar cleavage specificities: they both have chymotryptic activity but can also cleave efficiently after leucine. Their relatively broad specificity suggests that they may cleave almost any substrate if present in high enough concentrations or for a sufficiently long time. A number of potential substrates have been identified for these enzymes and, recently, these enzymes have also been implicated in regulating cytokine activity by cleaving numerous cytokines and chemokines. To obtain a better understanding of their selectivity for various potential in vivo substrates, we analyzed the cleavage of a panel of 51 active recombinant cytokines and chemokines. Surprisingly, our results showed a high selectivity of HC; only 4 of 51 of these proteins were substantially cleaved. hCG cleaved a few additional proteins, although this occurred after adding almost equimolar amounts of enzyme to target. The explanation for this wide difference in activity against peptides or other linear substrates compared with native proteins is most likely related to the reduced accessibility of the enzymes to potential cleavage sites in folded proteins. In this article, we present evidence that sites not exposed on the surface of the protein are not cleaved by the enzyme. Interestingly, both enzymes readily cleaved IL-18 and IL-33, two IL-1-related alarmins, as well as the cytokine IL-15, which is important for T cell and NK cell homeostasis. Cleavage of the alarmins by HC and hCG suggests a function in regulating excessive inflammation.


Subject(s)
Cathepsin G/metabolism , Chemokines/metabolism , Chymases/metabolism , Cytokines/metabolism , Mast Cells/enzymology , Alarmins/metabolism , Chemokines/genetics , Cytokines/genetics , Homeostasis/immunology , Humans , Inflammation , Interleukin-1/metabolism , Interleukin-15/metabolism , Interleukin-18/metabolism , Interleukin-33/metabolism , Killer Cells, Natural/physiology , Mast Cells/immunology , Mast Cells/physiology , Neutrophils/immunology , Neutrophils/metabolism , Substrate Specificity , T-Lymphocytes/physiology
2.
Int J Mol Sci ; 20(24)2019 Dec 16.
Article in English | MEDLINE | ID: mdl-31888202

ABSTRACT

Serine proteases constitute the major protein content of mast cell (MC) secretory granules. These proteases can generally be subdivided into chymases and tryptases based on their primary cleavage specificity. Here, we presented the extended cleavage specificities of a rabbit ß-chymase and a guinea pig α-chymase. Analyses by phage display screening and a panel of recombinant substrates showed a marked similarity in catalytic activity between the enzymes, both being strict Leu-ases (cleaving on the carboxyl side of Leu). Amino acid sequence alignment of a panel of mammalian chymotryptic MC proteases and 3D structural modeling identified an unusual residue in the rabbit enzyme at position 216 (Thr instead of more common Gly), which is most likely critical for the Leu-ase specificity. Almost all mammals studied, except rabbit and guinea pig, express classical chymotryptic enzymes with similarly extended specificities, indicating an important role of chymase in MC biology. The rabbit and guinea pig are the only two mammalian species currently known to lack a classical MC chymase. Key questions are now how this major difference affects their MC function, and if genes of other loci can rescue the loss of a chymotryptic activity in MCs of these two species.


Subject(s)
Chymases/metabolism , Leucine/metabolism , Mast Cells/enzymology , Amino Acid Sequence , Animals , Catalytic Domain , Cell Surface Display Techniques , Chymases/chemistry , Chymases/isolation & purification , Consensus Sequence , Enzyme Activation , Guinea Pigs , HEK293 Cells , Humans , Models, Molecular , Phylogeny , Rabbits , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Substrate Specificity
3.
Am J Respir Crit Care Med ; 181(3): 247-53, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-19875688

ABSTRACT

RATIONALE: Mast cells and neutrophils are key contributors to the pathophysiological inflammatory processes that underpin asthma and chronic obstructive pulmonary disease, partly through the release of noxious serine proteases, including cathepsin G (Cat G) and chymase. From this standpoint, a dual inhibitor of neutrophil Cat G and mast cell chymase could protect against these disease-related inflammatory responses. OBJECTIVES: We examined the antiinflammatory pharmacology of RWJ-355871, a dual inhibitor of Cat G and chymase, in animal models of inflammation that evince pathophysiological pathways relevant to asthma and chronic obstructive pulmonary disease to determine the therapeutic potential of this compound. METHODS: In an ovalbumin (OVA)-sensitized rat model, RWJ-355871 was administered to block the mast-cell-mediated increase in paw volume caused by OVA injection. In a sheep asthma model, antigen-induced airway responses were assessed with and without aerosol treatment with RWJ-355871. In a murine tobacco-smoke model of airway inflammation, the effect of RWJ-355871 on smoke-induced neutrophilia was determined. MEASUREMENTS AND MAIN RESULTS: Intravenous treatment of OVA-sensitized rats with RWJ-355871 provided dose-dependent reduction in the increase in rat paw volume. In allergic sheep, aerosol pretreatment with RWJ-355871 showed dose-dependent inhibition of the antigen-induced early response, late response, and post-antigen-induced airway hyperreponsiveness. In tobacco-smoke-exposed mice, nebulized RWJ-355871 significantly reduced the smoke-induced neutrophilia from the levels observed in untreated mice. CONCLUSIONS: The preclinical antiinflammatory effects of RWJ-355871 in these animal models of inflammation indicate that this dual inhibitor may have therapeutic utility for treating airway inflammatory diseases involving mechanisms that depend on Cat G and/or chymase.


Subject(s)
Cathepsin G/antagonists & inhibitors , Chymases/antagonists & inhibitors , Lung Diseases/enzymology , Organophosphonates/therapeutic use , Piperidines/therapeutic use , Pulmonary Disease, Chronic Obstructive/enzymology , Animals , Biomarkers/metabolism , Bronchoalveolar Lavage Fluid/chemistry , Cathepsin G/metabolism , Chymases/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Enzyme-Linked Immunosorbent Assay , Female , Injections, Intravenous , Lung Diseases/drug therapy , Mice , Organophosphonates/administration & dosage , Piperidines/administration & dosage , Pulmonary Disease, Chronic Obstructive/drug therapy , Rats , Sheep , Treatment Outcome
4.
PLoS One ; 16(5): e0252624, 2021.
Article in English | MEDLINE | ID: mdl-34048501

ABSTRACT

Ruminants have a very complex digestive system adapted for the digestion of cellulose rich food. Gene duplications have been central in the process of adapting their digestive system for this complex food source. One of the new loci involved in food digestion is the lysozyme c locus where cows have ten active such genes compared to a single gene in humans and where four of the bovine copies are expressed in the abomasum, the real stomach. The second locus that has become part of the ruminant digestive system is the chymase locus. The chymase locus encodes several of the major hematopoietic granule proteases. In ruminants, genes within the chymase locus have duplicated and some of them are expressed in the duodenum and are therefore called duodenases. To obtain information on their specificities and functions we produced six recombinant proteolytically active duodenases (three from cows, two from sheep and one from pigs). Two of the sheep duodenases were found to be highly specific tryptases and one of the bovine duodenases was a highly specific asp-ase. The remaining two bovine duodenases were dual enzymes with potent tryptase and chymase activities. In contrast, the pig enzyme was a chymase with no tryptase or asp-ase activity. These results point to a remarkable flexibility in both the primary and extended specificities within a single chromosomal locus that most likely has originated from one or a few genes by several rounds of local gene duplications. Interestingly, using the consensus cleavage site for the bovine asp-ase to screen the entire bovine proteome, it revealed Mucin-5B as one of the potential targets. Using the same strategy for one of the sheep tryptases, this enzyme was found to have potential cleavage sites in two chemokine receptors, CCR3 and 7, suggesting a role for this enzyme to suppress intestinal inflammation.


Subject(s)
Duodenum/enzymology , Serine Endopeptidases/metabolism , Amino Acid Sequence , Animals , Cattle , Chymases/classification , Chymases/genetics , Peptide Library , Phylogeny , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Serine Endopeptidases/genetics , Sheep , Substrate Specificity , Swine
5.
J Physiol ; 588(Pt 7): 1171-7, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20142268

ABSTRACT

The nature of protease-activated receptors (PARs) capable of activating respiratory vagal C-fibres in the mouse was investigated. Infusing thrombin or trypsin via the trachea strongly activated vagal lung C-fibres with action potential discharge, recorded with the extracellular electrode positioned in the vagal sensory ganglion. The intensity of activation was similar to that observed with the TRPV1 agonist, capsaicin. This was mimicked by the PAR1-activating peptide TFLLR-NH(2), whereas the PAR2-activating peptide SLIGRL-NH(2) was without effect. Patch clamp recording on cell bodies of capsaicin-sensitive neurons retrogradely labelled from the lungs revealed that TFLLR-NH(2) consistently evokes a large inward current. RT-PCR revealed all four PARs were expressed in the vagal ganglia. However, when RT-PCR was carried out on individual neurons retrogradely labelled from the lungs it was noted that TRPV1-positive neurons (presumed C-fibre neurons) expressed PAR1 and PAR3, whereas PAR2 and PAR4 were rarely expressed. The C-fibres in mouse lungs isolated from PAR1(-/-) animals responded normally to capsaicin, but failed to respond to trypsin, thrombin, or TFLLR-NH(2). These data show that the PAR most relevant for evoking action potential discharge in vagal C-fibres in mouse lungs is PAR1, and that this is a direct neuronal effect.


Subject(s)
Lung/innervation , Nerve Fibers, Unmyelinated/physiology , Receptor, PAR-1/physiology , Thrombin/physiology , Trypsin/physiology , Vagus Nerve/physiology , Action Potentials/drug effects , Action Potentials/physiology , Afferent Pathways/physiology , Animals , Capsaicin/pharmacology , Lung/drug effects , Lung/physiology , Male , Mice , Mice, Inbred C57BL , Nerve Fibers, Unmyelinated/drug effects , Oligopeptides/physiology , Receptor, PAR-1/agonists , Receptor, PAR-1/genetics , Receptors, Thrombin/drug effects , Receptors, Thrombin/physiology , TRPV Cation Channels/genetics , TRPV Cation Channels/physiology , Thrombin/pharmacology , Trypsin/pharmacology , Vagus Nerve/drug effects
6.
Dev Comp Immunol ; 92: 160-169, 2019 03.
Article in English | MEDLINE | ID: mdl-30481523

ABSTRACT

Serine proteases constitute the major protein content of mammalian mast cell granules and the selectivity for substrates by these proteases is of major importance for the role of mast cells in immunity. In order to address this subject, we present here the extended cleavage specificity of sheep mast cell protease-2 (MCP2), a chymotrypsin-type serine protease. Comparison of the extended specificity results to a panel of mammalian mast cell chymases show, in almost all aspects, the same cleavage characteristics. This includes preference for aromatic residues (Phe, Tyr, Trp) in the P1 position of substrates and a preference for aliphatic residues in most other substrate positions around the cleavage site. MCP2 also cleaved, albeit relatively low efficiency, after Leu in the P1 position. In contrast to the human, mouse, hamster and opossum chymases that show a relatively strong preference for negatively charged amino acids in the P2'position, the sheep MCP2, however, lacked that preference. Therefore, together with the rat chymase (rMCP1), sheep MCP2 can be grouped to a small subfamily of mammalian chymases that show fairly unspecific preference in the P2'position. In summary, the results here support the view of a strong evolutionary conservation of a potent chymotrypsin-type protease as a key feature of mammalian mast cells.


Subject(s)
Chemokine CCL8/metabolism , Chymases/metabolism , Mast Cells/immunology , Sheep/immunology , Animals , Biological Evolution , Cattle , Chemokine CCL8/genetics , Humans , Mice , Proteolysis , Rats , Substrate Specificity
7.
Eur J Pharmacol ; 590(1-3): 333-42, 2008 Aug 20.
Article in English | MEDLINE | ID: mdl-18599033

ABSTRACT

The dysregulation of arginine vasopressin (AVP) release and activation of vasopressin V(1A) and V(2) receptors may play a role in disease. The in vitro and in vivo pharmacology of RWJ-676070, a potent, balanced antagonist of both the V(1A) and V(2) receptors is described. RWJ-676070 binding and intracellular functional antagonist activity was characterized using cells expressing V(1A), V(1B) or V(2) receptors. Its inhibition of V(1A) receptor-mediated contraction of vascular rings and platelet aggregation was determined. V(2) receptor-medated aquaresis was determined in rats, dogs and monkeys. V(1A) receptor-mediated inhibitory activity was assessed in vivo in a vasopressin-induced hypertension model and in normotensive rats and in two hypertensive rat models. RWJ-676070 inhibited AVP binding to human V(1A) and V(2) receptors (Ki=1 and 14 nM, respectively). RWJ-676070 inhibited V(1A) receptor-induced intracellular calcium mobilization and V(2) receptor-induced cAMP accumulation with Ki values of 14 nM and 13 nM, respectively. The compound was slightly less potent against rat V(1A) receptors. RWJ-676070 inhibited V(1A) receptor-mediated vasoconstriction in rat and dog vascular rings and AVP-induced human platelet aggregation. Dose dependent aquaresis was demonstrated in rats, dogs and monkeys following oral administration. RWJ-676070 inhibited AVP-induced hypertension in rats but had no effect on arterial pressure in normotensive and spontaneously hypertensive rats but did decrease arterial pressure in Dahl, salt-sensitive hypertensive rats. RWJ-676070 is a new, potent antagonist of V(1A) and V(2) receptors that may be useful for treatment of diseases benefiting from balanced inhibition of both V(1A) and V(2) receptors.


Subject(s)
Antidiuretic Hormone Receptor Antagonists , Benzazepines/pharmacology , Spiro Compounds/pharmacology , Animals , Blood Pressure/drug effects , Dogs , Dose-Response Relationship, Drug , Female , Heart Rate/drug effects , Humans , Hypertension/drug therapy , In Vitro Techniques , Macaca fascicularis , Male , Platelet Aggregation/drug effects , Rats , Rats, Inbred SHR , Vasoconstriction , Vasopressins/pharmacology
8.
Bioorg Med Chem Lett ; 18(6): 2114-21, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-18272363

ABSTRACT

We have explored a series of spirocyclic piperidine amide derivatives (5) as tryptase inhibitors. Thus, 4 (JNJ-27390467) was identified as a potent, selective tryptase inhibitor with oral efficacy in two animal models of airway inflammation (sheep and guinea pig asthma models). An X-ray co-crystal structure of 4 x tryptase revealed a hydrophobic pocket in the enzyme's active site, which is induced by the phenylethynyl group and is comprised of amino acid residues from two different monomers of the tetrameric protein.


Subject(s)
Asthma/drug therapy , Respiratory Hypersensitivity/drug therapy , Serine Proteinase Inhibitors/pharmacology , Spiro Compounds/chemical synthesis , Spiro Compounds/pharmacology , Tryptases/antagonists & inhibitors , Administration, Oral , Animals , Biological Availability , Chromatography, High Pressure Liquid , Crystallography, X-Ray , Cytochrome P-450 Enzyme Inhibitors , Disease Models, Animal , Dogs , Guinea Pigs , Humans , Microsomes, Liver/drug effects , Microsomes, Liver/enzymology , Molecular Structure , Rats , Serine Proteinase Inhibitors/chemical synthesis , Serine Proteinase Inhibitors/pharmacokinetics , Sheep , Spectrometry, Mass, Electrospray Ionization , Spiro Compounds/pharmacokinetics , Trypsin/metabolism , Tryptases/metabolism
9.
PLoS One ; 13(4): e0195077, 2018.
Article in English | MEDLINE | ID: mdl-29652924

ABSTRACT

Human neutrophils express at least four active serine proteases, cathepsin G, N-elastase, proteinase 3 and neutrophil serine protease 4 (NSP4). They have all been extensively studied due to their importance in neutrophil biology and immunity. However, their extended cleavage specificities have never been determined in detail. Here we present a detailed cleavage specificity analysis of human cathepsin G (hCG). The specificity was determined by phage display analysis and the importance of individual amino acids in and around the cleavage site was then validated using novel recombinant substrates. To provide a broader context to this serine protease, a comparison was made to the related mast cell protease, human chymase (HC). hCG showed similar characteristics to HC including both the primary and extended specificities. As expected, Phe, Tyr, Trp and Leu were preferred in the P1 position. In addition, both proteases showed a preference for negatively charged amino acids in the P2´ position of substrates and a preference for aliphatic amino acids both upstream and downstream of the cleavage site. However, overall the catalytic activity of hCG was ~10-fold lower than HC. hCG has previously been reported to have a dual specificity consisting of chymase and tryptase-type activities. In our analysis, tryptase activity against substrates with Lys in P1 cleavage position was indeed only 2-fold less efficient as compared to optimal chymase substrates supporting strong dual-type specificity. We hope the information presented here on extended cleavage specificities of hCG and HC will assist in the search for novel in vivo substrates for these proteases as well as aid in the efforts to better understand the role of hCG in immunity and bacterial defence.


Subject(s)
Cathepsin G/metabolism , Neutrophils/metabolism , Amino Acid Sequence , Cathepsin G/chemistry , Chymases/metabolism , Conserved Sequence , Enzyme Activation , Humans , Kinetics , Mast Cells/metabolism , Proteolysis , Substrate Specificity , Tryptases/metabolism
10.
PLoS One ; 13(12): e0207826, 2018.
Article in English | MEDLINE | ID: mdl-30521603

ABSTRACT

Serine proteases constitute the major protein content of mast cell secretory granules. Here we present the extended cleavage specificity of two such proteases from the golden hamster, Mesocricetus auratus. Analysis by phage display technique showed that one of them (HAM1) is a classical chymase with a specificity similar to the human mast cell chymase. However, in contrast to the human chymase, it does not seem to have a particular preference for any of the three aromatic amino acids, Phe, Tyr and Trp, in the P1 position of substrates. HAM1 also efficiently cleaved after Leu similarly to human and many other mast cell chymases. We observed only a 3-fold lower cleavage activity on Leu compared to substrates with P1 aromatic amino acids. Chymotryptic enzymes seem to be characteristic for connective tissue mast cells in mammalian species from opossums to humans, which indicates a very central role of these enzymes in mast cell biology. HAM1 also seems to have the strongest preference for negatively charged amino acids in the P2´position of all mast cell chymases so far characterized. The second hamster chymase, HAM2, is an elastolytic in its activity, similarly to the α-chymases in rats and mice (rMCP-5 and mMCP-5, respectively). The presence of an α-chymase that developed elastase activity thereby seems to be a relatively early modification of the α-chymase within the rodent branch of the mammalian evolutionary tree.


Subject(s)
Chymases/metabolism , Mesocricetus/metabolism , Serine Proteases/metabolism , Amino Acid Sequence , Animals , Cell Surface Display Techniques , Chymases/genetics , Consensus Sequence , Cricetinae , Humans , Mast Cells/enzymology , Mesocricetus/genetics , Mice , Phylogeny , Rats , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Secretory Vesicles/enzymology , Sequence Homology, Amino Acid , Serine Proteases/genetics , Species Specificity , Substrate Specificity
11.
J Med Chem ; 50(8): 1727-30, 2007 Apr 19.
Article in English | MEDLINE | ID: mdl-17361995

ABSTRACT

A series of beta-carboxamido-phosphon(in)ic acids (2) was identified as a new structural motif for obtaining potent inhibitors of human mast cell chymase. For example, 1-naphthyl derivative 5f had an IC50 value of 29 nM and (E)-styryl derivative 6g had an IC50 value of 3.5 nM. An X-ray structure for 5f.chymase revealed key interactions within the enzyme active site. Compound 5f was selective for inhibiting chymase versus eight serine proteases. Compound 6h was orally bioavailable in rats (F=39%), and orally efficacious in a hamster model of inflammation.


Subject(s)
Amides/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Chymases/antagonists & inhibitors , Mast Cells/enzymology , Organophosphonates/chemical synthesis , Phosphinic Acids/chemical synthesis , Administration, Oral , Amides/chemistry , Amides/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Binding Sites , Biological Availability , Cathepsin G , Cathepsins/antagonists & inhibitors , Cricetinae , Crystallography, X-Ray , Humans , Models, Molecular , Naphthalenes/chemical synthesis , Naphthalenes/chemistry , Naphthalenes/pharmacology , Organophosphonates/chemistry , Organophosphonates/pharmacology , Phosphinic Acids/chemistry , Phosphinic Acids/pharmacology , Rats , Serine Endopeptidases , Stereoisomerism , Structure-Activity Relationship
13.
J Med Chem ; 48(6): 1984-2008, 2005 Mar 24.
Article in English | MEDLINE | ID: mdl-15771442

ABSTRACT

Thrombin inhibitors are potentially useful in medicine for their anticoagulant and antithrombotic effects. We synthesized and evaluated diverse heterocycle-activated ketones based on the d-Phe-Pro-Arg, and related thrombin active-site recognition motifs, as candidate inhibitors. The peptide-based alpha-ketoheterocycles were typically prepared by either an imidate or a Weinreb amide route (Schemes 1 and 2), the latter of which proved to be more general. Test compounds were generally assayed for inhibition of human alpha-thrombin and bovine trypsin. From a structure-based design standpoint, the heterocycle allows one to explore and adjust interactions within the S1' subsite of thrombin. The preferred alpha-ketoheterocycle is a pi-rich 2-substituted azole with at least two heteroatoms proximal to the carbon bearing the keto group, and a preferred thrombin inhibitor is 2-ketobenzothiazole 3, with a potent K(i) value of 0.2 nM and ca. 15-fold selectivity over trypsin. 2-Ketobenzothiazole 13 exhibited exceedingly potent thrombin inhibition (K(i) = 0.000 65 nM; slow tight binding). Several alpha-ketoheterocycles had thrombin K(i) values in the range 0.1-400 nM. The "Arg" unit in the alpha-ketoheterocycles can be sensitive to stereomutation under mildy basic conditions. For example, 2-ketothiazoles 4 and 59 readily epimerize at pH 7.4, although they are fairly stable stereochemically at pH 3-4; thus, suitable conditions had to be selected for the enzymatic assays. Lead d-Phe-Pro-Arg 2-benzothiazoles 3, 4, and 68 displayed good selectivity for thrombin over other key coagulation enzymes (e.g., factor Xa, plasmin, protein Ca, uPA, tPA, and streptokinase); however, their selectivity for thrombin over trypsin was modest (<25-fold). Compounds 3, 4, and 68 exhibited potent in vitro antithrombotic activity as measured by inhibition of gel-filtered platelet aggregation induced by alpha-thrombin (IC(50) = 30-40 nM). They also proved to be potent anticoagulant/antithrombotic agents in vivo on intravenous administration, as determined in the canine arteriovenous shunt (ED(50) = 0.45-0.65 mg/kg) and the rabbit deep vein thrombosis (ED(50) = 0.1-0.4 mg/kg) models. Intravenous administration of 3, and several analogues, to guinea pigs caused hypotension and electrocardiogram abnormalities. Such cardiovascular side effects were also observed with some nonguanidine inhibitors and inhibitors having recognition motifs other than d-Phe-Pro-Arg. 2-Benzothiazolecarboxylates 4 and 68 exhibited significantly diminished cardiovascular side effects, and benzothiazolecarboxylic acid 4 had the best profile with respect to therapeutic index. The X-ray crystal structures of the ternary complexes 3-thrombin-hirugen and 4-thrombin-hirugen depict novel interactions in the S(1)' region, with the benzothiazole ring forming a hydrogen bond with His-57 and an aromatic stacking interaction with Trp-60D of thrombin's insertion loop. The benzothiazole ring of 3 displaces the Lys-60F side chain into a U-shaped gauche conformation, whereas the benzothiazole carboxylate of 4 forms a salt bridge with the side chain of Lys-60F such that it adopts an extended anti conformation. Since 3 has a 10-fold greater affinity for thrombin than does 4, any increase in binding energy resulting from this salt bridge is apparently offset by perturbations across the enzyme (viz. Figure 4). The increased affinity and selectivity of 2-ketobenzothiazole inhibitors, such as 3, may be primarily due to the aromatic stacking interaction with Trp-60D. However, energy contour calculations with the computer program GRID also indicate a favorable interaction between the benzothiazole sulfur atom and a hydrophobic patch on the surface of thrombin.


Subject(s)
Anticoagulants/chemical synthesis , Fibrinolytic Agents/chemical synthesis , Ketones/chemical synthesis , Oligopeptides/chemical synthesis , Thiazoles/chemical synthesis , Thrombin/antagonists & inhibitors , Animals , Anticoagulants/chemistry , Anticoagulants/pharmacology , Binding Sites , Cattle , Crystallography, X-Ray , Dogs , Drug Design , Electrocardiography/drug effects , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/pharmacology , Guinea Pigs , Humans , Hydrogen-Ion Concentration , Hypotension/chemically induced , In Vitro Techniques , Ketones/chemistry , Ketones/pharmacology , Models, Molecular , Molecular Structure , Oligopeptides/chemistry , Oligopeptides/pharmacology , Platelet Aggregation/drug effects , Rabbits , Stereoisomerism , Structure-Activity Relationship , Thiazoles/chemistry , Thiazoles/pharmacology , Thrombin/chemistry , Trypsin/chemistry , Venous Thrombosis/prevention & control
14.
Arterioscler Thromb Vasc Biol ; 24(6): 1118-23, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15130911

ABSTRACT

OBJECTIVE: Recently, mice made deficient in growth arrest-specific gene 6 product (Gas6) or in which Gas6 gene expression was inhibited were shown to have platelet dysfunction and to be less susceptible to thrombosis. The aim of this study was to define and characterize the relevant Gas6 receptor or receptors involved in platelet function. METHODS AND RESULTS: Using RT-PCR and Western blot analysis we found that mer was the predominantly expressed subtype in mouse and human platelets, whereas axl and rse were not detected. We generated mer-deficient mice by targeted disruption of the mer receptor gene. Platelets derived from mer-deficient mice had decreased platelet aggregation in responses to low concentrations of collagen, U46619, and PAR4 thrombin receptor agonist peptide in vitro. However, the response to ADP was not different from wild-type platelets. Knockout of the mer gene protected mice from collagen/epinephrine-induced pulmonary thromoembolism and inhibited ferric chloride-induced thrombosis in vivo. Tail bleeding times, coagulation parameters, and peripheral blood cell counts in mer-deficient mice were similar to wild-type mice. CONCLUSIONS: Our data provide the first evidence that mer, presumably through activation by its ligand Gas6, participates in regulation of platelet function in vitro and platelet-dependent thrombosis in vivo.


Subject(s)
Blood Platelets/enzymology , Proto-Oncogene Proteins/physiology , Receptor Protein-Tyrosine Kinases/physiology , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology , Animals , Blood Coagulation Tests , Blood Platelets/physiology , Blotting, Western , Chlorides , Collagen/pharmacology , Collagen/toxicity , Epinephrine/toxicity , Female , Ferric Compounds/toxicity , Humans , Intercellular Signaling Peptides and Proteins/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Oligopeptides/pharmacology , Oncogene Proteins/analysis , Platelet Aggregation/drug effects , Proto-Oncogene Proteins/deficiency , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/analysis , Receptor Protein-Tyrosine Kinases/deficiency , Receptor Protein-Tyrosine Kinases/genetics , Receptors, Thrombin/agonists , Reverse Transcriptase Polymerase Chain Reaction , Thromboembolism/chemically induced , c-Mer Tyrosine Kinase , Axl Receptor Tyrosine Kinase
15.
J Med Chem ; 46(18): 3865-76, 2003 Aug 28.
Article in English | MEDLINE | ID: mdl-12930148

ABSTRACT

Inhibitors of human mast cell tryptase (EC 3.4.21.59) have therapeutic potential for treating allergic or inflammatory disorders. We have investigated transition-state mimetics possessing a heterocycle-activated ketone group and identified in particular benzothiazole ketone (2S)-6 (RWJ-56423) as a potent, reversible, low-molecular-weight tryptase inhibitor with a K(i) value of 10 nM. A single-crystal X-ray analysis of the sulfate salt of (2S)-6 confirmed the stereochemistry. Analogues 12 and 15-17 are also potent tryptase inhibitors. Although RWJ-56423 potently inhibits trypsin (K(i) = 8.1 nM), it is selective vs other serine proteases, such as kallikrein, plasmin, and thrombin. We obtained an X-ray structure of (2S)-6 complexed with bovine trypsin (1.9-A resolution), which depicts inter alia a hemiketal involving Ser-189, and hydrogen bonds with His-57 and Gln-192. Aerosol administration of 6 (2R,2S; RWJ-58643) to allergic sheep effectively antagonized antigen-induced asthmatic responses, with 70-75% blockade of the early response and complete ablation of the late response and airway hyperresponsiveness.


Subject(s)
Anti-Asthmatic Agents/chemical synthesis , Dipeptides/chemistry , Ketones/chemical synthesis , Pyrrolidines/chemical synthesis , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/chemical synthesis , Thiazoles/chemical synthesis , Aerosols , Animals , Anti-Asthmatic Agents/chemistry , Anti-Asthmatic Agents/pharmacology , Asthma/drug therapy , Asthma/immunology , Asthma/physiopathology , Benzothiazoles , Cattle , Crystallography, X-Ray , Humans , Ketones/chemistry , Ketones/pharmacology , Kinetics , Mast Cells/enzymology , Models, Molecular , Protein Binding , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/pharmacology , Sheep , Stereoisomerism , Structure-Activity Relationship , Thiazoles/chemistry , Thiazoles/pharmacology , Trypsin/chemistry , Tryptases
16.
Acad Emerg Med ; 10(9): 923-30, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12957973

ABSTRACT

OBJECTIVES: To test the following hypotheses: Hypoxia induces bradycardia and hemodynamic compromise that are resistant to atropine but responsive to selective antagonism of the adenosine A1 receptor (A1AdoR). The mechanism for such attenuation is independent of the vagus nerve. METHODS: Ten minutes after sham or actual bilateral cervical vagotomy, paralyzed ventilated rats were made hypoxic (5% fractional inspired oxygen, continued until death). Five minutes after beginning hypoxia, intravenous treatment with BG-9719, a selective A1AdoR antagonist (0.1 mg/kg); atropine (0.1 mg/kg); BG-9719 vehicle; or saline was initiated. These drug doses were based on pilot studies. Of the eight treatment groups (eight possible combinations of vagotomy status and drug/vehicle treatment), n = 8 in all except nonvagotomized, vehicle-treated rats (where n = 7). RESULTS: Heart rate and left ventricular contractility decreased rapidly with hypoxia. Atropine had minimal effects in prolonging survival (from mean +/- SEM of 15.5 +/- 2.1 minutes to 20.2 +/- 2.5 minutes, p = 0.94) and attenuating posthypoxic decreases in heart rate (p = 0.89) and contractility (p = 0.83) compared with saline. BG-9719 prolonged survival, however, from 14.4 +/- 1.9 minutes (with vehicle treatment) to 37.2 +/- 6.8 minutes (p < 0.001). Survival, heart rate, and contractility were preserved with BG-9719 compared with atropine and vehicle (p < 0.05, all comparisons). Vagotomy prevented the effects of BG-9719 on survival prolongation (p = 0.003), heart rate (p = 0.01), and contractility (p < 0.001) but did not affect those outcomes in saline-treated rats. CONCLUSIONS: Survival, heart rate, and contractility were better preserved with BG-9719 than atropine. A1AdoR selective antagonism, possibly because of its multiple mechanisms for attenuating hypoxic cardiac insufficiency, resulted in better hemodynamic and clinical outcomes. That attenuation seems to have a component of vagal mediation.


Subject(s)
Adenosine A1 Receptor Antagonists , Atropine/therapeutic use , Bradycardia/drug therapy , Hypoxia/complications , Xanthines/therapeutic use , Animals , Bradycardia/etiology , Bradycardia/surgery , Disease Models, Animal , Dose-Response Relationship, Drug , Heart Diseases/drug therapy , Prospective Studies , Rats , Survival Analysis , Vagotomy
17.
J Emerg Med ; 24(3): 253-7, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12676292

ABSTRACT

The objective of this study was to determine the efficacy of the rectal administration of dextrose in raising the serum glucose in a hypoglycemic rat model. A randomized, prospective, controlled experimental study was performed using 18-h fasted, acutely anesthetized Harlan Sprague-Dawley rats made hypoglycemic by the intravenous infusion of insulin at 3 U/kg/h for 2 h. At 1 h into the infusion, study rats received 1, 2, or 3 g/kg of 50% dextrose solution infused into the rectum using a balloon tipped catheter. Control animals received an equivolume, equi-osmolar (as compared to the 3 g/kg dose) amount of polyethylene glycol (PEG)-400 by rectum. Blood glucose (BG) measurements were made using blood obtained from the portal vein and a femoral artery. Intravenous insulin administered at 3 U/kg/h consistently produced BG levels 60% of baseline at 60 min and 80% of baseline at 120 min. BG levels in portal and arterial circulation increased after rectal dextrose. In general, portal venous values were greater than arterial after rectal dextrose. The greatest increase was seen 30 min after dextrose by rectum in animals receiving 3 g/kg. A 50% dextrose administered by rectum in hypoglycemic rats is absorbed in quantities sufficient to raise BG in the arterial and portal circulation.


Subject(s)
Glucose/administration & dosage , Hypoglycemia/drug therapy , Administration, Rectal , Animals , Blood Glucose/analysis , Glucose/pharmacokinetics , Hypoglycemia/metabolism , Male , Prospective Studies , Random Allocation , Rats , Rats, Sprague-Dawley , Rectum/metabolism
18.
Ochsner J ; 13(1): 49-55, 2013.
Article in English | MEDLINE | ID: mdl-23532714

ABSTRACT

BACKGROUND: Diabetic nephropathy (DN) is associated with enhanced renal, plasma, and urinary endothelin (ET)-1 levels. Chymase cleaves Big ET-1 (1-38) to ET-1 (1-31), which is further cleaved by neutral endopeptidase to ET-1 (1-21). The current study tested the hypothesis that afferent arterioles (AA) of diabetic kidneys exhibit enhanced vasoconstrictor responses to chymase-dependent intrarenal ET formation compared to control kidneys. METHODS: In situ juxtamedullary AA vasoconstrictor responses to the intrarenal conversion of Big ET-1 (1-38) to ET-1 (1-21) were performed in the absence and presence of chymase inhibition in type 2 diabetic db/db and control db/m mice studied under in vitro experimental conditions. RESULTS: AA vasoconstrictor responses to Big ET-1 (1-38) were significantly enhanced in diabetic compared to control kidneys. In the presence of chymase inhibition (JNJ-18054478), AA vasoconstrictor responses of diabetic kidneys to Big ET-1 (1-38) were significantly less than the responses of control kidneys. AA diameters decreased similarly to ET-1 (1-21) in diabetic and control kidneys. CONCLUSIONS: AA responses to the intrarenal conversion of Big ET-1 (1-38) to ET-1 in the absence of chymase enzymatic activity were significantly reduced in kidneys of diabetic compared to control mice, while the magnitude of the vasoconstriction to ET-1 (1-21) was not different. These data suggest that AA vasoconstriction produced by the chymase-dependent pathway is significantly greater in diabetic compared to control kidneys. We propose that intrarenal chymase-dependent ET-1 production contributes to the decline in function and progression to end-stage renal disease in patients with type 2 diabetes.

19.
Hypertension ; 61(2): 465-71, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23213190

ABSTRACT

Our previous work supports a major role for angiotensin-converting enzyme (ACE)-independent intrarenal angiotensin (ANG) II formation on microvascular function in type 2 diabetes mellitus. We tested the hypothesis that there is a switch from renal vascular ACE-dependent to chymase-dependent ANGII formation in diabetes mellitus. The in vitro juxtamedullary afferent arteriole (AA) contractile responses to the intrarenal conversion of the ACE-specific, chymase-resistant ANGI peptide ([Pro(10)]ANGI) to ANGII were significantly reduced in kidneys of diabetic (db/db) compared with control (db/m) mice. AA responses to the intrarenal conversion of the chymase-specific, ACE-resistant ANGI peptide ([Pro(11), D-Ala(12)]ANGI) to ANGII were significantly enhanced in kidneys of diabetic compared with control mice. AA diameters were significantly reduced by 9 ± 2, 15 ± 3, and 24 ± 3% of baseline in diabetic kidneys in response to 10, 100, and 1000 nmol/L [Pro(11), D-Ala(12)]ANGI, respectively, and the responses were significantly attenuated by angiotensin type 1 receptor or chymase-specific (JNJ-18054478) inhibition. [Pro(11), D-Ala(12)]ANGI did not produce a significant AA vasoconstriction in control kidneys. Chymase inhibition significantly attenuated ANGI-induced AA vasoconstriction in diabetic, but not control kidneys. Renal vascular mouse mast cell protease-4 or chymase/ß-actin mRNA expression was significantly augmented by 5.1 ± 1.4 fold; while ACE/ß-actin mRNA expression was significantly attenuated by 0.42 ± 0.08 fold in diabetic compared with control tissues. In summary, intrarenal formation of ANGII occurs primarily via ACE in the control, but via chymase in the diabetic vasculature. In conclusion, chymase-dependent mechanisms may contribute to the progression of diabetic kidney disease.


Subject(s)
Angiotensin II/biosynthesis , Chymases/metabolism , Diabetes Mellitus, Type 2/metabolism , Kidney/blood supply , Microvessels/metabolism , Angiotensin II Type 1 Receptor Blockers/pharmacology , Animals , Benzimidazoles/pharmacology , Biphenyl Compounds , Kidney/drug effects , Kidney/metabolism , Male , Mice , Microvessels/drug effects , Peptidyl-Dipeptidase A/metabolism , Tetrazoles/pharmacology
20.
Blood Coagul Fibrinolysis ; 21(2): 128-34, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20010091

ABSTRACT

Whereas heparin functions as an antithrombotic agent by promoting antithrombin III-based inhibition of thrombin and factor Xa, there is less appreciation for the combination behavior with small-molecule, direct inhibitors of these proteases. We conducted a study in a high-shear arterial environment to explore the potential for a cooperative antithrombotic effect with a thrombin inhibitor (argatroban), a factor Xa inhibitor (YM-60828), and a dual thrombin/factor Xa inhibitor (RWJ-445167). We employed a platelet-dependent vascular injury model in which rats were subjected to an acute electrical injury to the carotid artery. Antithrombotic efficacy was measured for thrombin inhibitor argatroban and factor Xa inhibitor YM-60828 administered alone or in combination. The results indicate that there is a cooperative antithrombotic effect in vivo when both thrombin and factor Xa are inhibited simultaneously. The dual thrombin/factor Xa inhibitor RWJ-445167 was found to have potent antithrombotic activity in this high-shear environment. A comparison of results for RWJ-445167 and argatroban showed additional efficacy with RWJ-445167, suggestive of drug synergy.


Subject(s)
Factor Xa Inhibitors , Guanidines/pharmacology , Naphthalenes/pharmacology , Pipecolic Acids/pharmacology , Piperidines/pharmacology , Sulfonamides/pharmacology , Thrombin/antagonists & inhibitors , Animals , Arginine/analogs & derivatives , Blood Coagulation/drug effects , Drug Synergism , Factor Xa/metabolism , Humans , Male , Rats , Rats, Sprague-Dawley , Thrombin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL