Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 195
Filter
Add more filters

Country/Region as subject
Publication year range
1.
N Engl J Med ; 388(14): 1272-1283, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36762852

ABSTRACT

BACKGROUND: The role of endovascular therapy for acute stroke with a large infarction has not been extensively studied in differing populations. METHODS: We conducted a multicenter, prospective, open-label, randomized trial in China involving patients with acute large-vessel occlusion in the anterior circulation and an Alberta Stroke Program Early Computed Tomography Score of 3 to 5 (range, 0 to 10, with lower values indicating larger infarction) or an infarct-core volume of 70 to 100 ml. Patients were randomly assigned in a 1:1 ratio within 24 hours from the time they were last known to be well to undergo endovascular therapy and receive medical management or to receive medical management alone. The primary outcome was the score on the modified Rankin scale at 90 days (scores range from 0 to 6, with higher scores indicating greater disability), and the primary objective was to determine whether a shift in the distribution of the scores on the modified Rankin scale at 90 days had occurred between the two groups. Secondary outcomes included scores of 0 to 2 and 0 to 3 on the modified Rankin scale. The primary safety outcome was symptomatic intracranial hemorrhage within 48 hours after randomization. RESULTS: A total of 456 patients were enrolled; 231 were assigned to the endovascular-therapy group and 225 to the medical-management group. Approximately 28% of the patients in both groups received intravenous thrombolysis. The trial was stopped early owing to the efficacy of endovascular therapy after the second interim analysis. At 90 days, a shift in the distribution of scores on the modified Rankin scale toward better outcomes was observed in favor of endovascular therapy over medical management alone (generalized odds ratio, 1.37; 95% confidence interval, 1.11 to 1.69; P = 0.004). Symptomatic intracranial hemorrhage occurred in 14 of 230 patients (6.1%) in the endovascular-therapy group and in 6 of 225 patients (2.7%) in the medical-management group; any intracranial hemorrhage occurred in 113 (49.1%) and 39 (17.3%), respectively. Results for the secondary outcomes generally supported those of the primary analysis. CONCLUSIONS: In a trial conducted in China, patients with large cerebral infarctions had better outcomes with endovascular therapy administered within 24 hours than with medical management alone but had more intracranial hemorrhages. (Funded by Covidien Healthcare International Trading [Shanghai] and others; ANGEL-ASPECT ClinicalTrials.gov number, NCT04551664.).


Subject(s)
Brain Ischemia , Cerebral Infarction , Endovascular Procedures , Ischemic Stroke , Thrombectomy , Humans , Brain Ischemia/drug therapy , Brain Ischemia/surgery , Cerebral Infarction/drug therapy , Cerebral Infarction/surgery , China , Endovascular Procedures/adverse effects , Endovascular Procedures/methods , Fibrinolytic Agents/adverse effects , Fibrinolytic Agents/therapeutic use , Intracranial Hemorrhages/chemically induced , Intracranial Hemorrhages/etiology , Ischemic Stroke/drug therapy , Ischemic Stroke/surgery , Prospective Studies , Stroke/drug therapy , Stroke/surgery , Thrombectomy/adverse effects , Thrombectomy/methods , Treatment Outcome
2.
Bioorg Chem ; 142: 106925, 2024 01.
Article in English | MEDLINE | ID: mdl-37890213

ABSTRACT

Thirty new tricyclicmatrinic derivatives were successively synthesized and evaluated for their inhibitory activity on the accumulation of triglycerides (TG) in AML12 cells, using 12 N-m-trifluoromethylbenzenesulfonyl matrine (1) as the hit compound. Among the analogues, compound 7n possessing 11-trimethylbutylamine quaternary exerted the highest in vitro TG-lowering potency, as well as a good safety profile. 7n significantly attenuated the hepatic injury and steatosis, and ameliorated dyslipidemia and dysglycemia in the mice with non-alcoholic fatty liver disease (NAFLD) induced by a high-fat diet. Primary mechanism study revealed that upregulation of peroxisome proliferator-activated receptors α (PPARα)-carnitine palmitoyltransferase 1A (CPT1A) pathway mediated the efficacy of 7n. Our study provides powerful information for developing this kind of compound into a new class of anti-NAFLD candidates, and compound 7n is worthy of further investigation as an ideal lead compound.


Subject(s)
Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Matrines , Triglycerides/metabolism , Liver/metabolism , PPAR alpha/metabolism , Mice, Inbred C57BL
3.
Toxicol Mech Methods ; : 1-8, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38685856

ABSTRACT

Liver fibrosis is a common pathological process in the progression of several chronic liver diseases to cirrhosis and hepatocellular carcinoma. Therefore, the development of medications that can repress the progress of liver fibrosis is essential. We discovered that initially, 12ß-(m-methyl-benzoyl)-11,12-dihydro oleanolic acid (12d-OA), a farnesoid X receptor (FXR) modulator, possessed potential anti-fibrotic properties. Through an in-depth study, we revealed that 12d-OA not only inhibited the expression of fibrogenic markers in the LX-2 cells and HSC-T6 cells but also exhibited significant protective effects against liver injury and liver fibrosis in bile duct ligation (BDL) rats. Further exploration of its molecular mechanism indicated that 12d-OA exerted antifibrotic activity by inhibiting the extracellular signal-regulated kinase (ERK)/stress-activated protein kinase (p38) signaling pathways. Consequently, the great effects of 12d-OA in vitro and in vivo suggest that it may be a good candidate for liver fibrosis.

4.
Bioorg Med Chem Lett ; 88: 129290, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37080476

ABSTRACT

A novel benzene sulfonamide compound named IMB16-4 exhibits excellent anti-hepatic fibrosis activity in a recent study. To develop potential anti-hepatic fibrosis agents, a series of benzene sulfonamide derivatives were designed and synthesized based on the scaffold of the lead compound IMB16-4. As it turned out, most of the derivatives displayed potential anti-hepatic fibrosis activity, among which, compounds 11a, 11b, 11d, 13a, 36b, and 47b exhibited inhibition rates of 42.3%, 48.7%, 42.4%, 40.0%, 39.4%, and 49.3%, respectively, which were equivalent to the control IMB16-4 with an inhibition rate of 35.9%, Costunolide with an inhibition rate of 45.4%, and much more potent than that of Epigallocatechin gallate (EGCG) with an inhibition rate of 25.3%. Especially, compounds 46a, 46b, and 46c exhibited excellent anti-hepatic fibrosis activity with inhibition rates of 61.7%, 54.8%, and 60.7%, which were almost 1.5-fold inhibition rates of IMB16-4. In addition, compounds 46a, 46b, and 46c exhibited remarkable inhibitory activity in the gene expression of COL1A1, MMP-2, and the protein expression of COL1A1, FN, α-SMA, and TIMP-1 by inhibiting the JAK1-STAT1/3 pathway. These findings furnished valuable inspiration for the further development of anti-hepatic fibrosis agents.


Subject(s)
Antifibrotic Agents , Benzene , Humans , Benzene Derivatives , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Sulfonamides/pharmacology , Structure-Activity Relationship
5.
Article in English | MEDLINE | ID: mdl-37971440

ABSTRACT

Objective: To assess the effectiveness and benefits of retrospective outcome special attention nursing in providing continuous care for patients with heart failure during a vulnerable period. Methods: 96 patients with heart failure discharged from the hospital between January 2021 and January 2022 were included in the study. Patients discharged from January 2021 to June 2021 (48 cases) formed the single group, while those from July 2021 to January 2022 (48 cases) constituted the combined group. The single group received standard continuous nursing, while the combined group underwent retrospective outcome special attention nursing intervention in addition to standard care. Following the interventions, cardiac function-related indicators, negative emotions, self-management ability, health behavior, quality of life, and readmission rates were compared between the two groups. Results: Following the intervention, the combined group exhibited significant improvements, including enhanced 6-minute walk test (6MWT) results (P < .05) and lower scores on the Hamilton Anxiety Rating Scale (HAMA) and Hamilton Depression Rating Scale (HAMD) (P < .05), indicating reduced anxiety and depression levels. The combined group also demonstrated superior self-management abilities, with higher scores in health behavior dimensions (nutrition, exercise, health responsibility, stress coping) and a higher overall self-management score (P < .05). However, the combined group had lower quality of life scores (P < .05). Notably, the combined group's readmission rate was significantly lower at 14.58% (7/48), compared to 33.33% (16/48) in the single group (P < .05). Conclusion: Retrospective outcome special attention nursing improves cardiac function, emotional regulation, self-management, health behaviors, quality of life, and reduces readmission rates in heart failure patients during vulnerable periods.

6.
Phytother Res ; 37(9): 3898-3912, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37132081

ABSTRACT

Liver fibrosis is a key global health care burden. Sclareol, isolated from Salvia sclarea, possesses various biological activities. Its effect on liver fibrosis remains unknown. This study was proposed to evaluate the antifibrotic activity of sclareol (SCL) and explore its underlying mechanisms. Stimulated hepatic stellate cells served as an in vitro liver fibrosis model. The expression of fibrotic markers was assessed by western blot and real-time PCR. Two classical animal models, bile duct-ligated rats and carbon tetrachloride-treated mice, were utilized for the in vivo experiments. The liver function and fibrosis degree were determined by serum biochemical and histopathological analyses. VEGFR2 SUMOylation was analyzed using coimmunoprecipitation assay. Our results indicated that SCL treatment restricted the profibrotic propensity of activated HSCs. In fibrotic rodents, SCL administration alleviated hepatic injury and reduced collagen accumulation. Mechanistic studies indicated that SCL downregulated the protein level of SENP1 and enhanced VEGFR2 SUMOylation in LX-2 cells, which affected its intracellular trafficking. Blockade of the interaction between VEGFR2 and STAT3 was observed, resulting in the suppression of downstream STAT3 phosphorylation. Our findings demonstrated that SCL has therapeutic efficacy against liver fibrosis through mediating VEGFR2 SUMOylation, suggesting that SCL may be a potential candidate compound for its treatment.


Subject(s)
Liver Cirrhosis , Sumoylation , Rats , Mice , Animals , Liver Cirrhosis/drug therapy , Liver , Signal Transduction , Fibrosis , Hepatic Stellate Cells
7.
Bioorg Chem ; 127: 105971, 2022 10.
Article in English | MEDLINE | ID: mdl-35749855

ABSTRACT

Liver fibrosis is an important process in chronic liver disease and is strongly related to poor prognosis. Dehydromevalonolactone (C8) is a natural product isolated from a fungus of Fusarium sp. CPCC 401218, and its pharmacological activity has never been reported before. In this study, the potential of C8 as an anti-hepatic fibrosis agent was investigated. In human hepatic stellate cell (HSC) line LX-2, C8 suppressed the increased expression of COL1A1 and α-SMA induced by TGFß1, which indicated that C8 could repress the activation of HSCs. In bile duct ligated rats, C8 administration (100 mg/kg, i.p.) markedly attenuated liver injury, fibrosis, and inflammation, and suppressed the expression of the macrophage surface marker F4/80. In terms of mechanism, C8 treatment blocked the activation of the NLRP3 inflammasome, which was stimulated by LPS and nigericin in bone marrow-derived macrophages (BMDMs) and companied by the release of active IL-1ß. In addition, the activation of LX-2 cells induced by IL-1ß released from BMDMs was also inhibited after C8 administration, which indicated that C8 repressed HSCs activation by inhibiting the activation of NLRP3 inflammasome in macrophages. Furthermore, C8 exhibited the effects of anti-fibrosis and inhibiting the expression of NLRP3 inflammasome in non-alcoholic steatohepatitis (NASH) mice. Finally, C8 can be commendably absorbed in vivo and was safe for mice at the concentration of 1000 mg/kg (p.o.). In summary, our study reveals that C8 ameliorates HSCs activation and liver fibrosis in cholestasis rats and NASH mice by inhibiting NLRP3 inflammasome in macrophages, and C8 might be a safe and effective candidate for the treatment of liver fibrosis.


Subject(s)
Inflammasomes , Mevalonic Acid/analogs & derivatives , Non-alcoholic Fatty Liver Disease , Animals , Fibrosis , Humans , Inflammasomes/metabolism , Inflammation/metabolism , Liver/metabolism , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Mevalonic Acid/analysis , Mevalonic Acid/pharmacology , Mevalonic Acid/therapeutic use , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Rats
8.
J Cell Mol Med ; 25(1): 161-169, 2021 01.
Article in English | MEDLINE | ID: mdl-33325636

ABSTRACT

T-cell exhaustion is one of the hallmarks in cancer, but the mechanisms underlying T-cell dysregulation remains unclear. Here, we reported that down-regulation of transcription factor EOMES contributed to increased levels of inhibitory receptors in T cell among the tumour tissues and resulted in the poor prognosis of hepatocellular carcinoma (HCC). By analysing the correlation between EOMES in tumour-infiltrating T cells and the clinical features, we demonstrated that the EOMES was related to the advanced stage and poor prognosis of HCC. Further mechanistic studies revealed that the EOMES mainly expressed in the CD8+ T cells and were down-regulated in tumour samples. Moreover, we demonstrated that the EOMES directly bound at the transcriptional regulatory regions of the key inhibitory factors including PD-1, CTAL-4 and CD39, and lower levels of EOMES contributed to overexpression of these factors in T cells. Together, our studies provide new insight into the transcriptional deregulation of the inhibitory receptors on T cells during the tumorigenesis.


Subject(s)
Down-Regulation , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Receptors, Antigen, T-Cell/metabolism , T-Box Domain Proteins/genetics , T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Down-Regulation/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Immune Checkpoint Proteins/metabolism , Kaplan-Meier Estimate , Liver Neoplasms/pathology , Lymphocytes, Tumor-Infiltrating/immunology , Male , Middle Aged , Neoplasm Staging , Prognosis , T-Box Domain Proteins/metabolism
9.
Bioorg Med Chem ; 49: 116438, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34610571

ABSTRACT

Liver fibrosis is one of the most common pathological consequences of chronic liver diseases (CLD). To develop effective antifibrotic strategies, a novel class of 1-(substituted phenyl)-1,8-naphthalidine-3-carboxamide derivatives were designed and synthesized. By means of the collagen type I α 1 (COL1A1)-based screening and cytotoxicity assay in human hepatic stellate cell (HSC) line LX-2, seven compounds were screened out from total 60 derivatives with high inhibitory effect and relatively low cytotoxicity for further COL1A1 mRNA expression analysis. It was found that compound 17f and 19g dose-dependently inhibited the expression of fibrogenic markers, including α-smooth muscle actin (α-SMA), matrix metalloprotein 2 (MMP-2), connective tissue growth factor (CTGF) and transforming growth factor ß1 (TGFß1) on both mRNA and protein levels. Further mechanism studies indicated that they might suppress the hepatic fibrogenesis via inhibiting both PI3K/AKT/Smad and non-Smad JAK2/STAT3 signaling pathways. Furthermore, 19g administration attenuated hepatic histopathological injury and collagen accumulation, and reduced fibrogenesis-associated protein expression in liver tissues of bile duct ligation (BDL) rats, showing significant antifibrotic effect in vivo. These findings identified 1,8-naphthalidine derivatives as potent anti-hepatic fibrosis agents, and provided valuable information for further structure optimization.


Subject(s)
1-Naphthylamine/pharmacology , Drug Discovery , Liver Cirrhosis/drug therapy , 1-Naphthylamine/chemical synthesis , 1-Naphthylamine/chemistry , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/metabolism , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Molecular Structure , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/metabolism , Smad Proteins/antagonists & inhibitors , Smad Proteins/metabolism , Structure-Activity Relationship
10.
J Nat Prod ; 84(11): 2937-2944, 2021 11 26.
Article in English | MEDLINE | ID: mdl-34730370

ABSTRACT

Phrymarolin II, a furofuran lignan isolated from Phryma leptostachya L., features a 3,7-dioxabicyclo[3.3.0]octane skeleton. Herein, we report an alternative total synthesis of (±)-phrymarolin II (2), which was performed in 9 steps from commercially available sesamol. The key steps of the synthesis included a zinc-mediated Barbier-type allylation and a copper-catalyzed anomeric O-arylation. Our total synthesis allowed the synthesis of analogues of (±)-phrymarolin II. Most derivatives displayed good to excellent in vivo activity against tobacco mosaic virus (TMV). (±)-Phrymarolin II (2) and compounds (±)-31d and (±)-31g exhibited similar or higher activity than commercial ningnanmycin, which indicated that phrymarolin lignans are a promising new class of plant virus inhibitors.


Subject(s)
Antiviral Agents/chemical synthesis , Lignans/chemical synthesis , Tobacco Mosaic Virus/drug effects , Antiviral Agents/pharmacology , Benzodioxoles , Lignans/pharmacology
11.
Acta Pharmacol Sin ; 42(11): 1808-1820, 2021 11.
Article in English | MEDLINE | ID: mdl-34465912

ABSTRACT

Liver fibrosis is one of the most severe pathologic consequences of chronic liver diseases, and effective therapeutic strategies are urgently needed. Proton pump inhibitors (PPIs) are H+/K+-ATPase inhibitors and currently used to treat acid-related diseases such as gastric ulcers, which have shown other therapeutic effects in addition to inhibiting acid secretion. However, few studies have focused on PPIs from the perspective of inhibiting hepatic fibrosis. In the present study, we investigated the effects of pantoprazole (PPZ), a PPI, against liver fibrosis in a bile duct ligation (BDL) rat model, human hepatic stellate cell (HSC) line LX-2 and mouse primary HSCs (pHSCs), and explored the potential mechanisms underlying the effects of PPZ in vitro and in vivo. In BDL rats, administration of PPZ (150 mg· kg-1· d-1, i.p. for 14 d) significantly attenuated liver histopathological injury, collagen accumulation, and inflammatory responses, and suppressed fibrogenesis-associated gene expression including Col1a1, Acta2, Tgfß1, and Mmp-2. In LX-2 cells and mouse pHSCs, PPZ (100-300 µM) dose-dependently suppressed the levels of fibrogenic markers. We conducted transcriptome analysis and subsequent validation in PPZ-treated LX-2 cells, and revealed that PPZ inhibited the expression of Yes-associated protein (YAP) and its downstream targets such as CTGF, ID1, survivin, CYR61, and GLI2. Using YAP overexpression and silencing, we demonstrated that PPZ downregulated hepatic fibrogenic gene expression via YAP. Furthermore, we showed that PPZ promoted the proteasome-dependent degradation and ubiquitination of YAP, thus inhibiting HSC activation. Additionally, we showed that PPZ destabilized YAP by disrupting the interaction between a deubiquitinating enzyme OTUB2 and YAP, and subsequently blocked the progression of hepatic fibrosis.


Subject(s)
Bile Ducts/drug effects , Hepatic Stellate Cells/drug effects , Liver Cirrhosis/drug therapy , Pantoprazole/therapeutic use , Proteolysis/drug effects , YAP-Signaling Proteins/agonists , Animals , Bile Ducts/metabolism , Gene Expression Profiling , HEK293 Cells , Hepatic Stellate Cells/metabolism , Humans , Ligation , Liver Cirrhosis/metabolism , Male , Pantoprazole/pharmacology , Proton Pump Inhibitors/pharmacology , Proton Pump Inhibitors/therapeutic use , Rats , Rats, Sprague-Dawley , YAP-Signaling Proteins/metabolism
12.
Acta Pharmacol Sin ; 41(5): 661-669, 2020 May.
Article in English | MEDLINE | ID: mdl-31932644

ABSTRACT

Chronic tissue injury with fibrosis results in the disruption of tissue architecture, organ dysfunction, and eventual organ failure. Therefore, the development of effective antifibrotic drugs is urgently required. IMB-S7 is novel biphenyl compound derived from bifendate (biphenyldicarboxylate) that is used for the treatment of chronic hepatitis in China. In the current study we investigated the potential of IMB-S7 as an antihepatic fibrosis agent. In bile duct ligation (BDL) rat model, oral administration of IMB-S7 (400 mg· kg-1· d-1, for 14 days) significantly ameliorated BDL-induced liver necrosis, bile duct proliferation, and collagen accumulation. We then showed that IMB-S7 treatment markedly suppressed the TGF-ß/Smad pathway in human hepatic stellate cell line LX2 and mouse primary HSCs, as well as in liver samples of BDL rats, thus inhibiting the transcription of most fibrogenesis-associated genes, including TGF-ß1, COL1A1, and ACTA2. Furthermore, IMB-S7 treatment significantly suppressed the expression of integrin αv at the mRNA and protein levels in TGF-ß-treated LX2 cells and liver samples of BDL rats. Using integrin αv overexpression and silencing, we demonstrated that integrin αv activity correlated positively with the activation of TGF-ß/Smad pathway. Based on dual luciferase assay and DNA affinity precipitation assay, we revealed that IMB-S7 inactivated integrin αv through competitively inhibiting the binding of Sp1, a transcription factor, to the integrin αv (ITGAV) promoter (-173/-163 bp). These results suggest that IMB-S7 inhibits HSCs activation and liver fibrosis through Sp1-integrin αv signaling, and IMB-S7 may be a promising candidate to combat hepatic fibrosis in the future.


Subject(s)
Biphenyl Compounds/pharmacology , Integrin alphaV/genetics , Liver Cirrhosis/drug therapy , Sp1 Transcription Factor/antagonists & inhibitors , Animals , Bile Ducts/surgery , Biphenyl Compounds/chemical synthesis , Biphenyl Compounds/chemistry , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Integrin alphaV/metabolism , Liver Cirrhosis/metabolism , Liver Cirrhosis/surgery , Molecular Structure , Rats , Sp1 Transcription Factor/metabolism , Structure-Activity Relationship
13.
Molecules ; 25(21)2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33121156

ABSTRACT

Twenty-seven novel 12N-substituted aloperine derivatives were synthesized and investigated for their inhibitory effects on collagen α1 (I) (COL1A1) promotor in human hepatic stellate LX-2 cells, taking aloperine (1) as the hit. A structure-activity relationship (SAR) study disclosed that the introduction of suitable substituents on the 12N atom might enhance the activity. Compound 4p exhibited a good promise on down-regulating COL1A1 expression with the IC50 value of 16.5 µM. Its inhibitory activity against COL1A1 was further confirmed on both mRNA and protein levels. Meanwhile, it effectively inhibited the expression of other fibrogenic proteins, such as transforming growth factor ß1 (TGF-ß1) and smooth muscle actin (α-SMA). It also exhibited good in vivo safety profile with the oral LD50 value of 400 mg kg-1 in mice. The results initiated the anti-liver fibrogenic study of aloperine derivatives, and the key compound 4p was selected as a novel lead for further investigation against liver fibrogenesis.


Subject(s)
Liver/drug effects , Liver/pathology , Piperidines/chemistry , Piperidines/pharmacology , Cell Line , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Cytoprotection/drug effects , Drug Design , Fibrosis , Gene Expression Regulation/drug effects , Humans , Liver/metabolism , Piperidines/adverse effects , Promoter Regions, Genetic/genetics , Quinolizidines , Safety , Structure-Activity Relationship , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
14.
Molecules ; 25(4)2020 Feb 11.
Article in English | MEDLINE | ID: mdl-32054011

ABSTRACT

Twenty 9O-substituted palmatine derivatives were prepared and tested for their biological effect against collagen α1 (I) (COL1A1) promotor in human hepatic stellate LX-2 cells. The structure-activity relationship (SAR) indicated that the introduction of a benzyl motif on the 9O atom was favorable for activity. Among them, compound 6c provided the highest inhibitory effect against COL1A1 with an IC50 value of 3.98 µM, and it also dose-dependently inhibited the expression of fibrogenic COL1A1, α-soomth muscle actin (α-SMA), matrix metalloprotein 2 (MMP2) in both mRNA and protein levels, indicating extensive inhibitory activity against fibrogenesis. A further primary mechanism study indicated that it might repress the hepatic fibrogenesis via inhibiting both canonical transforming growth factor-beta 1 (TGF-ß1)/Smads and non-canonical janus-activated kinase 1 (JAK1)/singal transducer and activator of transcription 3 (STAT3) signaling pathways. Additionally, 6c owned a high safety profile with the LD50 value of over 1000 mg·kg-1 in mice. These results identified palmatine derivatives as a novel class of anti-fibrogenic agents, and provided powerful information for further structure optimization.


Subject(s)
Berberine Alkaloids/chemistry , Berberine Alkaloids/pharmacology , Collagen Type I/antagonists & inhibitors , Janus Kinase 1/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Smad Proteins/metabolism , Transforming Growth Factor beta1/metabolism , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Dose-Response Relationship, Drug , Gene Expression , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Humans , Models, Biological , Molecular Structure , Structure-Activity Relationship
15.
J Bus Res ; 116: 176-182, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32457556

ABSTRACT

In this article, we offer some initial examination on how Covid-19 pandemic can influence the developments of CSR and marketing. We argue that Covid-19 pandemic offers a great opportunity for businesses to shift towards more genuine and authentic CSR and contribute to address urgent global social and environmental challenges. We also discuss some potential directions of how consumer ethical decision making will be shifted to due to the pandemic. In our discussion of marketing, we outline how we believe marketing is being affected by this pandemic and how we think this will change, not only the context of marketing, but how organizations approach their strategic marketing efforts. We end the paper with a identifying a number of potentially fruitful research themes and directions.

16.
Macromol Rapid Commun ; 40(23): e1900492, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31693258

ABSTRACT

Fibers have traditionally been made through melt or solution processes from macromolecules. Most of these fibers have crystalline domains where the segregation of different crystalline features is extremely difficult due to the statistical nature of the formation and growth of these domains. A fibrous nano-crystalline sandwich is reported where distinctly different crystalline regions are formed in layers along the continuous fiber direction during the spinning process and locked in place. This approach employs side-by-side bicomponent nanofiber electrospinning where the components are the enantiomeric pair of poly(l-lactic acid) and poly(d-lactic acid). The formation of the poly(lactic acid) (PLA) stereo-complexes at the junction interphase of the two components is demonstrated through diffusion, which subsequently crystallize into continuous sandwich domains. The stereo-complex crystalline core in the fiber possesses a melting point 50 °C higher than, and properties substantially different from, the regular PLAs at the fringe areas of the fiber. This nano-crystalline sandwich fiber structure can be scaled to the micrometers in a commercial bicomponent process.


Subject(s)
Nanoparticles/chemistry , Polyesters/chemical synthesis , Crystallization , Particle Size , Polyesters/chemistry , Surface Properties
17.
Bioorg Chem ; 90: 103032, 2019 09.
Article in English | MEDLINE | ID: mdl-31207450

ABSTRACT

A series of new cytisine derivatives with a unique endocyclic scaffold were synthesized and evaluated for their inhibitory effect on collagen α1 (I) (COL1A1) promotor in human LX2 cells, taking cytisine as the lead. Structure-activity relationship (SAR) revealed that introducing a 12N-benzyl substitution might significantly enhance the activity. Compound 5f exhibited a promising inhibitory potency against COL1A1 with an IC50 value of 12.8 µM in human LX2 cells, and an inspiring inhibition activity against COL1A1 on both mRNA and protein levels. It also effectively inhibited the expression of α smooth muscle actin (α-SMA), connective tissue growth factor (CTGA), matrix metalloprotein 2 (MMP-2), and transforming growth factor ß1 (TGFß1), indicating an extensive inhibitory effect against fibrogenetic proteins. In addition, compound 5f displayed reasonable PK and safety profiles. The primary mechanism study indicated that it might repress the hepatic fibrogenesis via PI3K/Akt/Smad signaling pathway. The results provided powerful information for further structure optimization, and compound 5f was selected as a novel anti-liver fibrosis agent for further investigation.


Subject(s)
Alkaloids/therapeutic use , Liver Cirrhosis/drug therapy , Signal Transduction/drug effects , Alkaloids/chemical synthesis , Alkaloids/pharmacokinetics , Animals , Azocines/chemical synthesis , Azocines/pharmacokinetics , Azocines/therapeutic use , Cell Line , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Humans , Male , Mice , Molecular Structure , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Quinolizines/chemical synthesis , Quinolizines/pharmacokinetics , Quinolizines/therapeutic use , Rats, Sprague-Dawley , Smad Proteins/metabolism , Structure-Activity Relationship
18.
Acta Pharmacol Sin ; 40(7): 895-907, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30573812

ABSTRACT

The manipulation of bile acid (BA) homeostasis by blocking the ileal apical Na+-dependent bile salt transporter (ASBT/SLC10A2) may have therapeutic effects in nonalcoholic fatty liver disease. We developed a novel ASBT inhibitor, an N-(3,4-o-dichlorophenyl)-2-(3-trifluoromethoxy) benzamide derivative referred to as IMB17-15, and investigated its therapeutic effects and the molecular mechanisms underlying the effects. Syrian golden hamsters were challenged with high-fat diet (HFD) to induce NAFLD and were subsequently administered 400 mg/kg IMB17-15 by gavage daily for 21 days. Serum, liver, and fecal samples were collected for further analysis. Plasma concentration-time profiles of IMB17-15 were also constructed. The human hepatocyte cell line HL-7702 was treated with Oleic acid (OA) with or without IMB17-15. Western blotting and real-time PCR were used to study the molecular mechanisms of IMB17-15. We found that IMB17-15 inhibited ASBT and subsequently suppressed ileal farnesoid X receptor (FXR) and FXR-activated fibroblast growth factor15/19 (FGF15/19) expression, which reduced the hepatic phosphorylated extracellular regulated protein kinase (ERK) and c-Jun N-terminal kinase (JNK) levels and upregulated the cholesterol 7α-hydroxylase (CYP7A1) activity. Additionally, IMB17-15 stimulated adenosine monophosphate (AMP)-activated protein kinase (AMPKα) phosphorylation and enhanced peroxisome proliferator activated receptor α (PPARα) expression and thus promoted triglyceride (TG) oxidation and high-density lipoprotein cholesterol (HDL-c) metabolism through an ASBT-independent mechanism. In conclusion, a novel ASBT inhibitor known as IMB17-15 protected hamsters against HFD-induced NFALD by manipulating BA and lipid homeostasis. IMB17-15 also reduced lipid deposition in human hepatic cell lines, indicating that it may be useful as a therapy for NAFLD patients.


Subject(s)
Benzamides/therapeutic use , Non-alcoholic Fatty Liver Disease/prevention & control , Organic Anion Transporters, Sodium-Dependent/antagonists & inhibitors , Sulfonamides/therapeutic use , Symporters/antagonists & inhibitors , Animals , Benzamides/pharmacokinetics , Benzamides/toxicity , Cell Line , Cytokines/metabolism , Diet, High-Fat , Female , Gene Expression Regulation/drug effects , Humans , Liver/pathology , Male , Mesocricetus , Mice , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Sulfonamides/pharmacokinetics , Sulfonamides/toxicity
19.
Molecules ; 24(20)2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31627430

ABSTRACT

Twenty new 12N-substituted matrinol derivatives were synthesized and evaluated for their inhibitory effects on collagen α1 (I) (COL1A1) promotor in human hepatic stellate LX-2 cells. The structure-activity relationship (SAR) revealed that introducing a 12N-benzeneaminoacylmethyl substitution might significantly enhance the activity. Compound 8a exhibited the highest inhibitory potency against COL1A1, and its inhibition activity against COL1A1 was further confirmed on both the mRNA and protein levels. It also effectively inhibited the expression of α smooth muscle actin (α-SMA), fibronectin and transforming growth factor ß1 (TGFß1), indicating an extensive inhibitory effect on the expression of fibrogenic genes. The primary mechanism study indicated that it might take action via the Integrin/FAK/PI3K/Akt signaling pathway. The results provided powerful information for further structure optimization, and compound 8a was selected as a novel anti-fibrogenic lead for further investigation.


Subject(s)
Collagen Type I/genetics , Hepatic Stellate Cells/drug effects , Heterocyclic Compounds, 4 or More Rings/pharmacology , Signal Transduction/drug effects , Thiazoles/pharmacology , Cell Line , Collagen Type I/antagonists & inhibitors , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Fibrosis/prevention & control , Focal Adhesion Kinase 1/antagonists & inhibitors , Focal Adhesion Kinase 1/genetics , Focal Adhesion Kinase 1/metabolism , Gene Expression Regulation , Hepatic Stellate Cells/cytology , Hepatic Stellate Cells/metabolism , Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Humans , Integrin alphaV/genetics , Integrin alphaV/metabolism , Models, Biological , Phosphatidylinositol 3-Kinase/genetics , Phosphatidylinositol 3-Kinase/metabolism , Promoter Regions, Genetic , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/antagonists & inhibitors , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/genetics , Structure-Activity Relationship , Thiazoles/chemical synthesis
20.
Zhongguo Yi Liao Qi Xie Za Zhi ; 43(3): 170-172, 2019 May 30.
Article in Zh | MEDLINE | ID: mdl-31184071

ABSTRACT

OBJECTIVE: Medical image segmentation is a key step in medical image processing. An architecture of fully convolutional networks was proposed to realize automatic segmentation of anatomical areas in X-ray images. METHODS: Enlightened by the advantages of convolutional neural networks on features extraction, fully convolutional networks consisting of 9 layers were designed to segment medical images. The networks used convolution kernels of various sizes to extract multi-dimensional image features in the images, meanwhile, eliminated pooling layers to avoid the loss of image details during downsampling procedures. RESULTS: The experiment was conducted in accordance with the specific scene of X-ray images segmentation. Compared with traditional segmentation methods, this approach achieved more accurate segmentation of anatomical areas. CONCLUSIONS: Fully convolutional networks can extract representative and multidimensional features of medical images, avoid the loss of image details during downsampling procedures, and complete automatic segmentation of anatomical areas accurately in X-ray images.


Subject(s)
Image Processing, Computer-Assisted , Neural Networks, Computer , Algorithms , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL