Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Cell ; 172(3): 578-589.e17, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29373830

ABSTRACT

KRASG12C was recently identified to be potentially druggable by allele-specific covalent targeting of Cys-12 in vicinity to an inducible allosteric switch II pocket (S-IIP). Success of this approach requires active cycling of KRASG12C between its active-GTP and inactive-GDP conformations as accessibility of the S-IIP is restricted only to the GDP-bound state. This strategy proved feasible for inhibiting mutant KRAS in vitro; however, it is uncertain whether this approach would translate to in vivo. Here, we describe structure-based design and identification of ARS-1620, a covalent compound with high potency and selectivity for KRASG12C. ARS-1620 achieves rapid and sustained in vivo target occupancy to induce tumor regression. We use ARS-1620 to dissect oncogenic KRAS dependency and demonstrate that monolayer culture formats significantly underestimate KRAS dependency in vivo. This study provides in vivo evidence that mutant KRAS can be selectively targeted and reveals ARS-1620 as representing a new generation of KRASG12C-specific inhibitors with promising therapeutic potential.


Subject(s)
Antineoplastic Agents/pharmacology , Neoplasms, Experimental/drug therapy , Piperazines/pharmacology , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Quinazolines/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Cell Proliferation/drug effects , Cells, Cultured , Female , HCT116 Cells , HEK293 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Docking Simulation , Mutation , Piperazines/chemistry , Piperazines/therapeutic use , Protein Binding , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Quinazolines/chemistry , Quinazolines/therapeutic use
2.
Nature ; 510(7504): 283-7, 2014 Jun 12.
Article in English | MEDLINE | ID: mdl-24847881

ABSTRACT

Deregulation of lysine methylation signalling has emerged as a common aetiological factor in cancer pathogenesis, with inhibitors of several histone lysine methyltransferases (KMTs) being developed as chemotherapeutics. The largely cytoplasmic KMT SMYD3 (SET and MYND domain containing protein 3) is overexpressed in numerous human tumours. However, the molecular mechanism by which SMYD3 regulates cancer pathways and its relationship to tumorigenesis in vivo are largely unknown. Here we show that methylation of MAP3K2 by SMYD3 increases MAP kinase signalling and promotes the formation of Ras-driven carcinomas. Using mouse models for pancreatic ductal adenocarcinoma and lung adenocarcinoma, we found that abrogating SMYD3 catalytic activity inhibits tumour development in response to oncogenic Ras. We used protein array technology to identify the MAP3K2 kinase as a target of SMYD3. In cancer cell lines, SMYD3-mediated methylation of MAP3K2 at lysine 260 potentiates activation of the Ras/Raf/MEK/ERK signalling module and SMYD3 depletion synergizes with a MEK inhibitor to block Ras-driven tumorigenesis. Finally, the PP2A phosphatase complex, a key negative regulator of the MAP kinase pathway, binds to MAP3K2 and this interaction is blocked by methylation. Together, our results elucidate a new role for lysine methylation in integrating cytoplasmic kinase-signalling cascades and establish a pivotal role for SMYD3 in the regulation of oncogenic Ras signalling.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Lysine/metabolism , MAP Kinase Kinase Kinase 2/metabolism , MAP Kinase Kinase Kinases/metabolism , Oncogene Protein p21(ras)/metabolism , Adenocarcinoma/enzymology , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Adenocarcinoma of Lung , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Disease Models, Animal , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , MAP Kinase Kinase Kinase 2/chemistry , MAP Kinase Kinase Kinases/chemistry , Methylation , Mice , Mitogen-Activated Protein Kinases/metabolism , Oncogene Protein p21(ras)/genetics , Pancreatic Neoplasms/enzymology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Protein Phosphatase 2/antagonists & inhibitors , Protein Phosphatase 2/metabolism , Proto-Oncogene Proteins A-raf/metabolism , Signal Transduction
3.
Nature ; 502(7472): 480-8, 2013 Oct 24.
Article in English | MEDLINE | ID: mdl-24153301

ABSTRACT

A plethora of groundbreaking studies have demonstrated the importance of chromatin-associated proteins and post-translational modifications of histones, proteins and DNA (so-called epigenetic modifications) for transcriptional control and normal development. Disruption of epigenetic control is a frequent event in disease, and the first epigenetic-based therapies for cancer treatment have been approved. A generation of new classes of potent and specific inhibitors for several chromatin-associated proteins have shown promise in preclinical trials. Although the biology of epigenetic regulation is complex, new inhibitors such as these will hopefully be of clinical use in the coming years.


Subject(s)
Chromatin/drug effects , Chromatin/metabolism , Molecular Targeted Therapy , Animals , Chromatin/chemistry , Chromatin/enzymology , Histone Demethylases/antagonists & inhibitors , Histone Demethylases/metabolism , Histone Methyltransferases , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/metabolism , Humans , Neoplasms/drug therapy , Neoplasms/enzymology , Neoplasms/genetics , Neoplasms/metabolism , Protein Structure, Tertiary/drug effects
4.
Nature ; 492(7427): 108-12, 2012 Dec 06.
Article in English | MEDLINE | ID: mdl-23051747

ABSTRACT

In eukaryotes, post-translational modification of histones is critical for regulation of chromatin structure and gene expression. EZH2 is the catalytic subunit of the polycomb repressive complex 2 (PRC2) and is involved in repressing gene expression through methylation of histone H3 on lysine 27 (H3K27). EZH2 overexpression is implicated in tumorigenesis and correlates with poor prognosis in several tumour types. Additionally, somatic heterozygous mutations of Y641 and A677 residues within the catalytic SET domain of EZH2 occur in diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma. The Y641 residue is the most frequently mutated residue, with up to 22% of germinal centre B-cell DLBCL and follicular lymphoma harbouring mutations at this site. These lymphomas have increased H3K27 tri-methylation (H3K27me3) owing to altered substrate preferences of the mutant enzymes. However, it is unknown whether specific, direct inhibition of EZH2 methyltransferase activity will be effective in treating EZH2 mutant lymphomas. Here we demonstrate that GSK126, a potent, highly selective, S-adenosyl-methionine-competitive, small-molecule inhibitor of EZH2 methyltransferase activity, decreases global H3K27me3 levels and reactivates silenced PRC2 target genes. GSK126 effectively inhibits the proliferation of EZH2 mutant DLBCL cell lines and markedly inhibits the growth of EZH2 mutant DLBCL xenografts in mice. Together, these data demonstrate that pharmacological inhibition of EZH2 activity may provide a promising treatment for EZH2 mutant lymphoma.


Subject(s)
Indoles/pharmacology , Indoles/therapeutic use , Lymphoma, Follicular/drug therapy , Lymphoma, Large B-Cell, Diffuse/drug therapy , Mutation/genetics , Polycomb Repressive Complex 2/antagonists & inhibitors , Pyridones/pharmacology , Pyridones/therapeutic use , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Enhancer of Zeste Homolog 2 Protein , Gene Expression Regulation, Neoplastic/drug effects , Gene Silencing/drug effects , Histone Methyltransferases , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/chemistry , Histones/metabolism , Humans , Lymphoma, Follicular/enzymology , Lymphoma, Follicular/genetics , Lymphoma, Follicular/pathology , Lymphoma, Large B-Cell, Diffuse/enzymology , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Methylation/drug effects , Mice , Neoplasm Transplantation , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Transcriptional Activation/drug effects , Transplantation, Heterologous
5.
Biochem Biophys Res Commun ; 455(1-2): 58-69, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25016182

ABSTRACT

Emerging evidence supports an important, etiologic role for epigenetic modifications in cancer. Various post translational modifications of histone proteins together with DNA methylation constitute an 'epigenetic code' regulating the transcriptional status of the cell and aberrant writing and/or interpretation of the code can contribute to a dysregulated, hyperproliferative state. In some cases, epigenetic deregulation has also been reported to result in tumor initiation. The discovery of somatic mutations in some chromatin binding proteins associated with subtypes of lymphomas and the ability to regulate expression of proto oncogenes such as Myc has spurred the development of specific small molecule modulators of histone binding proteins. Several of these compounds have entered clinical development for the treatment of heme malignancies. This review summarizes progress in the discovery and advancement of epigenetic therapeutics for cancer and provides a perspective for future development.


Subject(s)
Antineoplastic Agents/pharmacology , Epigenesis, Genetic/drug effects , Antineoplastic Agents/chemistry , Antineoplastic Agents/classification , Antineoplastic Agents/therapeutic use , Histones/metabolism , Humans , Neoplasms/drug therapy , Neoplasms/genetics
6.
Cancer Cell ; 8(4): 311-21, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16226706

ABSTRACT

Many tumors display a high rate of glucose utilization, as evidenced by 18-F-2-deoxyglucose PET imaging. One potential advantage of catabolizing glucose through glycolysis at a rate that exceeds bioenergetic need is that the growing cell can redirect the excess glycolytic end product pyruvate toward lipid synthesis. Such de novo lipid synthesis is necessary for membrane production and lipid-based posttranslational modification of proteins. A key enzyme linking glucose metabolism to lipid synthesis is ATP citrate lyase (ACL), which catalyzes the conversion of citrate to cytosolic acetyl-CoA. ACL inhibition by RNAi or the chemical inhibitor SB-204990 limits in vitro proliferation and survival of tumor cells displaying aerobic glycolysis. The same treatments also reduce in vivo tumor growth and induce differentiation.


Subject(s)
ATP Citrate (pro-S)-Lyase/antagonists & inhibitors , Cell Division/drug effects , Enzyme Inhibitors/pharmacology , Neoplasms/pathology , Base Sequence , Cell Differentiation , Cell Line, Tumor , DNA Primers , Homeostasis , Humans , Lactones/pharmacology , Mitochondria/physiology , Neoplasms/enzymology , RNA, Small Interfering/physiology
7.
Proc Natl Acad Sci U S A ; 107(13): 5839-44, 2010 Mar 30.
Article in English | MEDLINE | ID: mdl-20167803

ABSTRACT

Centromere-associated protein-E (CENP-E) is a kinetochore-associated mitotic kinesin that is thought to function as the key receptor responsible for mitotic checkpoint signal transduction after interaction with spindle microtubules. We have identified GSK923295, an allosteric inhibitor of CENP-E kinesin motor ATPase activity, and mapped the inhibitor binding site to a region similar to that bound by loop-5 inhibitors of the kinesin KSP/Eg5. Unlike these KSP inhibitors, which block release of ADP and destabilize motor-microtubule interaction, GSK923295 inhibited release of inorganic phosphate and stabilized CENP-E motor domain interaction with microtubules. Inhibition of CENP-E motor activity in cultured cells and tumor xenografts caused failure of metaphase chromosome alignment and induced mitotic arrest, indicating that tight binding of CENP-E to microtubules is insufficient to satisfy the mitotic checkpoint. Consistent with genetic studies in mice suggesting that decreased CENP-E function can have a tumor-suppressive effect, inhibition of CENP-E induced tumor cell apoptosis and tumor regression.


Subject(s)
Antineoplastic Agents/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Chromosomal Proteins, Non-Histone/antagonists & inhibitors , Sarcosine/analogs & derivatives , Allosteric Site , Animals , Antineoplastic Agents/chemistry , Binding Sites , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Cell Line, Tumor , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/metabolism , Dogs , Drug Screening Assays, Antitumor , Humans , In Vitro Techniques , Kinesins/antagonists & inhibitors , Kinesins/chemistry , Kinesins/metabolism , Mice , Microtubules/metabolism , Mitosis/drug effects , Models, Molecular , Molecular Structure , Sarcosine/chemistry , Sarcosine/pharmacology , Xenograft Model Antitumor Assays
10.
Biochem J ; 420(2): 259-65, 2009 May 13.
Article in English | MEDLINE | ID: mdl-19284385

ABSTRACT

The Aurora kinases AurA, B and C are serine/threonine protein kinases that play essential roles in mitosis and cytokinesis. Among them, AurB is required for maintaining proper chromosome alignment, separation and segregation during mitosis, and regulating a number of critical processes involved in cytokinesis. AurB overexpression has been observed in a variety of cancer cell lines, and inhibition of AurB has been shown to induce tumour regression in mouse xenograft models. In the present study we report the enzymatic characterization of a potent and selective AurB/AurC inhibitor. GSK1070916 is a reversible and ATP-competitive inhibitor of the AurB-INCENP (inner centromere protein) enzyme. It selectively inhibits AurB-INCENP (K(i)*=0.38+/-0.29 nM) and AurC-INCENP (K(i)*=1.5+/-0.4 nM) over AurA-TPX2 (target protein for Xenopus kinesin-like protein 2) (K(i)=490+/-60 nM). Inhibition of AurB-INCENP and AurC-INCENP is time-dependent, with an enzyme-inhibitor dissociation half-life of >480 min and 270+/-28 min respectively. The extremely slow rate of dissociation from the AurB and AurC enzymes distinguishes GSK1070916 from two other Aurora inhibitors in the clinic, AZD1152 and VX-680 (also known as MK-0457).


Subject(s)
Enzyme Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Adenosine Triphosphate/pharmacology , Amino Acid Sequence , Aurora Kinase B , Aurora Kinase C , Aurora Kinases , Chromosomal Proteins, Non-Histone/antagonists & inhibitors , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Humans , Kinetics , Molecular Sequence Data , Organophosphates/pharmacology , Piperazines/pharmacology , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Quinazolines/pharmacology
11.
Nat Chem Biol ; 3(11): 722-6, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17922005

ABSTRACT

The mitotic kinesin KSP (kinesin spindle protein, or Eg5) has an essential role in centrosome separation and formation of the bipolar mitotic spindle. Its exclusive involvement in the mitotic spindle of proliferating cells presents an opportunity for developing new anticancer agents with reduced side effects relative to antimitotics that target tubulin. Ispinesib is an allosteric small-molecule KSP inhibitor in phase 2 clinical trials. Mutations that attenuate ispinesib binding to KSP have been identified, which highlights the need for inhibitors that target different binding sites. We describe a new class of selective KSP inhibitors that are active against ispinesib-resistant forms of KSP. These ATP-competitive KSP inhibitors do not bind in the nucleotide binding pocket. Cumulative data from generation of resistant cells, site-directed mutagenesis and photo-affinity labeling suggest that they compete with ATP binding via a novel allosteric mechanism.


Subject(s)
Adenosine Triphosphate/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Protein Kinases/chemistry , Protein Kinases/metabolism , Allosteric Regulation/drug effects , Animals , Cell Line , Cell Survival/drug effects , Inhibitory Concentration 50 , Models, Molecular , Molecular Structure , Protein Structure, Tertiary
13.
Bioorg Med Chem Lett ; 19(15): 4350-3, 2009 Aug 01.
Article in English | MEDLINE | ID: mdl-19515564

ABSTRACT

The synthesis and optimisation of HCV NS5B polymerase inhibitors with improved potency versus the existing compound 1 is described. Substitution in the benzothiadiazine portion of the molecule, furnishing improvement in potency in the high protein Replicon assay, is highlighted, culminating in the discovery of 12h, a highly potent oxyacetamide derivative.


Subject(s)
Antiviral Agents/chemical synthesis , Benzothiadiazines/chemistry , Chemistry, Pharmaceutical/methods , Hepacivirus/enzymology , Viral Nonstructural Proteins/antagonists & inhibitors , Administration, Oral , Animals , Antiviral Agents/pharmacology , Benzothiadiazines/pharmacology , Drug Design , Humans , Inhibitory Concentration 50 , Models, Chemical , Molecular Conformation , Molecular Structure , Rats , Structure-Activity Relationship
14.
Biochem J ; 409(2): 519-24, 2008 Jan 15.
Article in English | MEDLINE | ID: mdl-17877460

ABSTRACT

The PIK3CA gene, encoding the p110alpha catalytic subunit of Class IA PI3Ks (phosphoinositide 3-kinases), is frequently mutated in many human tumours. The three most common tumour-derived alleles of p110alpha, H1047R, E542K and E545K, were shown to potently activate PI3K signalling in human epithelial cells. In the present study, we examine the biochemical activity of the recombinantly purified PI3K oncogenic mutants. The kinetic characterizations of the wt (wild-type) and the three 'hot spot' PI3K mutants show that the mutants all have approx. 2-fold increase in lipid kinase activities. Interestingly, the phosphorylated IRS-1 (insulin receptor substrate-1) protein shows activation of the lipid kinase activity for the wt and H1047R but not E542K and E545K PI3Kalpha, suggesting that these mutations represent different mechanisms of lipid kinase activation and hence transforming activity in cancer cells.


Subject(s)
Oncogenes , Phosphatidylinositol 3-Kinases/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adenosine Triphosphate/metabolism , Alleles , Catalytic Domain , Class I Phosphatidylinositol 3-Kinases , Enzyme Activation , Humans , Insulin Receptor Substrate Proteins , Kinetics , Mutation , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Tumor Cells, Cultured
15.
Science ; 363(6431)2019 03 08.
Article in English | MEDLINE | ID: mdl-30846569

ABSTRACT

Recent characterization of broadly neutralizing antibodies (bnAbs) against influenza virus identified the conserved hemagglutinin (HA) stem as a target for development of universal vaccines and therapeutics. Although several stem bnAbs are being evaluated in clinical trials, antibodies are generally unsuited for oral delivery. Guided by structural knowledge of the interactions and mechanism of anti-stem bnAb CR6261, we selected and optimized small molecules that mimic the bnAb functionality. Our lead compound neutralizes influenza A group 1 viruses by inhibiting HA-mediated fusion in vitro, protects mice against lethal and sublethal influenza challenge after oral administration, and effectively neutralizes virus infection in reconstituted three-dimensional cell culture of fully differentiated human bronchial epithelial cells. Cocrystal structures with H1 and H5 HAs reveal that the lead compound recapitulates the bnAb hotspot interactions.


Subject(s)
Antibodies, Neutralizing/chemistry , Biomimetic Materials/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Influenza, Human/prevention & control , Piperazines/pharmacology , Pyridines/pharmacology , Tetrazoles/pharmacology , Viral Fusion Protein Inhibitors/pharmacology , Virus Internalization/drug effects , Administration, Oral , Animals , Biomimetic Materials/administration & dosage , Biomimetic Materials/pharmacokinetics , Bronchi/virology , Cells, Cultured , Dogs , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Madin Darby Canine Kidney Cells , Mice , Piperazines/administration & dosage , Piperazines/pharmacokinetics , Pyridines/administration & dosage , Pyridines/pharmacokinetics , Respiratory Mucosa/virology , Tetrazoles/administration & dosage , Tetrazoles/pharmacokinetics , Viral Fusion Protein Inhibitors/administration & dosage , Viral Fusion Protein Inhibitors/pharmacokinetics
16.
J Am Chem Soc ; 130(24): 7584-91, 2008 Jun 18.
Article in English | MEDLINE | ID: mdl-18491908

ABSTRACT

Human kinesin spindle protein (KSP)/hsEg5, a member of the kinesin-5 family, is essential for mitotic spindle assembly in dividing human cells and is required for cell cycle progression through mitosis. Inhibition of the ATPase activity of KSP leads to cell cycle arrest during mitosis and subsequent cell death. Ispinesib (SB-715992), a potent and selective inhibitor of KSP, is currently in phase II clinical trials for the treatment of multiple tumor types. Mutations that attenuate Ispinesib binding to KSP in vitro have been identified, highlighting the need for inhibitors that target different binding sites and inhibit KSP activity by novel mechanisms. We report here a small-molecule modulator, KSPA-1, that activates KSP-catalyzed ATP hydrolysis in the absence of microtubules yet inhibits microtubule-stimulated ATP hydrolysis by KSP. KSPA-1 inhibits cell proliferation and induces monopolar-spindle formation in tumor cells. Results from kinetic analyses, microtubule (MT) binding competition assays, and hydrogen/deuterium-exchange studies show that KSPA-1 does not compete directly for microtubule binding. Rather, this compound acts by driving a conformational change in the KSP motor domain and disrupts productive ATP turnover stimulated by MT. These findings provide a novel mechanism for targeting KSP and perhaps other mitotic kinesins.


Subject(s)
Adenosine Triphosphate/metabolism , Hydrocarbons, Fluorinated/pharmacology , Kinesins/drug effects , Microtubules/drug effects , Pyrroles/pharmacology , Adenosine Diphosphate/metabolism , Binding, Competitive , Cell Line , Cell Proliferation/drug effects , Deuterium/metabolism , Humans , Hydrogen/metabolism , Hydrolysis/drug effects , Kinesins/antagonists & inhibitors , Kinesins/metabolism , Ligands , Maleates/pharmacology , Microtubules/metabolism , Spindle Apparatus/drug effects
17.
Bioorg Med Chem Lett ; 18(14): 3950-4, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18573659

ABSTRACT

SAR exploration of the central diamine, benzyl, and terminal aminoalkoxy regions of the N-cyclic azaalkyl benzamide series led to the identification of very potent human urotensin-II receptor antagonists such as 1a with a K(i) of 4 nM. The synthesis and structure-activity relationships (SAR) of N-cyclic azaalkyl benzamides are described.


Subject(s)
Benzamides/chemistry , Receptors, G-Protein-Coupled/antagonists & inhibitors , Binding Sites , Chemistry, Pharmaceutical/methods , Diamines/chemistry , Drug Design , Humans , Inhibitory Concentration 50 , Kinetics , Models, Chemical , Structure-Activity Relationship
18.
J Med Chem ; 50(20): 4939-52, 2007 Oct 04.
Article in English | MEDLINE | ID: mdl-17725339

ABSTRACT

Kinesin spindle protein (KSP), an ATPase responsible for spindle pole separation during mitosis that is present only in proliferating cells, has become a novel and attractive anticancer target with potential for reduced side effects compared to currently available therapies. We report herein the discovery of the first known ATP-competitive inhibitors of KSP, which display a unique activity profile as compared to the known loop 5 (L5) allosteric KSP inhibitors that are currently under clinical evaluation. Optimization of this series led to the identification of biphenyl sulfamide 20, a potent KSP inhibitor with in vitro antiproliferative activity against human cells with either wild-type KSP (HCT116) or mutant KSP (HCT116 D130V). In a murine xenograft model with HCT116 D130V tumors, 20 showed significant antitumor activity following intraperitoneal dosing, providing in vivo proof-of-principle of the efficacy of an ATP-competitive KSP inhibitor versus tumors that are resistant to the other known KSP inhibitors.


Subject(s)
Adenosine Triphosphate/metabolism , Antineoplastic Agents/chemical synthesis , Biphenyl Compounds/chemical synthesis , Kinesins/antagonists & inhibitors , Sulfonamides/chemical synthesis , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Biphenyl Compounds/pharmacokinetics , Biphenyl Compounds/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Female , Humans , Kinesins/genetics , Mice , Mice, Nude , Mutation , Neoplasm Transplantation , Structure-Activity Relationship , Sulfonamides/pharmacokinetics , Sulfonamides/pharmacology
19.
Cell Chem Biol ; 24(9): 1148-1160, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28938090

ABSTRACT

Advances in understanding the role and molecular mechanisms underlying immune surveillance and control of (pre)malignancies is revolutionizing clinical practice in the treatment of cancer. Presently, multiple biologic drugs targeting the immune checkpoint proteins PD(L)1 or CTLA4 have been approved and/or are in advanced stages of clinical development for many cancers. In addition, combination therapy with these agents and other immunomodulators is being intensively explored with the aim of improving primary response rates or prolonging overall survival. The effectiveness of cancer immunotherapy with biologics is spurring research in alternate approaches including small-molecule-mediated targeting of intracellular pathways modulating the innate and adaptive immune response. This focus of this review is on some of the key intracellular pathways where the development of a small-molecule therapeutic is attractive, tractable, and potentially synergistic with extracellular biologic-mediated immune checkpoint blockade.


Subject(s)
CTLA-4 Antigen/metabolism , Neoplasms/immunology , Programmed Cell Death 1 Receptor/metabolism , Small Molecule Libraries/chemistry , CTLA-4 Antigen/antagonists & inhibitors , Humans , Immunologic Factors/chemistry , Immunologic Factors/pharmacology , Immunologic Factors/therapeutic use , Immunotherapy , Lymphocyte Activation/drug effects , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Neoplasms/therapy , Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Small Molecule Libraries/therapeutic use , Toll-Like Receptors/antagonists & inhibitors , Toll-Like Receptors/metabolism
20.
J Med Chem ; 49(3): 971-83, 2006 Feb 09.
Article in English | MEDLINE | ID: mdl-16451063

ABSTRACT

Recently, we disclosed a new class of HCV polymerase inhibitors discovered through high-throughput screening (HTS) of the GlaxoSmithKline proprietary compound collection. This interesting class of 3-(1,1-dioxo-2H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-2(1H)-quinolinones potently inhibits HCV polymerase enzymatic activity and inhibits the ability of the subgenomic HCV replicon to replicate in Huh-7 cells. This report will focus on the structure-activity relationships (SAR) of substituents on the quinolinone ring, culminating in the discovery of 1-(2-cyclopropylethyl)-3-(1,1-dioxo-2H-1,2,4-benzothiadiazin-3-yl)-6-fluoro-4-hydroxy-2(1H)-quinolinone (130), an inhibitor with excellent potency in biochemical and cellular assays possessing attractive molecular properties for advancement as a clinical candidate. The potential for development and safety assessment profile of compound 130 will also be discussed.


Subject(s)
Antiviral Agents/chemical synthesis , Benzothiadiazines/chemical synthesis , Hepacivirus/enzymology , Quinolones/chemical synthesis , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Thiadiazines/chemical synthesis , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Benzothiadiazines/chemistry , Benzothiadiazines/pharmacology , Biological Availability , Blood Proteins/metabolism , Cell Line , Crystallography, X-Ray , Dogs , Genotype , Half-Life , Hepacivirus/genetics , Macaca fascicularis , Models, Molecular , Molecular Structure , Mutation , Protein Binding , Quinolones/chemistry , Quinolones/pharmacology , RNA-Dependent RNA Polymerase/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Thiadiazines/chemistry , Thiadiazines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL