Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
J Am Chem Soc ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842580

ABSTRACT

Nonribosomal cyclic peptides (NRcPs) are structurally complex natural products and a vital pool of therapeutics, particularly antibiotics. Their structural diversity arises from the ability of the multidomain enzyme assembly lines, nonribosomal peptide synthetases (NRPSs), to utilize bespoke nonproteinogenic amino acids, modify the linear peptide during elongation, and catalyze an array of cyclization modes, e.g., head to tail, side chain to tail. The study and drug development of NRcPs are often limited by a lack of easy synthetic access to NRcPs and their analogues, with selective macrolactamization being a major bottleneck. Herein, we report a generally applicable chemical macrocyclization method of unprecedented speed and selectivity. Inspired by biosynthetic cyclization, it combines the deprotected linear biosynthetic precursor peptide sequence with a highly reactive C-terminus to produce NRcPs and analogues in minutes. The method was applied to several NRcPs of varying sequences, ring sizes, and cyclization modes including rufomycin, colistin, and gramicidin S with comparable success. We thus demonstrate that the linear order of modules in NRPS enzymes that determines peptide sequence encodes the key structural information to produce peptides conformationally biased toward macrocyclization. To fully exploit this conformational bias synthetically, a highly reactive C-terminal acyl azide is also required, alongside carefully balanced pH and solvent conditions. This allows for consistent, facile cyclization of exceptional speed, selectivity, and atom efficiency. This exciting macrolactamization method represents a new enabling technology for the biosynthetic study of NRcPs and their development as therapeutics.

2.
J Biol Inorg Chem ; 29(6): 573-582, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39198276

ABSTRACT

A series of biotin-functionalized transition metal complexes was prepared by iClick reaction from the corresponding azido complexes with a novel alkyne-functionalized biotin derivative ([Au(triazolatoR,R')(PPh3)], [Pt(dpb)(triazolatoR,R')], [Pt(triazolatoR,R')(terpy)]PF6, and [Ir(ppy)(triazolatoR,R')(terpy)]PF6 with dpb = 1,3-di(2-pyridyl)benzene, ppy = 2-phenylpyridine, and terpy = 2,2':6',2''-terpyridine and R = C6H5, R' = biotin). The complexes were compared to reference compounds lacking the biotin moiety. The binding affinity toward avidin and streptavidin was evaluated with the HABA assay as well as isothermal titration calorimetry (ITC). All compounds exhibit the same binding stoichiometry of complex-to-avidin of 4:1, but the ITC results show that the octahedral Ir(III) compound exhibits a higher binding affinity than the square-planar Pt(II) complex. The antibacterial activity of the compounds was evaluated on a series of Gram-negative and Gram-positive bacterial strains. In particular, the neutral Au(I) and Pt(II) complexes showed significant antibacterial activity against Staphylococcus aureus and Enterococcus faecium at very low micromolar concentrations. The cytotoxicity against a range of eukaryotic cell lines was studied and revealed that the octahedral Ir(III) complex was non-toxic, while the square-planar Pt(II) and linear Au(I) complexes displayed non-selective micromolar activity.


Subject(s)
Anti-Bacterial Agents , Biotin , Gold , Iridium , Microbial Sensitivity Tests , Platinum , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Biotin/chemistry , Gold/chemistry , Gold/pharmacology , Iridium/chemistry , Iridium/pharmacology , Platinum/chemistry , Platinum/pharmacology , Humans , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Staphylococcus aureus/drug effects , Molecular Structure , Structure-Activity Relationship
3.
Chembiochem ; 24(16): e202200796, 2023 08 15.
Article in English | MEDLINE | ID: mdl-36917084

ABSTRACT

Antimicrobial resistance (AMR) is a growing global problem with more than 1 million deaths due to AMR infection in 2019 alone. New and innovative therapeutics are required to overcome this challenge. Antimicrobial photodynamic therapy (aPDT) is a rapidly growing area of research poised to provide much needed help in the fight against AMR. aPDT works by administering a photosensitizer (PS) that is activated only when irradiated with light, allowing high spatiotemporal control and selectivity. The PS typically generates reactive oxygen species (ROS), which can damage a variety of key biological targets, potentially circumventing existing resistance mechanisms. Metal complexes are well known to display excellent optoelectronic properties, and recent focus has begun to shift towards their application in tackling microbial infections. Herein, we review the last five years of progress in the emerging field of small-molecule metal complex PSs for aPDT.


Subject(s)
Anti-Infective Agents , Bacterial Infections , Coordination Complexes , Photochemotherapy , Humans , Coordination Complexes/pharmacology , Coordination Complexes/therapeutic use , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Bacterial Infections/drug therapy
4.
Biol Chem ; 403(4): 363-375, 2022 03 28.
Article in English | MEDLINE | ID: mdl-34253000

ABSTRACT

The occurrence of drug-resistant bacteria is drastically rising and new and effective antibiotic classes are urgently needed. However, most of the compounds in development are minor modifications of previously used drugs to which bacteria can easily develop resistance. The investigation of inorganic and organometallic compounds as antibiotics is an alternative approach that holds great promises due to the ability of such molecules to trigger metal-specific mechanisms of action, which results in lethal consequences for pathogens. In this review, a selection of concepts to rationally design inorganic and organometallic antibiotics is discussed, highlighting their advantages by comparing them to classical drug discovery programmes. The review concludes with a short perspective for the future of antibiotic drug development and the role metal-based compounds will play in the field.


Subject(s)
Anti-Bacterial Agents , Bacteria , Anti-Bacterial Agents/pharmacology , Drug Discovery
5.
Biochem J ; 476(21): 3125-3139, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31488574

ABSTRACT

CoaBC, part of the vital coenzyme A biosynthetic pathway in bacteria, has recently been validated as a promising antimicrobial target. In this work, we employed native ion mobility-mass spectrometry to gain structural insights into the phosphopantothenoylcysteine synthetase domain of E. coli CoaBC. Moreover, native mass spectrometry was validated as a screening tool to identify novel inhibitors of this enzyme, highlighting the utility and versatility of this technique both for structural biology and for drug discovery.


Subject(s)
Carboxy-Lyases/chemistry , Drug Evaluation, Preclinical/methods , Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , Mass Spectrometry/methods , Multienzyme Complexes/chemistry , Peptide Synthases/chemistry , Carboxy-Lyases/antagonists & inhibitors , Carboxy-Lyases/metabolism , Dimerization , Enzyme Inhibitors/chemistry , Escherichia coli/chemistry , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli Proteins/metabolism , Kinetics , Multienzyme Complexes/antagonists & inhibitors , Multienzyme Complexes/metabolism , Peptide Synthases/antagonists & inhibitors , Peptide Synthases/metabolism , Protein Domains
6.
Chemistry ; 23(41): 9888-9896, 2017 Jul 21.
Article in English | MEDLINE | ID: mdl-28509422

ABSTRACT

Two [Ru(phen)2 dppz]2+ derivatives (phen=1,10-phenantroline, dppz=dipyrido[3,2-a:2',3'-c]phenazine) with different functional groups on the dppz ligand [dppz-7,8-(OMe)2 (1), dppz-7,8-(OH)2 (2)] have been synthesized, characterized and investigated as photosensitizers (PSs) for photodynamic therapy (PDT) against cancer. Both complexes showed intense red phosphorescence and promising singlet oxygen (1 O2 ) quantum yields of 75 % (1) and 54 % (2) in acetonitrile. Complex 1 (logPo/w =-0.52, 2.4 nmol Ru per mg protein) was found to be more lipophilic, having also a higher cellular uptake efficiency compared to 2 (logPo/w =-0.20, 0.9 nmol Ru per mg protein). Complex 1 localized evenly in HeLa cells whereas 2, was mainly visualized in the cell membrane by confocal microscopy. In the dark, complex 1 (IC50 =36.5 µm) was found to be more toxic than complex 2 (IC50 >100 µm) on a HeLa cells monolayer. Importantly, in view of PDT applications, both complexes were found to be non-toxic in the dark towards multicellular HeLa spheroids (IC50 >100 µm). Upon one-photon irradiation (420 nm, 9.27 J cm-2 ), 1 exhibited higher phototoxicity (IC50 =3.1 µm) than 2 (IC50 =16.7 µm) on HeLa cell monolayers. When two-photon irradiation (800 nm, 9.90 J cm-2 ) was applied, only 1 (IC50 =9.5 µm) was found to be active toward HeLa spheroids. This study demonstrates that the functional group on the intercalative ligand has a strong influence on the cellular localization and anticancer activity of RuII polypyridyl complexes.


Subject(s)
Coordination Complexes/chemistry , Photosensitizing Agents/chemistry , Ruthenium/chemistry , Cell Survival/drug effects , Coordination Complexes/blood , Coordination Complexes/chemical synthesis , Coordination Complexes/toxicity , Crystallography, X-Ray , HeLa Cells , Humans , Hydrophobic and Hydrophilic Interactions , Light , Microscopy, Confocal , Molecular Conformation , Organometallic Compounds/chemistry , Photochemotherapy , Photons , Photosensitizing Agents/blood , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/toxicity , Singlet Oxygen/chemistry , Singlet Oxygen/metabolism , Spheroids, Cellular/cytology , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism
7.
Chembiochem ; 17(11): 1004-7, 2016 06 02.
Article in English | MEDLINE | ID: mdl-26991635

ABSTRACT

An organometallic derivative of praziquantel was studied directly in worms by using inductively coupled plasma-mass spectrometry (ICP-MS) for quantification and synchrotron-based imaging. X-ray fluorescence (XRF) and IR absorption spectromicroscopy were used for the first time in combination to directly locate this organometallic drug candidate in schistosomes. The detection of both CO (IR) and Cr (XRF) signatures proved that the Cr(CO)3 core remained intact in the worms. Images showed a preferential accumulation at the worm's tegument, consistent with a possible targeting of the calcium channel but not excluding other biological targets inside the worm.


Subject(s)
Praziquantel/chemistry , Schistosoma mansoni/chemistry , Animals , Chromium/chemistry , Mass Spectrometry , Microscopy , Optical Imaging , Praziquantel/chemical synthesis , Praziquantel/pharmacology , Schistosoma mansoni/drug effects , Schistosoma mansoni/metabolism , Spectrophotometry, Infrared , Stereoisomerism , X-Ray Absorption Spectroscopy
8.
Chemistry ; 22(46): 16602-16612, 2016 Nov 07.
Article in English | MEDLINE | ID: mdl-27706843

ABSTRACT

The discovery of novel drugs against animal parasites is in high demand due to drug-resistance problems encountered around the world. Herein, the synthesis and characterization of 27 organic and organometallic derivatives of the recently launched nematocidal drug monepantel (Zolvix® ) are described. The compounds were isolated as racemates and were characterized by 1 H, 13 C, and 19 F NMR spectroscopy, mass spectrometry, and IR spectroscopy, and their purity was verified by microanalysis. The molecular structures of nine compounds were confirmed by X-ray crystallography. The anthelmintic activity of the newly designed analogues was evaluated in vitro against the economically important parasites Haemonchus contortus and Trichostrongylus colubriformis. Moderate nematocidal activity was observed for nine of the 27 compounds. Three compounds were confirmed as potentiators of a known monepantel target, the ACR-23 ion channel. Production of reactive oxygen species may confer secondary activity to the organometallic analogues. Two compounds, namely, an organic precursor (3 a) and a cymantrene analogue (9 a), showed activities against microfilariae of Dirofilaria immitis in the low microgram per milliliter range.


Subject(s)
Aminoacetonitrile/analogs & derivatives , Antinematodal Agents/chemistry , Antiparasitic Agents/chemistry , Drug Resistance/drug effects , Aminoacetonitrile/chemistry , Animals , Antinematodal Agents/pharmacology , Antiparasitic Agents/pharmacology , Crystallography, X-Ray , Haemonchus
9.
Chemistry ; 20(44): 14421-36, 2014 Oct 27.
Article in English | MEDLINE | ID: mdl-25213439

ABSTRACT

Six substitutionally inert [Ru(II) (bipy)2 dppz](2+) derivatives (bipy=2,2'-bipyridine, dppz=dipyrido[3,2-a:2',3'-c]phenazine) bearing different functional groups on the dppz ligand [NH2 (1), OMe (2), OAc (3), OH (4), CH2 OH (5), CH2 Cl (6)] were synthesized and studied as potential photosensitizers (PSs) in photodynamic therapy (PDT). As also confirmed by DFT calculations, all complexes showed promising (1) O2 production quantum yields, well comparable with PSs available on the market. They can also efficiently intercalate into the DNA double helix, which is of high interest in view of DNA targeting. The cellular localization and uptake quantification of 1-6 were assessed by confocal microscopy and high-resolution continuum source atomic absorption spectrometry. Compound 1, and especially 2, showed very good uptake in cervical cancer cells (HeLa) with preferential nuclear accumulation. None of the compounds studied was found to be cytotoxic in the dark on both HeLa cells and, interestingly, on noncancerous MRC-5 cells (IC50 >100 µM). However, 1 and 2 showed very promising behavior with an increment of about 150 and 42 times, respectively, in their cytotoxicities upon light illumination at 420 nm in addition to a very good human plasma stability. As anticipated, the preferential nuclear accumulation of 1 and 2 and their very high DNA binding affinity resulted in very efficient DNA photocleavage, suggesting a DNA-based mode of phototoxic action.


Subject(s)
Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Intercalating Agents/chemistry , Intercalating Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Ruthenium/chemistry , 2,2'-Dipyridyl/chemistry , Coordination Complexes/chemical synthesis , Crystallography, X-Ray , DNA/drug effects , HeLa Cells , Humans , Intercalating Agents/chemical synthesis , Photochemical Processes , Photochemotherapy , Photosensitizing Agents/chemical synthesis
10.
Inorg Chem ; 53(7): 3662-7, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24670103

ABSTRACT

A novel synthetic pathway for trifluoromethylthioferrocene (3), which does not involve the use of toxic mercury(II)-based reagents, is described. The novel approach involves first the treatment of the commercially available bromoferrocene (1a) with NaSCN in the presence of copper(+I) to yield thiocyanatoferrocene (1), and then the reaction of 1 with the Rupper-Prakash reagent and tetrabutylammonium fluoride (TBAF) to give 3 in an overall yield of 60%. This approach could be extended for the preparation of thiocyanato-(4) and trifluoromethylthio-ruthenocene (7), which are herein both reported for the first time. Interestingly, diferrocenyl disulfide (2a) and diruthenocenyl disulfide (5) could be isolated as side-products during the synthesis of 3 and 7, respectively. All new compounds were unambiguously characterized by (1)H, (13)C, and (19)F NMR spectroscopy, mass spectrometry, cyclic voltammetry, elemental analysis, as well by X-ray crystallography for 1, 4, 4b, 5, 6, and 7. 1-7 were further tested for their toxic activity on cervical cancer (HeLa) and noncancerous (MRC-5) cell lines. All organometallic compounds were found either to be nontoxic or to have a moderate toxicity toward the cell lines used in this study.


Subject(s)
Antineoplastic Agents/chemical synthesis , Mercury/chemistry , Organometallic Compounds/chemical synthesis , Antineoplastic Agents/toxicity , Cell Line, Tumor , Cell Survival/drug effects , Crystallography, X-Ray , HeLa Cells , Humans , Organometallic Compounds/chemistry , Organometallic Compounds/toxicity
11.
Curr Opin Microbiol ; 75: 102347, 2023 10.
Article in English | MEDLINE | ID: mdl-37467616

ABSTRACT

The mounting burden of antimicrobial resistance (AMR) is one of the most concerning threats to public health worldwide. With low economic incentives and a dwindling supply of new drugs in clinical pipelines, more innovative approaches to novel drug design and development are desperately required. Metal-based compounds are rapidly emerging as an alternative to organic drugs, as they have the ability to kill pathogens via metal-specific modes of action. We herein review recent advances in metal-based antibacterial agents, including metal complexes, metal ions and catalytic metallodrugs. The review concludes with a perspective on the rational design of metal-based antibiotics, and how we can exploit their unique properties to tackle AMR.


Subject(s)
Coordination Complexes , Coordination Complexes/pharmacology , Anti-Bacterial Agents/pharmacology , Metals
12.
Colloids Surf B Biointerfaces ; 221: 113026, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36410191

ABSTRACT

The delivery of lipophilic dyes, such as BODIPY 505/515, to cells is often hindered by their low aqueous solubility, necessitating the use of organic solvents to facilitate the delivery, which unfortunately compromises the viability of the cells. In this work, we demonstrate the generation of novel composite hydrogel microparticles loaded with BODIPY 505/515, which can be used to deliver the dye to microalgal cells to stain the intracellular lipids. The microparticles were prepared by combining polymeric micelles with hydrogel technology to obtain microparticles of enhanced loading capacity. The generated hydrogel microparticles were tested by incubation with Phaeodactylum tricornutum algal cells. The cells were rapidly and successfully stained by the dye-containing microparticles, and their viability was not affected by the staining process. The method can also be used to stain other types of microalgal cells, such as Nannochloropsis gaditana cells. We therefore believe that this work offers a versatile and useful solution to important cell-staining problems in biotechnology.


Subject(s)
Microalgae , Microfluidics , Hydrogels , Staining and Labeling , Coloring Agents
13.
J Med Chem ; 65(3): 2149-2173, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35080396

ABSTRACT

Pseudomonas aeruginosa is of major concern for cystic fibrosis patients where this infection can be fatal. With the emergence of drug-resistant strains, there is an urgent need to develop novel antibiotics against P. aeruginosa. MurB is a promising target for novel antibiotic development as it is involved in the cell wall biosynthesis. MurB has been shown to be essential in P. aeruginosa, and importantly, no MurB homologue exists in eukaryotic cells. A fragment-based drug discovery approach was used to target Pa MurB. This led to the identification of a number of fragments, which were shown to bind to MurB. One fragment, a phenylpyrazole scaffold, was shown by ITC to bind with an affinity of Kd = 2.88 mM (LE 0.23). Using a structure guided approach, different substitutions were synthesized and the initial fragment was optimized to obtain a small molecule with Kd = 3.57 µM (LE 0.35).


Subject(s)
Anti-Bacterial Agents/chemistry , Bacterial Proteins/antagonists & inhibitors , Oxidoreductases/antagonists & inhibitors , Pseudomonas aeruginosa/enzymology , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/metabolism , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Cystic Fibrosis/complications , Cystic Fibrosis/mortality , Cystic Fibrosis/pathology , Drug Evaluation, Preclinical , Humans , Ligands , Molecular Conformation , Molecular Docking Simulation , Oxidoreductases/metabolism , Pseudomonas Infections/complications , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Pyrazoles/chemistry , Pyrazoles/metabolism , Pyrazoles/pharmacology , Pyrazoles/therapeutic use
14.
RSC Chem Biol ; 2(4): 1263-1273, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34458840

ABSTRACT

Fungal infections represent a global problem, notably for immunocompromised patients in hospital, COVID-19 patient wards and care home settings, and the ever-increasing emergence of multidrug resistant fungal strains is a sword of Damocles hanging over many healthcare systems. Azoles represent the mainstay of antifungal drugs, and their mode of action involves the binding mode of these molecules to the fungal lanosterol 14α-demethylase target enzyme. In this study, we have prepared and characterized four novel organometallic derivatives of the frontline antifungal drug fluconazole (1a-4a). Very importantly, enzyme inhibition and chemogenomic profiling demonstrated that lanosterol 14α-demethylase, as for fluconazole, was the main target of the most active compound of the series, (N-(ferrocenylmethyl)-2-(2,4-difluorophenyl)-2-hydroxy-N-methyl-3-(1H-1,2,4-triazol-1-yl)propan-1-aminium chloride, 2a). Transmission electron microscopy (TEM) studies suggested that 2a induced a loss in cell wall integrity as well as intracellular features ascribable to late apoptosis or necrosis. The impressive activity of 2a was further confirmed on clinical isolates, where antimycotic potency up to 400 times higher than fluconazole was observed. Also, 2a showed activity towards azole-resistant strains. This finding is very interesting since the primary target of 2a is the same as that of fluconazole, emphasizing the role played by the organometallic moiety. In vivo experiments in a mice model of Candida infections revealed that 2a reduced the fungal growth and dissemination but also ameliorated immunopathology, a finding suggesting that 2a is active in vivo with added activity on the host innate immune response.

15.
ACS Infect Dis ; 7(6): 1666-1679, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33939919

ABSTRACT

Coenzyme A (CoA) is a ubiquitous cofactor present in all living cells and estimated to be required for up to 9% of intracellular enzymatic reactions. Mycobacterium tuberculosis (Mtb) relies on its own ability to biosynthesize CoA to meet the needs of the myriad enzymatic reactions that depend on this cofactor for activity. As such, the pathway to CoA biosynthesis is recognized as a potential source of novel tuberculosis drug targets. In prior work, we genetically validated CoaBC as a bactericidal drug target in Mtb in vitro and in vivo. Here, we describe the identification of compound 1f, a small molecule inhibitor of the 4'-phosphopantothenoyl-l-cysteine synthetase (PPCS; CoaB) domain of the bifunctional Mtb CoaBC, and show that this compound displays on-target activity in Mtb. Compound 1f was found to inhibit CoaBC uncompetitively with respect to 4'-phosphopantothenate, the substrate for the CoaB-catalyzed reaction. Furthermore, metabolomic profiling of wild-type Mtb H37Rv following exposure to compound 1f produced a signature consistent with perturbations in pantothenate and CoA biosynthesis. As the first report of a direct small molecule inhibitor of Mtb CoaBC displaying target-selective whole-cell activity, this study confirms the druggability of CoaBC and chemically validates this target.


Subject(s)
Mycobacterium tuberculosis , Peptide Synthases/antagonists & inhibitors , Coenzyme A , Cysteine/analogs & derivatives , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/genetics , Pantothenic Acid/analogs & derivatives , Peptide Synthases/genetics
16.
Nat Commun ; 12(1): 143, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33420031

ABSTRACT

Coenzyme A (CoA) is a fundamental co-factor for all life, involved in numerous metabolic pathways and cellular processes, and its biosynthetic pathway has raised substantial interest as a drug target against multiple pathogens including Mycobacterium tuberculosis. The biosynthesis of CoA is performed in five steps, with the second and third steps being catalysed in the vast majority of prokaryotes, including M. tuberculosis, by a single bifunctional protein, CoaBC. Depletion of CoaBC was found to be bactericidal in M. tuberculosis. Here we report the first structure of a full-length CoaBC, from the model organism Mycobacterium smegmatis, describe how it is organised as a dodecamer and regulated by CoA thioesters. A high-throughput biochemical screen focusing on CoaB identified two inhibitors with different chemical scaffolds. Hit expansion led to the discovery of potent and selective inhibitors of M. tuberculosis CoaB, which we show to bind to a cryptic allosteric site within CoaB.


Subject(s)
Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Carboxy-Lyases/antagonists & inhibitors , Mycobacterium smegmatis/enzymology , Mycobacterium tuberculosis/drug effects , Peptide Synthases/antagonists & inhibitors , Allosteric Regulation/drug effects , Allosteric Site/drug effects , Antitubercular Agents/therapeutic use , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/ultrastructure , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Carboxy-Lyases/ultrastructure , Coenzyme A/biosynthesis , Crystallography, X-Ray , Enzyme Assays , Gene Knockdown Techniques , High-Throughput Screening Assays , Humans , Microbial Sensitivity Tests , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/genetics , Peptide Synthases/genetics , Peptide Synthases/metabolism , Peptide Synthases/ultrastructure , Tuberculosis/drug therapy , Tuberculosis/microbiology
17.
J Am Chem Soc ; 132(51): 18233-47, 2010 Dec 29.
Article in English | MEDLINE | ID: mdl-21141863

ABSTRACT

Dibromonitrosyl(dihydrogen)rhenium(I) complexes [ReBr(2)(NO)(PR(3))(2)(η(2)-H(2))] (1; R = iPr, a; Cy, b) and Me(2)NH·BH(3) (DMAB) catalyze at either 90 °C or ambient temperature under 10 bar of H(2) the hydrogenation of various terminal and cyclic alkenes (1-hexene, 1-octene, cyclooctene, styrene, 1,5-cyclooctadiene, 1,7-octadiene, α-methylstyrene). Maximum turnover frequency (TOF) values of 3.6 × 10(4) h(-1) at 90 °C and 1.7 × 10(4) h(-1) at 23 °C were achieved in the hydrogenation of 1-hexene. The extraordinary catalytic performance of the 1/DMAB system is attributed to the formation of five-coordinate rhenium(I) hydride complexes [Re(Br)(H)(NO)(PR(3))(2)] (2; R = iPr, a; Cy, b) and the action of the Lewis acid BH(3) originating from DMAB. The related 2/BH(3)·THF catalytic system also exhibits under the same conditions high activity in the hydrogenation of various alkenes with a maximum turnover number (TON) of 1.2 × 10(4) and a maximum TOF of 4.0 × 10(4) h(-1). For the hydrogenations of 1-hexene with 2a and 2b, the effect of the strength of the boron Lewis acid was studied, the acidity being in the following order: BCl(3) > BH(3) > BEt(3) ≈ BF(3) > B(C(6)F(5))(3) > BPh(3) ≫ B(OMe)(3). The order in catalytic activity was found to be B(C(6)F(5))(3) > BEt(3) ≈ BH(3)·THF > BPh(3) ≫ BF(3)·OEt(2) > B(OMe)(3) ≫ BCl(3). The stability of the catalytic systems was checked via TON vs time plots, which revealed the boron Lewis acids to cause an approximate inverse order with the Lewis acid strength: BPh(3) > BEt(3) ≈ BH(3)·THF > B(C(6)F(5))(3). For the 2a/BPh(3) system a maximum TON of 3.1 × 10(4) and for the 2a/B(C(6)F(5))(3) system a maximum TOF of 5.6 × 10(4) h(-1) were obtained in the hydrogenation of 1-hexene. On the basis of kinetic isotope effect determinations, H(2)/D(2) scrambling, halide exchange experiments, Lewis acid variations, and isomerization of terminal alkenes, an Osborn-type catalytic cycle is proposed with olefin before H(2) addition. The active rhenium(I) monohydride species is assumed to be formed via reversible bromide abstraction with the "cocatalytic" Lewis acid. Homogeneity of the hydrogenations was tested with filtration and mercury poisoning experiments. These "rhenium(I) hydride/boron Lewis acid" systems demonstrate catalytic activities comparable to those of Wilkinson- or Schrock-Osborn-type hydrogenations accomplished with precious metal catalysts.

18.
Parasit Vectors ; 11(1): 580, 2018 Nov 06.
Article in English | MEDLINE | ID: mdl-30400935

ABSTRACT

BACKGROUND: Schistosomiasis is one of the most harmful parasitic diseases worldwide, praziquantel being the only drug in widespread use to treat it. We recently demonstrated that ferrocenyl, ruthenocenyl and benzyl derivatives of oxamniquine (Fc-OXA, Rc-OXA and Bn-OXA) are promising antischistosomal drug candidates. METHODS: In this study we assessed the tegumental damage of these three derivatives of oxamniquine using scanning electron microscopy. Adult Schistosoma mansoni and S. haematobium were exposed to a concentration of 100 µM of each drug and incubated for 4-120 h, according to their onset of action and activity. RESULTS: While on S. mansoni the fastest acting compound was Fc-OXA, which revealed high activity after 4 h of incubation, on S. haematobium, Rc-OXA revealed the quickest onset, being lethal on all males within 24 h. In both species studied, the three derivatives showed the same patterns of tegumental damage consisting of blebs, sloughing and tegument rupturing all over the body. Additionally, on S. mansoni distinct patterns of tegumental damage were observed for each of the compounds: tissue ruptures in the gynaecophoric canal for Fc-OXA, loss of spines for Rc-OXA and oral sucker rupture for Bn-OXA. CONCLUSIONS: Our study confirmed that Fc-OXA, Rc-OXA and Bn-OXA are promising broad spectrum antischistosomal drug candidates. All derivatives show fast in vitro activity against S. mansoni and S. haematobium while validating the previous finding that the parent drug oxamniquine is less active in vitro under the conditions described. This work sets the base for further studies on the identification of a lead oxamniquine derivative, with the aim of identifying a molecule with the potential to become a new drug for human use.


Subject(s)
Organometallic Compounds/pharmacology , Oxamniquine/pharmacology , Schistosoma haematobium/anatomy & histology , Schistosoma haematobium/drug effects , Schistosoma mansoni/anatomy & histology , Schistosoma mansoni/drug effects , Animals , Female , Inhibitory Concentration 50 , Mice , Microscopy, Electron, Scanning , Organometallic Compounds/chemistry , Oxamniquine/chemistry , Schistosoma mansoni/ultrastructure , Schistosomiasis/parasitology , Schistosomicides/pharmacology
19.
Medchemcomm ; 9(11): 1905-1909, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30568758

ABSTRACT

We present the design, synthesis, characterization and biological evaluation of new ferrocenyl and ruthenocenyl derivatives of the organic antimalarial mefloquine, a drug also known for its antischistosomal activity. The two metallocenyl derivatives prepared (3 and 4) demonstrated comparable activity to mefloquine against adult-stage Schistosoma mansoni in vitro. Importantly, both compounds were found to have lower toxicity in all cell lines than mefloquine itself. Administration of a 200 mg kg-1 oral dose of 3 and 4 to S. mansoni-infected mice did not significantly reduce worm burden, contrary to mefloquine.

20.
Cell Rep ; 24(10): 2629-2642.e5, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30184498

ABSTRACT

Interstrand cross-links (ICLs) are toxic DNA lesions interfering with DNA metabolism that are induced by widely used anticancer drugs. They have long been considered absolute roadblocks for replication forks, implicating complex DNA repair processes at stalled or converging replication forks. Recent evidence challenged this view, proposing that single forks traverse ICLs by yet elusive mechanisms. Combining ICL immunolabeling and single-molecule approaches in human cells, we now show that ICL induction leads to global replication fork slowing, involving forks not directly challenged by ICLs. Active fork slowing is linked to rapid recruitment of RAD51 to replicating chromatin and to RAD51/ZRANB3-mediated fork reversal. This global modulation of fork speed and architecture requires ATR activation, promotes single-fork ICL traverse-here, directly visualized by electron microscopy-and prevents chromosomal breakage by untimely ICL processing. We propose that global fork slowing by remodeling provides more time for template repair and promotes bypass of residual lesions, limiting fork-associated processing.


Subject(s)
Chromosome Breakage , DNA Damage/genetics , DNA Replication/genetics , DNA/metabolism , Blotting, Western , Cell Line, Tumor , Comet Assay , DNA/genetics , DNA/ultrastructure , DNA Damage/physiology , DNA Replication/physiology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Flow Cytometry , Fluorescent Antibody Technique , Humans , Microscopy, Electron , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL