Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Biochem Biophys Res Commun ; 656: 122-130, 2023 05 14.
Article in English | MEDLINE | ID: mdl-37032581

ABSTRACT

Despite decades of development of treatments and the successful application of targeted therapies for multiple myeloma, clinical challenges remain for patients with relapsed/refractory disease. A drug designed for efficient delivery of an alkylating payload into tumor cells that yields a favorable therapeutic window can be an attractive choice. Herein we describe melphalan flufenamide (melflufen), a drug with a peptide carrier component conjugated to an alkylating payload, and its cellular metabolism. We further underline the fundamental role of enzymatic hydrolysis in the rapid and robust accumulation of alkylating metabolites in cancer cells and their importance for downstream effects. The formed alkylating metabolites were shown to cause DNA damage, both on purified DNA and on chromatin in cells, with both nuclear and mitochondrial DNA affected in the latter. Furthermore, the rapid intracellular enrichment of alkylating metabolites is shown to be essential for the rapid kinetics of the downstream intracellular effects such as DNA damage signaling and induction of apoptosis. To evaluate the importance of enzymatic hydrolysis for melflufen's efficacy, all four stereoisomers of the compound were studied in a systematic approach and shown to have a different pattern of metabolism. In comparison with melflufen, stereoisomers lacking intracellular accumulation of alkylating payloads showed cytotoxic activity only at significantly higher concentration, slower DNA damage kinetics, and different mechanisms of action to reach cellular apoptosis.


Subject(s)
Melphalan , Multiple Myeloma , Humans , Melphalan/adverse effects , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Phenylalanine/pharmacology
2.
Bioorg Med Chem ; 17(4): 1663-70, 2009 Feb 15.
Article in English | MEDLINE | ID: mdl-19162487

ABSTRACT

A series of 4-(amido-biarylether)-quinolines was prepared as potential LXR agonists. Appropriate substitution with amide groups provided high affinity LXR ligands, some with excellent potency and efficacy in functional assays of LXR activity. Novel amide 4g had a binding IC(50)=1.9 nM for LXRbeta and EC(50)=34 nM (96% efficacy relative to T0901317) in an ABCA1 gene expression assay in mouse J774 cells, demonstrating that 4-(biarylether)-quinolines with appropriate amide substitution are potent LXR agonists.


Subject(s)
DNA-Binding Proteins/agonists , Quinolines/pharmacology , Receptors, Cytoplasmic and Nuclear/agonists , ATP Binding Cassette Transporter 1 , ATP-Binding Cassette Transporters/biosynthesis , ATP-Binding Cassette Transporters/genetics , Amides/chemical synthesis , Amides/chemistry , Amides/pharmacology , Animals , Cell Line , Crystallography, X-Ray , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Gene Expression Regulation/drug effects , Kinetics , Ligands , Liver X Receptors , Mice , Models, Molecular , Orphan Nuclear Receptors , Quinolines/chemical synthesis , Quinolines/chemistry , Receptors, Cytoplasmic and Nuclear/chemistry , Receptors, Cytoplasmic and Nuclear/genetics , Transcriptional Activation/drug effects , Transfection
3.
J Med Chem ; 61(23): 10415-10439, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30130103

ABSTRACT

The nuclear hormone receptor retinoic acid receptor-related orphan C2 (RORC2, also known as RORγt) is a promising target for the treatment of autoimmune diseases. A small molecule, inverse agonist of the receptor is anticipated to reduce production of IL-17, a key proinflammatory cytokine. Through a high-throughput screening approach, we identified a molecule displaying promising binding affinity for RORC2, inhibition of IL-17 production in Th17 cells, and selectivity against the related RORA and RORB receptor isoforms. Lead optimization to improve the potency and metabolic stability of this hit focused on two key design strategies, namely, iterative optimization driven by increasing lipophilic efficiency and structure-guided conformational restriction to achieve optimal ground state energetics and maximize receptor residence time. This approach successfully identified 3-cyano- N-(3-(1-isobutyrylpiperidin-4-yl)-1-methyl-4-(trifluoromethyl)-1 H-pyrrolo[2,3- b]pyridin-5-yl)benzamide as a potent and selective RORC2 inverse agonist, demonstrating good metabolic stability, oral bioavailability, and the ability to reduce IL-17 levels and skin inflammation in a preclinical in vivo animal model upon oral administration.


Subject(s)
Drug Design , Drug Inverse Agonism , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Pyridines/administration & dosage , Pyridines/pharmacology , Administration, Oral , Animals , Biological Availability , Drug Evaluation, Preclinical , Humans , Mice , Pyridines/pharmacokinetics , Th17 Cells/drug effects , Th17 Cells/metabolism
4.
J Mol Biol ; 359(2): 365-77, 2006 Jun 02.
Article in English | MEDLINE | ID: mdl-16631785

ABSTRACT

Ribonucleotide reductase is an indispensable enzyme for all cells, since it catalyses the biosynthesis of the precursors necessary for both building and repairing DNA. The ribonucleotide reductase class I enzymes, present in all mammals as well as in many prokaryotes and DNA viruses, are composed mostly of two homodimeric proteins, R1 and R2. The reaction involves long-range radical transfer between the two proteins. Here, we present the first crystal structure of a ribonucleotide reductase R1/R2 holocomplex. The biological relevance of this complex is based on the binding of the R2 C terminus in the hydrophobic cleft of R1, an interaction proven to be crucial for enzyme activity, and by the fact that all conserved amino acid residues in R2 are facing the R1 active sites. We suggest that the asymmetric R1/R2 complex observed in the 4A crystal structure of Salmonella typhimurium ribonucleotide reductase represents an intermediate stage in the reaction cycle, and at the moment of reaction the homodimers transiently form a tight symmetric complex.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Protein Structure, Quaternary , Ribonucleotide Reductases/chemistry , Ribonucleotide Reductases/metabolism , Salmonella typhimurium/enzymology , Amino Acid Sequence , Bacterial Proteins/genetics , Binding Sites , Crystallography, X-Ray , Dimerization , Models, Molecular , Molecular Sequence Data , Molecular Structure , Multiprotein Complexes , Ribonucleotide Reductases/genetics , Sequence Alignment
6.
J Med Chem ; 49(21): 6151-4, 2006 Oct 19.
Article in English | MEDLINE | ID: mdl-17034119

ABSTRACT

A structure-based approach was used to optimize our new class of quinoline LXR modulators leading to phenyl acetic acid substituted quinolines 15 and 16. Both compounds displayed good binding affinity for LXRbeta and LXRalpha and were potent activators in LBD transactivation assays. The compounds also increased expression of ABCA1 and stimulated cholesterol efflux in THP-1 cells. Quinoline 16 showed good oral bioavailability and in vivo efficacy in a LDLr knockout mouse model for lesions.


Subject(s)
Anticholesteremic Agents/chemical synthesis , Atherosclerosis/drug therapy , DNA-Binding Proteins/agonists , Phenylacetates/chemical synthesis , Quinolines/chemical synthesis , Receptors, Cytoplasmic and Nuclear/agonists , ATP Binding Cassette Transporter 1 , ATP-Binding Cassette Transporters/biosynthesis , Animals , Anticholesteremic Agents/chemistry , Anticholesteremic Agents/pharmacology , Binding Sites , Biological Availability , Cell Line , Cholesterol/metabolism , DNA-Binding Proteins/genetics , Drug Stability , Female , Humans , In Vitro Techniques , Ligands , Liver X Receptors , Male , Mice , Mice, Inbred C57BL , Microsomes, Liver/metabolism , Models, Molecular , Molecular Structure , Orphan Nuclear Receptors , Phenylacetates/chemistry , Phenylacetates/pharmacology , Protein Structure, Tertiary , Quinolines/chemistry , Quinolines/pharmacology , Receptors, Cytoplasmic and Nuclear/genetics , Structure-Activity Relationship , Transcriptional Activation
7.
J Mol Biol ; 330(1): 87-97, 2003 Jun 27.
Article in English | MEDLINE | ID: mdl-12818204

ABSTRACT

The three-dimensional structure of the large subunit of the first member of a class Ib ribonucleotide reductase, R1E of Salmonella typhimurium, has been determined in its native form and together with three allosteric effectors. The enzyme contains the characteristic ten-stranded alpha/beta-barrel with catalytic residues at a finger loop in its center and with redox-active cysteine residues at two adjacent barrel strands. Structures where the redox-active cysteine residues are in reduced thiol form and in oxidized disulfide form have been determined revealing local structural changes. The R1E enzyme differs from the class Ia enzyme, Escherichia coli R1, by not having an overall allosteric regulation. This is explained from the structure by differences in the N-terminal domain, which is about 50 residues shorter and lacks the overall allosteric binding site. R1E has an allosteric substrate specificity regulation site and the binding site for the nucleotide effectors is located at the dimer interface similarly as for the class Ia enzymes. We have determined the structures of R1E in the absence of effectors and with dTTP, dATP and dCTP bound. The low affinity for ATP at the specificity site is explained by a tyrosine, which hinders nucleotides containing a 2'-OH group to bind.


Subject(s)
Ribonucleotide Reductases/chemistry , Ribonucleotide Reductases/metabolism , Salmonella typhimurium/enzymology , Allosteric Regulation/physiology , Allosteric Site , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Cysteine/chemistry , Cysteine/metabolism , Deoxyadenine Nucleotides/chemistry , Deoxyadenine Nucleotides/metabolism , Deoxycytosine Nucleotides/chemistry , Deoxycytosine Nucleotides/metabolism , Dimerization , Escherichia coli/enzymology , Macromolecular Substances , Models, Molecular , Molecular Sequence Data , Oxidation-Reduction , Protein Conformation , Protein Subunits/chemistry , Protein Subunits/metabolism , Sequence Homology, Amino Acid , Thymine Nucleotides/chemistry , Thymine Nucleotides/metabolism
8.
Mech Ageing Dev ; 125(10-11): 707-17, 2004.
Article in English | MEDLINE | ID: mdl-15541766

ABSTRACT

Members of the nuclear receptor gene family act as biological rheostats to maintain metabolic homeostasis in response to endocrine and nutritional changes. The liver X (LXR) and thyroid hormone (TR) receptors have been shown to regulate overlapping but distinct metabolic pathways important for overall lipid homeostasis. Dyslipidemia is one out of four key determinants for cardiovascular risk and both LXRs and TRs may provide attractive targets for intervention of cardiovascular disease. In this review we will compare the two receptor systems to highlight similarities and differences in structure and function with implications for development of novel treatments for dyslipidemia and atherosclerosis.


Subject(s)
DNA-Binding Proteins/physiology , Lipid Metabolism , Receptors, Cytoplasmic and Nuclear/physiology , Receptors, Thyroid Hormone/physiology , Animals , Arteriosclerosis/physiopathology , Homeostasis/physiology , Humans , Hyperlipidemias/physiopathology , Liver X Receptors , Orphan Nuclear Receptors
9.
J Med Chem ; 47(17): 4213-30, 2004 Aug 12.
Article in English | MEDLINE | ID: mdl-15293993

ABSTRACT

Hepatic blockade of glucocorticoid receptors (GR) suppresses glucose production and thus decreases circulating glucose levels, but systemic glucocorticoid antagonism can produce adrenal insufficiency and other undesirable side effects. These hepatic and systemic responses might be dissected, leading to liver-selective pharmacology, when a GR antagonist is linked to a bile acid in an appropriate manner. Bile acid conjugation can be accomplished with a minimal loss of binding affinity for GR. The resultant conjugates remain potent in cell-based functional assays. A novel in vivo assay has been developed to simultaneously evaluate both hepatic and systemic GR blockade; this assay has been used to optimize the nature and site of the linker functionality, as well as the choice of the GR antagonist and the bile acid. This optimization led to the identification of A-348441, which reduces glucose levels and improves lipid profiles in an animal model of diabetes.


Subject(s)
Bridged-Ring Compounds/chemical synthesis , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/chemical synthesis , Liver/metabolism , Receptors, Glucocorticoid/antagonists & inhibitors , Animals , Bile Acids and Salts/chemistry , Binding Sites , Bridged-Ring Compounds/chemistry , Bridged-Ring Compounds/pharmacology , CHO Cells , Cells, Cultured , Computer Simulation , Cricetinae , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Type 2/blood , Glucose/biosynthesis , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/physiology , Male , Mice , Models, Molecular , Pituitary-Adrenal System/drug effects , Pituitary-Adrenal System/physiology , Rats , Rats, Sprague-Dawley , Receptors, Glucocorticoid/metabolism , Structure-Activity Relationship
10.
Curr Med Chem ; 16(25): 3258-66, 2009.
Article in English | MEDLINE | ID: mdl-19548868

ABSTRACT

Thyroid hormone receptors (TRs) exert profound effects on development, metabolism, and multiple specific organ functions. Principally by regulating crucial genes in a variety of tissues, the thyroid hormones, 3,5,3'-triiodo-L-thyronine (L-T(3), 1) and 3,5,3',5'-tetraiodo-L-thyronine (L-T(4), 2), influence basal calorigenesis and oxygen consumption, cardiac rate and contractility, lipid metabolism, bone structure and strength, and central nervous system functions critical for normal mentation and mood. Elevated levels of circulating and tissue 1 and/or 2 result in the thyrotoxic clinical state, manifested by weight loss despite increased caloric intake; heat intolerance due to increased calorigenesis; cardiac tachyarrhythmias, systolic hypertension, and heart failure; skeletal muscle weakness; and a spectrum of neuropsychiatric symptoms ranging from anxiety to delirium and psychosis. The current standard treatments of endogenous hyperthyroidism causing thyrotoxicosis reduce the overproduction of thyroid hormones by pharmacologically inhibiting their synthesis or release (e.g., with thionamides or lithium, respectively), or by ablating thyroid tissue surgically or with radioiodine. TR-antagonists could hypothetically have significant clinical use in treating thyrotoxic states if they were capable of promptly and completely restoring euthyroid levels of thyroid-specific gene activity. No TRalpha-selective ligands have been prepared up to this date, ligands that potentially would further ameliorate the problem with cardiac disease connected with hyperthyroidism and maybe cardiac arrhythmia. Despite its significant potential use, no TR-antagonist has reached clinical application. Design of TR-antagonists ligands has been based on the attachment of a large extension group at the 5-prime position of 1 or other structurally related analogues. This extension is believed to distort folding of the C-terminal helix (helix 12) to the body of the ligand binding domain (LBD), which normally forms a coactivator site. Examples of synthetic TR antagonists based on this extension strategy are reviewed, as well as other strategies to achieve functional TR-antagonism.


Subject(s)
Antithyroid Agents/pharmacology , Receptors, Thyroid Hormone/antagonists & inhibitors , Animals , Antithyroid Agents/chemistry , Humans , Ligands , Molecular Structure , Receptors, Thyroid Hormone/chemistry , Structure-Activity Relationship
11.
J Med Chem ; 51(22): 7161-8, 2008 Nov 27.
Article in English | MEDLINE | ID: mdl-18973288

ABSTRACT

A series of substituted 2-benzyl-3-aryl-7-trifluoromethylindazoles were prepared as LXR modulators. These compounds were partial agonists in transactivation assays when compared to 1 (T0901317) and were slightly weaker with respect to potency and efficacy on LXRalpha than on LXRbeta. Lead compounds in this series 12 (WAY-252623) and 13 (WAY-214950) showed less lipid accumulation in HepG2 cells than potent full agonists 1 and 3 (WAY-254011) but were comparable in efficacy to 1 and 3 with respect to cholesterol efflux in THP-1 foam cells, albeit weaker in potency. Compound 13 reduced aortic lesion area in LDLR knockout mice equivalently to 3 or positive control 2 (GW3965). In a 7-day hamster model, compound 13 showed a lesser propensity for plasma TG elevation than 3, when the compounds were compared at doses in which they elevated ABCA1 and ABCG1 gene expression in duodenum and liver at equal levels. In contrast to results previously published for 2, the lack of TG effect of 13 correlated with its inability to increase liver fatty acid synthase (FAS) gene expression, which was up-regulated 4-fold by 3. These results suggest indazoles such as 13 may have an improved profile for potential use as a therapeutic agent.


Subject(s)
Arteriosclerosis/drug therapy , DNA-Binding Proteins/agonists , Indazoles/pharmacology , Liver/metabolism , Receptors, Cytoplasmic and Nuclear/agonists , Triglycerides/biosynthesis , Animals , Arteriosclerosis/metabolism , Cell Differentiation/drug effects , Cell Line , Cricetinae , Crystallography, X-Ray , DNA-Binding Proteins/metabolism , Humans , Hydrogen Bonding , Indazoles/chemical synthesis , Indazoles/chemistry , Ligands , Liver/drug effects , Liver X Receptors , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Animal , Models, Molecular , Molecular Structure , Orphan Nuclear Receptors , Receptors, Cytoplasmic and Nuclear/metabolism , Recombinant Proteins/drug effects , Recombinant Proteins/metabolism , Structure-Activity Relationship , Triglycerides/blood
12.
Bioorg Med Chem Lett ; 16(5): 1240-4, 2006 Mar 01.
Article in English | MEDLINE | ID: mdl-16338239

ABSTRACT

Based on the examination of the crystal structure of rat TRbeta complexed with 3,5,3'-triiodo-l-thyronine (2) a novel TRbeta-selective indole derivative 6b was prepared and tested in vitro. This compound was found to be 14 times selective for TRbeta over TRalpha in binding and its beta-selectivity could be rationalized through the comparison of the X-ray crystallographic structures of 6b complexed with TRalpha and TRbeta.


Subject(s)
Indoles/chemistry , Indoles/pharmacology , Thyroid Hormone Receptors beta/agonists , Thyroid Hormone Receptors beta/metabolism , Animals , Crystallography, X-Ray , Cyclization , Humans , Indoles/metabolism , Inhibitory Concentration 50 , Ligands , Molecular Structure , Rats , Substrate Specificity , Thyroid Hormone Receptors beta/chemistry , Thyroxine/chemical synthesis , Thyroxine/chemistry
13.
Acta Crystallogr D Biol Crystallogr ; 59(Pt 6): 1081-3, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12777781

ABSTRACT

The nrdE gene product R1E, the large subunit of the class 1b Salmonella typhimurium ribonucleotide reductase, has been overexpressed, purified and crystallized. Initially, the protein crystallized in two orthorhombic space groups, C222(1) and P2(1)2(1)2, using tartrate and PEG 6000 as precipitants, respectively. Better diffracting crystals belonging to the tetrahedral space group P4(3)2(1)2 were obtained using sodium malonate as precipitant. The P4(3)2(1)2 crystals could only be obtained after seeding from a drop containing C222(1) crystals grown in sodium tartrate. Thus, streak-seeding resulted in crystals of a supergroup to C222(1). Data to 2.8 A resolution have been collected on the P4(3)2(1)2 crystals which contained one R1E subunit in the asymmetric unit.


Subject(s)
Ribonucleotide Reductases/chemistry , Salmonella typhimurium/chemistry , Crystallization , Genes, Bacterial/genetics , Ribonucleotide Reductases/genetics , Ribonucleotide Reductases/metabolism , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism , X-Ray Diffraction
14.
J Biol Chem ; 278(40): 38821-8, 2003 Oct 03.
Article in English | MEDLINE | ID: mdl-12819202

ABSTRACT

The structures of the liver X receptor LXRbeta (NR1H2) have been determined in complexes with two synthetic ligands, T0901317 and GW3965, to 2.1 and 2.4 A, respectively. Together with its isoform LXRalpha (NR1H3) it regulates target genes involved in metabolism and transport of cholesterol and fatty acids. The two LXRbeta structures reveal a flexible ligand-binding pocket that can adjust to accommodate fundamentally different ligands. The ligand-binding pocket is hydrophobic but with polar or charged residues at the two ends of the cavity. T0901317 takes advantage of this by binding to His-435 close to H12 while GW3965 orients itself with its charged group in the opposite direction. Both ligands induce a fixed "agonist conformation" of helix H12 (also called the AF-2 domain), resulting in a transcriptionally active receptor.


Subject(s)
Receptors, Cytoplasmic and Nuclear/chemistry , Alanine/chemistry , Binding Sites , Cholesterol/metabolism , DNA-Binding Proteins , Dimerization , Electrons , Escherichia coli/metabolism , Histidine/chemistry , Humans , Ligands , Liver X Receptors , Models, Chemical , Models, Molecular , Models, Statistical , Orphan Nuclear Receptors , Protein Binding , Protein Conformation , Protein Isoforms , Protein Structure, Tertiary , Receptors, Cytoplasmic and Nuclear/metabolism , Transcription Factors/metabolism , Transcription, Genetic , X-Rays
15.
J Biol Chem ; 278(25): 22748-54, 2003 Jun 20.
Article in English | MEDLINE | ID: mdl-12686538

ABSTRACT

Here we describe the three-dimensional crystal structures of human glucocorticoid receptor ligand-binding domain (GR-LBD) in complex with the antagonist RU-486 at 2.3 A resolution and with the agonist dexamethasone ligand together with a coactivator peptide at 2.8 A. The RU-486 structure was solved in several different crystal forms, two with helix 12 intact (GR1 and GR3) and one with a protease-digested C terminus (GR2). In GR1, part of helix 12 is in a position that covers the co-activator pocket, whereas in the GR3, domain swapping is seen between the crystallographically identical subunits in the GR dimer. An arm consisting of the end of helix 11 and beyond stretches out from one molecule, and helix 12 binds to the other LBD, partly blocking the coactivator pocket of that molecule. This type of GR-LBD dimer has not been described before but might be an artifact from crystallization. Furthermore, the subunits of the GR3 dimers are covalently connected via a disulfide bond between the Cys-736 residues in the two molecules. All three RU-486 GR-LBD structures show that GR has a very flexible region between the end of helix 11 and the end of helix 12.


Subject(s)
Dexamethasone/chemistry , Mifepristone/chemistry , Receptors, Glucocorticoid/chemistry , Animals , Binding Sites , Cell Line , Crystallography, X-Ray , Cysteine , Dexamethasone/pharmacology , Dimerization , Mifepristone/pharmacology , Models, Molecular , Molecular Conformation , Protein Conformation , Protein Structure, Secondary , Receptors, Glucocorticoid/agonists , Receptors, Glucocorticoid/antagonists & inhibitors , Recombinant Proteins/agonists , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/chemistry , Spodoptera , Transfection
16.
Bioorg Med Chem Lett ; 14(13): 3549-53, 2004 Jul 05.
Article in English | MEDLINE | ID: mdl-15177471

ABSTRACT

A set of thyromimetics having improved selectivity for TR-beta1 were prepared by replacing the 3'-isopropyl group of 2 and 3 with substituents having increased steric bulk. From this limited SAR study, the most potent and selective compounds identified were derived from 2 and contained a 3'-phenyl moiety bearing small hydrophobic groups meta to the biphenyl link. X-ray crystal data of 15c complexed with TR-beta1 LBD shows methionine 442 to be displaced by the bulky R3' phenyl ethyl amide side chain. Movement of this amino acid side chain provides an expanded pocket for the bulky side chain while the ligand-receptor complex retains full agonist activity.


Subject(s)
Thyroid Hormone Receptors beta/metabolism , Thyroid Hormones/chemistry , Triiodothyronine/chemistry , 2-Propanol/chemistry , Amino Acids/chemistry , Binding Sites , Cell Line , Crystallography, X-Ray , Drug Design , Inhibitory Concentration 50 , Ligands , Structure-Activity Relationship , Thyroid Hormone Receptors beta/drug effects , Thyroid Hormones/metabolism , Thyroid Hormones/pharmacology , Triiodothyronine/metabolism , Triiodothyronine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL